Ttg s104 что это
Тестирование термопаст
Даже энтузиасты, самостоятельно собирающие компьютеры, редко обращают внимание на марку термопасты и зачастую используют ту, что идет в комплекте с кулером или есть под рукой. Но все ли термопасты одинаково эффективны? Мы постараемся ответить на этот вопрос и по результатам тестирования выберем лучшую термопасту из тех, что можно купить в магазине.
Теоретические основы
Прежде чем рассматривать результаты тестирования, давайте разберемся с теорией и выясним, зачем вообще нужна термопаста.
Сначала напомним читателям общие сведения из курса теплофизики.
Согласно закону Фурье, количество теплоты, проходящее через элемент изотермической поверхности (поверхности, все точки которой имеют одинаковую температуру) dS за промежуток времени dτ, пропорционально температурному градиенту:
Множитель λ, измеряемый в [Вт/(м·К)], называется коэффициентом теплопроводности.
В данном выражении знак «минус» указывает на то, что теплота передается от более горячих тел к менее горячим, то есть градиент температуры отрицателен.
Количество теплоты, прошедшее в единицу времени через единицу изотермической поверхности, называется плотностью теплового потока:
Таким образом, плотность теплового потока прямо пропорциональна градиенту температуры.
Если речь идет о стационарном потоке тепла от одной грани параллелепипеда к другой, то количество теплоты, проходящее через изотермическую грань параллелепипеда в единицу времени (тепловой поток), равно:
где λ — длина параллелепипеда; S — площадь грани; ΔT — перепад температур между гранями.
Если рассмотреть границу перехода между двумя различными средами и предположить, что граничные поверхности обеих сред изотермические, то количество теплоты, проходящее в единицу времени через границу раздела двух сред, прямо пропорционально разнице температур граничащих поверхностей:
где S — площади контакта поверхностей; ΔT — разность температур; α12 — коэффициент теплоотдачи, зависящий от контактирующих материалов.
А теперь попытаемся применить приведенные ранее уравнения к системе «процессор — радиатор кулера».
Прежде всего отметим, что если бы поверхность процессора и прилегающая к ней поверхность радиатора были идеально гладкими, то тепловой поток через границу «процессор — радиатор» определялся бы по формуле:
где T1 — температура поверхности процессора, T2 — температура нижней поверхности радиатора.
Однако поверхности крышки процессора и подошва радиатора не идеально гладкие. При соприкосновении этих поверхностей между ними образуются микроскопические пустоты, заполненные воздухом. А воздух, как известно, очень плохо проводит тепло, и эффективность отвода тепла через границу раздела двух таких сред с неидеальными поверхностями оказывается не слишком высокой. Для того чтобы нивелировать шероховатость поверхностей радиатора и крышки процессора, используют термопасту, которая заполняет все микропустоты и вытесняет оттуда воздух. При применении термопасты процесс переноса тепла от процессора к радиатору выглядит следующим образом: передача тепла между поверхностью крышки процессора и нижней границей слоя термопасты, передача тепла в самом слое термопасты и передача тепла между верхней границей слоя термопасты и нижней поверхностью радиатора.
Тепловой поток через границу «крышка процессора — термопаста» можно записать в виде:
где ΔT1 — разность температур на границе контакта микросхемы и термопасты; α12 — коэффициент теплоотдачи между поверхностью микросхемы и термопастой.
Тепловой поток внутри слоя термопасты можно записать в виде:
где λ — коэффициент теплопроводности термопасты; l — толщина слоя термопасты; T2 — разность температур между нижним и верхним слоями термопасты.
Тепловой поток через границу «термопаста — радиатор» записывается в виде:
где ΔT3 — разность температур на границе контакта микросхемы и термопасты; α23 — коэффициент теплоотдачи между термопастой и поверхностью радиатора.
С учетом того, что тепловой поток на всех участках теплообмена должен оставаться неизменным, мы имеем:
Принимая во внимание, что сумма разностей температур равна общей разности температур, то есть ΔT = ΔT1 + ΔT2 + ΔT3, получаем:
то тепловой поток между поверхностью микросхемы и радиатором через слой термопасты будет записан в виде: W = kSΔT.
Коэффициент k называют коэффициентом теплопередачи. Чем он выше, тем эффективнее осуществляется отвод тепла от процессора. Для эффективного теплоотвода (высокий коэффициент теплопередачи) термопаста должна иметь высокий коэффициент теплоотдачи между крышкой процессора и термопастой и между термопастой и радиатором, а также большой коэффициент теплопроводности и как можно меньшую толщину слоя.
Отсюда первый вывод: не нужно наносить термопасту на поверхность процессора толстым слоем. Чем тоньше слой термопасты, тем эффективнее будет отвод тепла.
Что касается коэффициента теплопроводности термопасты, то нужно понимать, что он в десятки и даже сотни раз ниже коэффициентов теплопроводности металлов. Среди металлов самым высоким коэффициентом теплопроводности обладает серебро (407 Вт/м·K), а типичная теплопроводность термопасты составляет единицы Вт/м·K.
Для того чтобы повысить коэффициент теплопроводности термопасты, в нее добавляют разного рода металлическую пыль или пыль оксидов некоторых металлов. Кроме того, встречаются термопасты, содержащие алмазную пыль, — ведь алмаз обладает очень высокой теплопроводностью — 1001-2600 Вт/м·K. Вообще, самую высокую теплопроводность имеет графен — (4840±440) — (5300±480) Вт/м·K, однако о термопастах с добавлением графена мы пока не слышали (видимо, это связано с дороговизной его производства). Но, скорее всего, именно графен будет использоваться в качестве наполнителя для термопаст в будущем, когда его производство станет дешевым.
Итак, мы вкратце изложили теорию термопаст, а в заключение еще раз подчеркнем, что термопаста нужна исключительно для того, чтобы уменьшить негативное влияние шероховатости поверхности радиатора и процессора на отвод тепла, и чем тоньше слой термопасты, тем лучше.
Теперь самое время познакомиться с участниками тестирования.
Участники тестирования
Arctic MX-2
Коэффициент теплопроводности пасты Arctic MX-2 равен 5,6 Вт/м·K.
Arctic MX-4
Arctic MX-4 — это еще одна термопаста от швейцарской компании Arctic Cooling. Она выпускается в шприцах по 4 и 20 г.
Коэффициент теплопроводности пасты Arctic MX-4 равен 8,5 Вт/м·K.
Если сравнивать пасту Arctic MX-4 с пастой Arctic MX-2, то по техническим характеристикам она лучше в плане теплопроводности, но немного более густая. В целом же они очень похожи друг на друга. Стоимость пасты Arctic MX-4 в расфасовке по 4 г составляет 9,90 долл., а пасты Arctic MX-2 в таком же количестве — 7,90 долл.
Отечественная термопаста КПТ-8, пожалуй, самая распространенная на российском рынке. Выпускает ее московское ООО «Пайка и монтаж».
Паста КПТ-8 представляет собой вязкую белую массу c кремнийорганическим наполнением. Заявленный коэффициент теплопроводности при температуре 100 °C — не менее 0,65 Вт/м·K, а при температуре 20 °C — не менее 0,7 Вт/м·K. Плотность пасты КПТ-8 составляет 2,6-3,0 г/см2. Паста КПТ-8 не горюча, не взрывоопасна, химически инертна и не обладает какимлибо раздражающим или токсическим воздействием на человека.
По характеристикам она уступает практически всем своим конкурентам, но это с лихвой компенсируется ее низкой стоимостью и доступностью.
Cooler Master ThermalFusion 400
Термопасты компании Cooler Master поставляются и как отдельный продукт, и в комплекте с кулером. В частности, это касается термопасты Cooler Master ThermalFusion 400, которая входит в комплект поставки кулера V10. Разница лишь в том, что при покупке термопасты как отдельного продукта вы получаете шприц с лопаткой для ее нанесения, а кулер комплектуется термопастой в мизерном количестве (на один раз) в полиэтиленовой упаковке.
Термопаста Cooler Master ThermalFusion 400 имеет серый цвет. Ее заявленная теплопроводность составляет 2,89 Вт/м·K, что довольно скромно по современным меркам. Термопаста вязкая, удобно наносится на поверхность процессора, не высыхает и не проводит электрический ток.
Cooler Master Thermal Compound Kit
Еще одна термопаста от компании Cooler Master, которая не продается как самостоятельный продукт. Этой термопастой, которую мы условно назвали Cooler Master Thermal Compound Kit, комплектуются многие модели кулеров Cooler Master.
Поставляется она в маленьком шприце, содержащем 1-2 г продукта. Это густая паста серого цвета. К сожалению, никаких технических характеристик данной термопасты не приводится.
Noctua NT-H1
Термопаста NT-H1 от австрийской компании Noctua поставляется и в комплекте с кулерами, и как отдельный продукт.
Термопаста Noctua NT-H1 имеет серый цвет, очень густая, но пластичная. Наносится она довольно легко.
Prolimatech PK-1
Термопасту Prolimatech PK-1 можно купить и отдельно, и в комплекте с кулерами компании Prolimatech.
Она поставляется в шприце по 5 или 30 г, а также в полиэтиленовом пакетике в количестве 1 г.
Thermalright Chill Factor III
Термопасту Thermalright Chill Factor III можно купить и отдельно, и в комплекте с кулерами Thermalright. В поставку кулеров входит шприц с термопастой весом 2 г, а в качестве отдельного продукта термопаста Thermalright Chill Factor III продается в расфасовке по 4 г (упаковка в виде шприца).
Согласно данным производителя, коэффициент теплопроводности термопасты составляет 3,5 Вт/м·К. Цвет серый. Консистенция термопасты вязкая, но она очень пластичная и легко наносится.
GlacialStars IceTherm I
GlacialStars IceTherm I — это термопаста от тайваньской компании GlacialTech. Она поставляется в шприце на 1,5 г. В комплект также входит лопатка для нанесения термопасты.
Согласно данным производителя, коэффициент теплопроводности этой термопасты составляет 4,5 Вт/м·К, а рабочий диапазон — от –30 до +180 °С.
GlacialStars IceTherm II
GlacialStars IceTherm II — это более продвинутый и более дорогой вариант термопасты от компании GlacialTech. Эта термопаста тоже поставляется в шприце, а в комплект также входит лопатка для нанесения.
Согласно данным производителя, коэффициент теплопроводности этой термопасты составляет 8,1 Вт/м·К, а рабочий диапазон — от –40 до +100 °С.
OCZ Freeze Extreme
В настоящее время компания OCZ не занимается производством систем охлаждения, и купить термопасту OCZ Freeze Extreme вам вряд ли удастся. Тем не менее раньше эта термопаста и продавалась как отдельный продукт, и поставлялась в комплекте с кулерами OCZ, а потому мы решили включить ее в наш обзор.
Итак, термопаста OCZ Freeze Extreme поставляется в шприце с расфасовкой 3 г.
Stars Soft pack
Данная термопаста от малоизвестной компании Stars поставляется в бумажном пакете, и ее хватит только на один раз. Никаких технических характеристик производитель не указывает, так что данная термопаста — кот в мешке. Причем найти сайт производителя тоже оказалось нетривиальной задачей. А вот предложений о покупке этой термопасты через интернет-магазины довольно много. Что ж, посмотрим, имеет ли смысл приобретать этот noname.
Titan TTG-S103/S104
Термопасты Titan TTG-S103/S104 — это классический вариант так называемых серебрянок. Они имеют серебристый цвет и сильно пачкаются. Важно подчеркнуть, что серебра как такового в них нет. Термопасты Titan TTG-S103/S104 поставляются и вместе с кулерами Titan, и как отдельный продукт, но в настоящий момент уже не производятся. Именно поэтому никакой технической информации о них на сайте производителя нет.
Различие между TTG-S103 и TTG-S104 заключается лишь в том, что TTG-S103 фасуется в пакет, а TTG-S104 — в шприц.
Zalman ZM-STG1
Термопаста Zalman ZM-STG1 поставляется и как отдельный продукт, и в комплекте с кулерами. Естественно, упаковка термопасты как отдельного продукта и в комплектации к кулеру различна. Так, если термопаста поставляется вместе с кулером, то это небольшой шприц, в котором термопасты хватит только на один раз. А если это отдельный продукт, то термопаста фасуется в стеклянный флакон, в каком продается лак для ногтей.
Zalman ZM-TG2
Thermaltake
Термопаста Thermaltake в маленьком шприце с черной этикеткой и красным колпачком поставляется только в комплекте с кулерами Thermaltake. К сожалению, выяснить ее полное название, равно как и технические характеристики, не представляется возможным.
На этикетке есть лишь надпись, обещающая, что Thermaltake охладит всю вашу жизнь («Thermaltake cool all your life»). На этом все сведения о продукте заканчиваются. Цвет термопасты светло-серый.
Методика и результаты тестирования
Для тестирования термопаст мы использовали тест следующей конфигурации:
В настройках BIOS материнской платы скорость вращения вентилятора кулера процессора устанавливалась максимальной.
Экстремальная загрузка (а соответственно и нагрев) процессора осуществлялся с помощью утилиты AIDA64 (тест CPU FPU). Эта же утилита применялась для контроля температуры ядер процессора.
Первоначально мы провели тестирование без термопасты вообще. В этом случае температура процессора достигала 105 °С и включался режим тепловой защиты Throttling.
Результаты тестирования термопаст представлены на диаграмме.
Результаты тестирования термопаст
Прежде всего отметим, что за счет термопасты температура процессора в тесте может различаться на 11 °С. Так, при использовании термопасты Titan TTG-S103/S104 температура процессора в нашем тесте составила 86 °С, а в случае применения термопасты Zalman ZM-STG1 — 75 °С.
Лучшей в нашем тестировании оказалась термопаста Zalman ZM-STG1, однако, учитывая неизбежную погрешность измерений, мы отнесли к категории лучших следующие термопасты: Zalman ZM-STG1, GlacialStars IceTherm II, OCZ Freeze Extreme и Thermaltake.
Одна из самых популярных термопаст КПТ-8 оказалась на предпоследнем месте, обойдя по эффективности только термопасты Titan. Что ж, как видите, популярность и эффективность — это далеко не одно и то же.
Итак, вывод можно сделать следующий. Если вы занимаетесь разгоном процессора и каждый градус для вас на вес золота, то выбирайте термопасту Zalman ZM-STG1 или GlacialStars IceTherm II (их можно купить и как отдельный продукт).
Если же вы не сторонник разгона, то и не стоит «париться». Берите первую попавшуюся термопасту, поскольку любая из них в штатном режиме работы процессора обеспечивает достаточную теплопроводность.
Углерод против алюминия
Термоинтерфейс процессора требует сегодня особого внимания. Читайте обзор нескольких термопаст, доступных на российском рынке, и одной графитовой прокладки.
Тепловое сопротивление современных воздушных кулеров очень невелико — 0,29–0,66 °C/Вт для полностью собранной системы «процессор — система теплосъема». В переводе на более понятные цифры, это означает, что если рабочая температура процессора не должна превышать 65 °C, а температура окружающей среды — 25 °C, то эти кулеры могут нормально охлаждать процессоры, рассеивающие 140–60 Вт тепла соответственно (Честно говоря, очень интересно, какие боксовые кулеры будут прилагаться к будущим двуядерным процессорам Intel Smithfield с заявленным TDP 130 Вт: минимально оценка необходимого теплового сопротивления получается порядка 0,34 °C/Вт. Это требует либо использования тепловых трубок, либо самого совершенного цельномедного кулера, либо использования корпусов стандарта BTX с их громадными Thermal Modules).
Однако чтобы получить столь малое термическое сопротивление, мало просто установить радиатор на теплорассеивающую крышку (хитспредер) процессора: требуется еще и обеспечить между ними надежный тепловой контакт. Удельная теплопроводность у воздуха почти в 17 тысяч раз хуже, чем у меди, и поэтому, если, скажем, оставить между подошвой радиатора и процессором зазор толщиной с человеческий волос (0,07 мм), то тепловое сопротивление у получившейся системы будет такое же, как если бы между радиатором и процессором поместили плиту меди метровой толщины.
Любая, даже сколь угодно качественно обработанная поверхность, всегда обладает крошечными шероховатостями. При соприкосновении под давлением они слегка деформируются и превращаются в своеобразные «площадки», которые и обеспечивают механический и тепловой контакт радиатора с крышкой процессора. Чем мягче металл, из которого сделан радиатор, и чем меньше величина шероховатостей, тем больше площадь контакта и тем меньше зазор между радиатором и процессором. Именно по этой причине подошвы современных кулеров тонко шлифуют, а в некоторых случаях — даже полируют.
Теоретически, можно отшлифовать подошвы радиатора и кулера настолько тщательно, что соприкасающиеся поверхности будут прилипать друг к другу (Помните соответствующий школьный опыт с двумя брусочками свинца? У обычных цилиндрических свинцовых грузиков тщательно полируются основания, после чего достаточно прикосновения, чтобы образовался весьма прочный механический контакт) — это как раз будет означать, что площадь плотно соприкасающихся «площадок» стала достаточно значимой. Однако в реальной жизни приходится мириться с существованием микроскопических зазоров между радиатором и процессором и стараться как-то минимизировать их тепловое сопротивление. При прочих равных (одинаковом качестве обработки соприкасающихся поверхностей) условиях все, что мы можем сделать, — заменить воздух в этих зазорах на что-нибудь более теплопроводное. А вот на что заменять — есть множество вариантов.
Пайка
Вариант первый, экстремальный. При некоторых условиях можно попробовать заполнить зазор каким-нибудь металлом. Просто подкладывать между кулером и радиатором какую-то металлическую прокладку или порошок бессмысленно — возникающие зазоры при сколь-либо приемлемом качестве обработки радиатора имеют гораздо меньшие размеры. Но можно попробовать залить полости специально подобранным расплавом металла, то есть припаять радиатор к процессору (Например, пайка используется в тех случаях, когда радиатор набирается из нескольких частей, скажем, набора медных пластин и основания. Пластины просто припаиваются к основанию, и проблем с хорошим тепловым контактом не возникает). Звучит страшновато, но такие варианты действительно предлагаются — между процессором и кулером наносится тонкий слой реактивов (алюминия и никеля), затем слой «поджигается», быстро «сгорает» (один металл окисляется, другой восстанавливается), и выделившегося тепла как раз хватает на то, чтобы расплавить образующийся в ходе реакции металл. Сам кристалл процессора при этом не страдает: тепла в ходе реакции выделяется не очень много — просто оно выделяется в очень тонком слое и поэтому «успевает» до того, как будет рассеяно в окружающее пространство, расплавить металл в очень ограниченной области. Теплопроводность получающегося слоя — порядка 70 Вт/м°К, что в разы лучше, чем у конкурирующих решений (см. таблицу). Но, правда, о практическом выпуске подобных схем пока речь не идет.
Графитовые прокладки
Традиционно считается, что лучшие тепловые проводники — металлы. Можно даже вывести соответствующие формулы, обосновывающие эту закономерность. Но если обратиться к таблице теплопроводности материалов, можно заметить совершенно неожиданную вещь: теплопроводность такого, казалось бы, безнадежного диэлектрика, как алмаз, составляет (для некоторых кристаллических модификаций) до 1600 Вт/м°К — результат, вчетверо превосходящий достижения меди и серебра! Об использовании алмаза в качестве промежуточного слоя между радиатором и процессором не может идти и речи, но вот другая кристаллическая модификация углерода — графит — для этих целей вполне подходит. Теплопроводность кристаллического графита хотя и уступает алмазу, но не столь принципиально (до 800 Вт/м°К). Причем теплопроводность эта анизотропна. Графит — слоистый по структуре материал. Атомы углерода внутри каждого слоя соединены чрезвычайно прочными химическими связями, напоминающими алмазные, а вот связи между слоями — слабые (см. иллюстрации). Поэтому и теплопроводность у кристаллического графита в плоскости слоев, in-plane, огромная, а вот «перпендикулярно» слоям, through the thickness, — сравнительно небольшая (4-6 Вт/м°К).
Изготовленная из графита пленка замечательно распространяет тепло по своей площади. Никакого локального перегрева — графит, может быть, и не слишком хорошо принимает и отдает тепло, но зато замечательно его «размазывает», то есть служит как минимум совершенным тепловым экраном (тепло быстрее уходит в стороны, нежели проникает насквозь). Никакой другой термоинтерфейс(Разве что кроме тепловых трубок — они еще более эффективны. Но, к сожалению, они и стоят гораздо дороже, да и не всегда возможно их использовать) ничего подобного сделать не позволяет, а потому интерес к теплопроводящим пленкам уже несколько лет остается стабильно высоким. Промышленную технологию получения высокоэффективных теплопроводящих графитовых пленок (Pyrolitic Graphite Sheet, PGS) давно разрабатывает и использовала для гибкого теплоотвода в нескольких ноутбуках Matsushita Electronics. Однако в одной из последних моделей, Panasonic Toughbook CF-Y2, она использовала более перспективные технологии eGraf Fredda и eGraf SpreaderShield на основе натурального кристаллического графита компании Graftech, благодаря которым 14-дюймовый Centrino-ноутбук не нуждается ни в одном вентиляторе. Аналогично технологии Graftech применяются в безвентиляторном супертонком ноутбуке Sony VAIO X505, а также для оптимального распределения и экранирования тепла в ноутбуках IBM и LG. Компания Samsung выбрала пленки SpreaderShield для предотвращения локального перегрева своих плазменных панелей.
Вернемся к настольным процессорам. У графита достаточно высокая теплопроводность даже перпендикулярно кристаллическим слоям; он является очень мягким материалом и хорошо «прилегает» к любым поверхностям; однако по обоим показателям графитовая прокладка — скорее уверенный середнячок, нежели лидер, поэтому сегодня их уже почти никто для этих целей не использует. Однако одну такую прокладку — от отечественной компании «АРМО-Графит» — мы включили в наш обзор.
Термопасты, термоклеи, плавящиеся термопрокладки
Самый часто используемый вариант: чтобы обеспечить надежный контакт между соединяемыми поверхностями, используют какое-либо вязкое вещество, заполняющее собой все зазоры. Иногда используется материал с фазовым переходом, то есть в обычных условиях на кулер нанесена обычная прокладка, но в ходе работы она расплавляется. Подавляющее большинство подобных жидкостей — аморфные вещества и диэлектрики. Сами по себе они являются довольно плохими тепловыми проводниками (хотя и лучшими, чем воздух); поэтому в них вводят специальный наполнитель — очень мелкодисперсный порошок из какого-нибудь хорошо проводящего тепло материала. Причем наполнителем может служить все что угодно — обычно используется алюминий или цинк, но в некоторых термопастах применяется медь и даже серебро (и возможно существование термопаст на основе порошка алмаза). Теплопроводность подобных решений — скромные 0,7-2,2 Вт/м°К.
Испытания
Мы использовали работающий на номинальных частотах Athlon 64 3500+ (ADA3500DEP4AW) и кулер Zalman 7000B-Cu, температура измерялась программой Motherboard Monitor 5 (MbM5), процессор «разогревался» с помощью пакетов BurnK7 и S&M. Температура воздуха в комнате +25 °C. Результаты сведены в таблицу.
Как и следовало ожидать, при отсутствии термоинтерфейса от перегрева процессор не спасает даже отличная шлифовка подошвы радиатора Zalman 7000B-Cu. Температура при запуске BurnK7 быстро возрастает до 85 °С и затем градус за градусом уверенно доходит до 100 °С. Максимально допустимая рабочая температура для данного экземпляра процессора составляет 70 °C; на практике сбои в работе процессора возникают, начиная с температуры 85 °С. Поскольку обе цифры оказываются превышенными с солидным запасом, назвать работоспособной такую систему трудно.
АлСил-3 — наверное, самый ходовой термоинтерфейс. Работать с ним удобно (это самая «жидкая» в обзоре паста, ее легко наносить и стирать), продается она в достаточно больших шприцах (хватает не на один десяток переустановок кулеров). Цвет — грязно-серый, наполнитель — нитрид алюминия. Показанные на стенде результаты — самые лучшие.
TTG-S104 Silver Compound — это та самая знаменитая «серебряная паста», которая прилагается к кулерам Titan. Характерный металлический блеск и серый цвет, правда, больше напоминают графит, нежели серебро (да и химический анализ показывает, что серебра в S104 и близко нет). Термопаста весьма вязкая, и работать с ней не очень удобно. Особенно проблематично отмывать ее с тех поверхностей, куда она по неосторожности попала. Упаковка — небольшой тюбик втрое меньшего, чем у АлСила, объема. Термическая эффективность такая же, как и у АлСил-3.
CSL-850 прилагается в качестве штатного термоинтерфейса к кулерам Zalman. Маленький тюбик с белой термопастой. За исключением той мелочи, что из этого тюбика не так просто выдавить достаточное количество термопасты даже на одну (!) установку кулера, работать с пастой удобно — она достаточно жидкая и легко размазывается тонким слоем по рабочим поверхностям радиатора и процессора. Термическая эффективность идентична эффективности АлСила и TTG-S104.
Выводы
Специальный термоинтерфейс — не роскошь, а жестокая необходимость для большинства современных процессоров. Исключение составляют разве что младшие Athlon 64 на 90-нм ядре Winchester при использовании дорогих и эффективных кулеров (да и в этом случае термопасту лучше все-таки нанести).
Несмотря на всю свою потенциальную эффективность, на современных процессорах с хитспредером графитовые прокладки пока сильно уступают самой обычной термопасте. Компания «АРМО-Графит» согласна с нашими выводами и уже активно работает над более мягкими материалами, эффективными под невысоким давлением с хитспредерами современных процессоров.
АлСил-3 (пожалуй, лучший выбор среди обычных паст), Zalman CSL-850, Titan TTG-S104 показали в наших испытаниях практически идентичные результаты, КПТ-8 лишь чуть-чуть отстала (на пару градусов), так что гоняться за какой-нибудь «особой серебряной термопастой» нет смысла — просто используйте ту пасту, которая прилагается к вашему кулеру.