спинной мозг фото реальное
Спинной мозг
Вдоль спинного мозга располагаются кровоснабжающие его артерии: непарная передняя спинальная артерия и парная задняя спинальная артерия, которые формируются крупными радикуломедуллярными артериями. Поверхностные артерии спинного мозга связаны между собой многочисленными анастомозами. Венозная кровь от спинного мозга оттекает через поверхностные продольные вены и анастомозы между ними по корешковым венам во внутреннее позвоночное венозное сплетение.
Спинной мозг покрыт плотным чехлом твердой мозговой оболочки, отростки которой, отходящие у каждого межпозвоночного отверстия, покрывают корешок и спинномозговой узел. Пространство между твердой оболочкой и позвонками (эпидуральное пространство) заполнено венозным сплетением и жировой тканью. Кроме твердой мозговой оболочки спинной мозг покрыт также паутинной и мягкой мозговыми оболочками. Между мягкой мозговой оболочкой и спинным мозгом расположено субарахноидальное пространство спинного мозга, заполненное цереброспинальной жидкостью.
Миотатические рефлексы проявляются укорочением мышцы в ответ на ее растяжение при ударе неврологическим молоточком по сухожилию. Они отличаются локальностью, и по их состоянию устанавливается топика поражения спинного мозга. Важное значение имеет исследование поверхностной и глубокой чувствительности. При поражении сегментарного аппарата спинного мозга нарушается чувствительность в соответствующих дерматомах (диссоциированная или тотальная анестезия, гипестезия, парестезии), изменяются вегетативные спинальные рефлексы (висцеро-моторные, вегетативно-сосудистые, мочеиспускательные и др.). Важную информацию о состоянии двигательных и чувствительных нейронов спинного мозга получают при электромиографии, электронейромиографии, позволяющих определить скорость проведения импульсов по чувствительным и двигательным нервным волокнам, регистрировать вызванные потенциалы спинного мозга.
С помощью рентгенологического исследования выявляют поражение позвоночника и содержимого позвоночного канала (оболочки спинного мозга, сосуды и др.). Кроме обзорной спондилографии при необходимости проводят томографию, позволяющую детализировать структуры позвонков, размеры позвоночного канала, обнаружить кальцификацию мозговых оболочек и др. Анатомические контуры позвоночника, структур позвоночного канала спинного мозга хорошо визуализируются с помощью компьютерной томографии, магнитно-резонансной томографии. Определить уровень блока субарахноидального пространства можно с помощью радиоизотопной (радионуклидной) миелографии. В диагностике различных поражений спинного мозга используют термографию.
Пороки развития спинного мозга могут быть незначительными, без выраженных нарушений функции и крайне тяжелыми, с почти полным отсутствием, недоразвитием спинного мозга. Наиболее часто пороки развития наблюдаются в пояснично-крестцовых отделах спинного мозга нередко они сочетаются с аномалиями развития позвоночника, головного мозга и черепа, а также других органов.
Незначительные нарушения развития спинного мозга под влиянием внешних и внутренних причин могут явиться в более поздние периоды жизни причиной неврологических расстройств.
Строение позвоночника
80% населения такие боли возникали хоть однажды. В настоящее время это заболевание встречается так же часто, как грипп, сердечно-сосудистые заболевания, и не уступает им по финансовым затратам на лечение. Зарубежные ученые подсчитали, что синдром боли в пояснице занимает третье место (как наиболее дорогостоящее заболевание после болезней сердца и онкологии), потому что он сопряжен со значительными затратами на диагностику и лечение, на операции, на компенсацию нетрудоспособности и дотации по инвалидности.
Строение позвоночника
Строение позвоночника человека обусловлено его функциями: опорной, защитной, амортизационной и двигательной. Позвоночник представляет собой изогнутый вертикальный столб, который поддерживает сверху голову и опирается снизу на таз и нижние конечности. Позвоночник человека состоит из 33-34 позвонков, из которых 24 соединены межпозвонковыми дисками и подвижны. Выделяют 7 шейных, 12 грудных, 5 поясничных, 5 крестцовых и 4-5 копчиковых позвонков.
Позвоночник в целом является гибким стержнем и опорой для головы, плечевого пояса и рук, органов грудной и брюшной полости. Он соединяет верхнюю часть скелета с нижней. Опорная функция позвоночника обусловлена постепенным увеличением размеров позвонков сверху вниз от шейного к крестцовому отделу. Наибольший размер у поясничных позвонков. Лежащие ниже крестцовые позвонки срастаются в единую массивную кость (крестец) Копчик представляет собой остаток исчезнувшего у человека хвоста.
Защитная функция позвоночника заключается в предохранении спинного мозга от повреждений. В связи с окончанием спинного мозга на уровне второго поясничного позвонка позвоночное отверстие в нижерасположенных позвонках постепенно сужается и у копчика совсем исчезает.
Связочный аппарат и мышцы.
Связки (плотные соединительнотканные структуры) прочно соединяют позвонки, направляя и удерживая их движения в разные стороны. Связки выдерживают большую нагрузку и крепки на растяжение настолько, что при травме не разрываются. Обычно происходит отрыв участка кости в месте прикрепления связок. Многочисленные мышцы спины наряду со связками обеспечивают надежное соединение позвонков и подвижность позвоночника.
Анатомия спинного мозга.
Защищая спинной мозг, структуры позвоночника тесно взаимодействуют с ним, его корешками и нервами, обеспечивая работу соответствующих им внутренних органов и звеньев опорно-двигательного аппарата. Спинной мозг лежит в позвоночном канале, располагаясь от края затылочного отверстия черепа до уровня первого-второго поясничных позвонков, постепенно истончаясь и заканчиваясь конусом. Ниже спинного мозга в позвоночном канале находится пучок отходящих от него нервных корешков, который называется «конский хвост».
Статика и биомеханика здорового позвоночника.
У большинства людей линия тяжести проходит впереди позвоночника, поэтому вес тела не увеличивает всех изгибов, а выпрямляет поясничный лордоз. При стоянии напрягаются мышцы и связки и усиливают давление на тела позвонков. Излишняя подвижность позвонков опасна для спинного мозга, расположенного в спинномозговом канале. Степень подвижности (динамика) позвоночника обусловлена перемещением смежных позвонков и изменениями конфигурации всего позвоночника, его положения относительно других частей тела.
Шейный остеохондроз
Шейный остеохондроз – это хроническое дистрофическое заболевание, при котором происходит истончение дисков, расположенных между позвонками с последующим замещением их костной тканью. По мере прогрессирования в дегенеративный процесс вовлекаются окружающие структуры. Это становится причиной развития целого комплекса симптомов, которые полностью подчиняют себе жизнь пациента.
Общая информация
Межпозвоночные диски состоят из гелеобразного ядра и окружающего его плотного фиброзного кольца, покрытых сверху слоем хрящевой ткани. Они выполняют амортизирующую функцию, препятствуя повреждению позвонков при беге, ходьбе и прыжках, а также способствуют подвижности и гибкости всего позвоночного столба.
В процессе естественного старения, а также в условиях повышенной нагрузки, происходит постепенное уменьшение высоты межпозвонкового диска. Нарушается обмен веществ в его ядре, появляются трещины в окружающем фиброзном кольце. Появляются выпячивания дисков – протрузии и грыжи. По мере прогрессирования заболевания, в него вовлекается хрящевая ткань и кости, возникают остеофиты – костные разрастания, которые становятся причиной ограничения подвижности и выраженного болевого синдрома.
Поскольку патологические изменения проходят в непосредственной близости от спинного мозга и его корешков, это приводит к их сдавлению и воспалению, а также рефлекторному развитию мышечного спазма. В результате человек испытывает характерные симптомы, по которым можно заподозрить заболевание.
Причины
Остеохондроз шейного отдела позвоночника относится к мультифакторным заболеваниям. Он возникает на фоне целого комплекса факторов, каждый из которых усугубляет течение патологии. В список причин входит:
Симптомы и синдромы
Симптомы шейного остеохондроза появляются далеко не сразу и, зачастую, маскируются под другие заболевания.
К наиболее частым признакам относятся:
Помимо общих признаков шейного остеохондроза, различают несколько синдромов, характерных для этого заболевания.
Вертебральный синдром
Комплекс симптомов связан с поражением костей и хрящей позвоночного столба. Он включает в себя:
Синдром позвоночной артерии
Симптоматика обусловлена сужением или спазмом позвоночных артерий, частично отвечающих за кровоснабжение головного мозга. Проявляется следующими признаками:
Кардиальный синдром
Напоминает состояние при поражении сердечной мышцы и включает в себя:
Корешковый синдром
Состояние связано с поражением (сдавлением или защемлением) нервных корешков, выходящих из позвоночного столба в шейном отделе. В зависимости от уровня поражения человек может ощущать:
Чаще всего в патологический процесс вовлекается сразу несколько нервных корешков, в результате чего наблюдается сразу несколько характерных симптомов.
Стадии
В процессе развития шейный остеохондроз проходит четыре последовательных стадии (степени), которые определяют выраженность симптомов и общее состояние пациента.
Диагностика
В поисках причин болей или головокружения пациент может обращаться к врачам различных специальностей: терапевт, кардиолог, гастроэнтеролог, невролог. Для диагностики остеохондроза требуется комплексное обследование, в которое входят:
В обязательном порядке проводится опрос и осмотр пациента, определение зон болезненности и степени подвижности позвоночного столба, оценивается качество рефлексов. Для дифференциальной диагностики с другими заболеваниями со сходной симптоматикой, может назначаться:
Лечение
Лечение шейного остеохондроза требует комплексного подхода и включает в себя:
Медикаментозное лечение
Основная цель медикаментозного лечения: снять боль и головокружение, восстановить нормальное функционирование нервных корешков, а также по возможности остановить или замедлить разрушение хрящевой ткани. В зависимости от ситуации назначаются:
В зависимости от симптомов, могут быть также назначены средства для улучшения микроциркуляции в сосудах головного мозга, препараты, блокирующие тошноту и головокружение и т.п.
Немедикаментозное лечение
Немедикаментозные методы лечения используются вне обострения. В зависимости от клинической ситуации используются:
Немедикаментозное лечение способствует снижению выраженности симптоматики и уменьшает частоту и силу обострений. Оно действует опосредованно:
Хирургическое лечение
Помощь хирургов необходима в запущенных случаях заболевания, когда медикаментозные методы уже неэффективны. В настоящее время используется несколько операций:
Важно помнить, что только врач может решать, как лечить остеохондроз шейного отдела позвоночника. Схема составляется индивидуально с учетом стадии болезни, сопутствующих патологий и индивидуальных особенностей организма пациента.
Осложнения
Остеохондроз становится причиной нарушения работы важнейших структур: кровеносных сосудов и нервов. Без лечения заболевание может привести к следующим осложнениям:
Кроме того, поражение межпозвонковых дисков и суставов приводит к значительному ограничению подвижности шеи.
Профилактика
Если уделить внимание профилактике шейного остеохондроза, даже при уже имеющихся изменениях их прогрессирование существенно замедлится. Врачи рекомендуют:
Идеальный спорт при остеохондрозе – плавание. Вода разгружает позвоночный столб, а активные движения способствуют формированию мышечного каркаса.
Лечение в клинике «Энергия здоровья»
Врачи клиники «Энергия здоровья» предлагают своим пациентам комплексные методики лечения шейного остеохондроза, включающие:
Преимущества клиники
Если шея начала периодически Вас беспокоить, не затягивайте с визитом к неврологу. Запишитесь на консультацию в клинику «Энергия здоровья».
Нейроинтерфейсы: как наука ставит людей на ноги
Нейроинтерфейсы: как наука ставит людей на ноги
Роботизированный экзоскелет, управляемый нейроинтерфейсом.
Автор
Редакторы
Статья на конкурс «Био/Мол/Текст»: В СМИ часто можно услышать о проектах, которые помогают парализованным людям взаимодействовать с окружающим миром. Но в этой статье мы поговорим о не менее интересной, но более обойдённой вниманием теме — о нейроинтерфейсах, помогающих людям с параличом конечностей восстанавливать самостоятельную двигательную активность.
Конкурс «Био/Мол/Текст»-2020/2021
Эта работа опубликована в номинации «Своя работа» конкурса «Био/Мол/Текст»-2020/2021.
Генеральный партнер конкурса — ежегодная биотехнологическая конференция BiotechClub, организованная международной инновационной биотехнологической компанией BIOCAD.
Спонсор конкурса — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.
Спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.
Более 5 миллионов человек в мире страдают от разной формы параличей, основные причины которых — инсульт (34%) и повреждение спинного мозга (24%).
Инсульт в настоящее время является одной из основных причин инвалидизации населения. В России ежегодно регистрируется более 450 000 инсультов, и инвалидами становятся 70–80% выживших после инсульта, причём примерно 20–30% из них нуждаются в постоянном постороннем уходе.
За последние 70 лет количество больных с травмой спинного мозга возросло в 200 раз, и в России подобные повреждения ежегодно получают более 8 000 человек. Чаще всего это приводит к неспособности больного самостоятельно передвигаться и обеспечивать свои основные потребности. В результате использования инвалидной коляски уменьшается физическая активность, что провоцирует развитие ряда заболеваний: болезни сердца, остеопороз, пролежни. Поэтому идет активный поиск альтернативных методов восстановления способности двигаться. Одной из самых новых разработок в этом направлении является нейроинтерфейс.
Нейроинтерфейс (он же интерфейс «мозг-компьютер», ИМК) — система, позволяющая передавать сигналы мозга напрямую на внешнее устройство (это может быть инвалидная коляска, экзоскелет, компьютер и др.), фактически управлять «силой мысли» (рис. 1).
В «Биомолекуле» можно более подробно прочитать про историю развития нейрокомпьютерных технологий, а также про современный проект Neuralink Илона Маска [1], [2].
Рисунок 1. Схема работы ИМК.
адаптировано по материалам сайта Tritriwulansari
Методы регистрации сигналов мозга
Первое звено в схеме работы ИМК — это получение сигнала от мозга. Для этого используют следующие методы:
Сейчас в ИМК для получения информации об электрической активности мозга наиболее часто применяют ЭЭГ, так как она имеет высокое временное разрешение (электроды позволяют считывать немедленную активность отдельных участков мозга), относительно дешева, портативна и не представляет риска для пользователей. ИМК, основанные на ЭЭГ, состоят из набора сенсоров, улавливающих ЭЭГ-сигналы от различных областей мозга. Однако качество сигналов ЭЭГ ухудшается из-за того, что сигнал проходит через скальп, череп, а также множество других слоев, что создает шум.
Для уменьшения шума и улучшения качества записи прибегают к инвазивным способам — имплантированию внутрь черепа набора микроэлектродов [3]. Это подразумевает значительный риск для здоровья, из-за чего их редко задействуют в экспериментальной практике. В исследованиях ИМК существуют два инвазивных подхода: электрокортикография (ЭКоГ), при которой электроды располагаются на поверхности коры головного мозга, и интракортикальная запись нейронной активности — когда датчики имплантируют в кору (рис. 2). Такие решения в настоящее время применяют крайне редко, только в исключительных случаях: либо когда пациенту и так предстоит операция на мозге, либо когда это единственный шанс на возвращение возможности взаимодействовать с окружающим миром.
Рисунок 2. Схема расположения электродов для ЭЭГ, ЭКоГ и интракортикальных микроэлектродов.
Сенсомоторный ритм и моторная кора
Как мы уже говорили, цель ИМК — улавливание намерения пользователя посредством регистрации его мозговой активности. При регистрации мозговой активности с помощью ЭЭГ мы получаем графическое изображение сложного колебательного электрического процесса, в котором можно выделить ряд определённых ритмов, которые отличаются между собой по амплитуде и частоте: альфа, бета, дельта, мю и другие. Сейчас нас интересует мю-ритм, так как именно на его основе работают нейроинтерфейсы, используемые в нейрореабилитации движений.
Мю-ритм, или сенсомоторный ритм (СМР), имеет частоту 8–13 Гц и регистрируется над моторной областью коры головного мозга, расположенной в задней части прецентральной извилины (рис. 3). Подавление мю-ритма происходит тогда, когда человек совершает какое-либо движение или воображает выполнение движения — это называется десинхронизацией, связанной с событием (event-related desynchronization, ERD). Это происходит потому, что нейроны, которые до этого возбуждались синхронно, приобретают индивидуальные, не похожие друг на друга паттерны возбуждения. При этом человек может тренироваться в воображении движений, и со временем подавление мю-ритма при этом становится всё более выраженным, что используют при обучении управлению ИМК.
Для моторной коры характерна топическая организация. Это значит, что каждому участку коры соответствует определённый участок тела, который она контролирует. На рисунке 3 изображен гомункулус Пенфилда, части тела которого пропорциональны зонам мозга, в которых они представлены. Как видно из рисунка, представительства верхних и нижних конечностей находятся достаточно далеко друг от друга, благодаря чему возможно раздельное распознавание нейроинтерфейсом воображения движений рук и ног.
Рисунок 3. Соматосенсорный и моторный гомункулус.
адаптировано по материалам сайта BioNinja
Обратите внимание, что представительство нижних конечностей в моторной коре значительно меньше представительства верхних. Это легко объяснимо наличием мелкой моторики рук: мозгу нужно контролировать множество отдельных мышц пальцев. У ног же, наоборот, мало мышц, которыми нужно управлять, и они более крупные. К тому же видно, что представительство нижних конечностей попадает в межполушарную щель, что затрудняет распознавание сигналов ЭЭГ, генерируемых при воображении движений разных групп мышц ног. Поэтому использование ИМК для ног вызывает определённые сложности, и большинство существующих научных работ по нейрореабилитации с помощью ИМК посвящено именно верхним конечностям, так как с их воображением проще работать. В лаборатории физиологии движений Института физиологии им. И.П. Павлова РАН, где работает автор, проводят исследования, направленные на изучение процессов реабилитации нижних конечностей, а также на возможность применения при этом чрескожной электростимуляции спинного мозга (ЧЭССМ) и специальных практик, помогающих увеличить эффективность управления ИМК [4].
Как эффективно воображать движения
Известны следующие особенности воображения движений, которые повышают его эффективность:
Кроме того, нами было показано, что эффективность воображения движений зависит от личностных характеристик человека [15].
Для эксперимента было набрано 44 человека с ведущей правой рукой. Все они проходили тестирование по опроснику Кеттелла, который определяет 16 основных индивидуальных особенностей. Далее испытуемые управляли ИМК, основанном на воображении движений рук. Оказалось, что при воображении движений правой руки успешнее экспрессивные чувствительные экстраверты, а при воображении движений левой руки — практичные, сдержанные, скептичные и не очень общительные люди.
Мы предполагаем, что это можно объяснить разным уровнем содержания дофамина в правом и левом полушариях, а также разницей в способах кодирования информации о движениях [16]. Более подробно об этом можно прочитать в статье, опубликованной автором и коллегами в журнале «Доклады Академии наук» [15]. Знание личных психологических параметров пользователя ИМК может помочь в разработке индивидуальных тренингов и методов подготовки перед управлением нейроинтерфейсами.
Зачем же нужно воображение движений и работа с нейроинтерфейсами? Как это может помочь людям с нарушениями движений? Разберём эти вопросы на примере двух самых распространенных причин двигательных расстройств — инсульта и травмы спинного мозга.
Механизмы нейропластичности
При инсульте происходит острое нарушение кровоснабжения головного мозга (либо в результате закупоривания сосуда тромбом — ишемический инсульт, либо в результате кровоизлияния — геморрагический). Так как вместе с кровью к нейронам перестаёт поступать всё, что необходимо им для жизнедеятельности, участки мозга, где остановилось кровообращение, отмирают. И если это зоны, отвечающие за двигательную активность — например, моторная область коры, то у больного возникает гемипарез, снижение силы мышц одной стороны тела, или гемиплегия, полный паралич половины тела.
Восстановление двигательной функции осуществляется в основном за счет механизмов нейропластичности — способности мозга изменяться под действием опыта: устанавливать новые связи между нейронами, разрушать старые и ненужные, восстанавливать утраченные после повреждения. В данных процессах принимают участие не только нейроны, но и клетки нейроглии, а также сосудистая система [17]. Также изменяется активность синапсов и их количество [18]. Для активации данных механизмов в медицине применяется двигательная реабилитация. Однако у пациентов с параличом или высокой степенью пареза осуществление реальных движений невозможно, поэтому прибегают к тренировкам с ИМК, основанном на воображении движений. При представлении движений активируются те же зоны мозга, которые также участвуют в подготовке реального действия и в его совершении, вследствие чего такая нейрореабилитация становится реальной [19].
Благодаря таким реабилитационным тренировкам происходит перестройка нейронов вокруг повреждённой области: увеличивается объём серого вещества в двигательной зоне мозга, а соседние участки берут на себя утраченные функции [20]. Двигательные области неповреждённого полушария также участвуют в этом процессе.
Эффективность этих занятий может быть повышена за счёт использования биологической обратной связи — зрительной или тактильной — когда пациент видит на экране монитора, насколько хорошо он справляется с заданием (воображением движения конечности), или когда он чувствует вибрацию от специального прибора при успешном выполнении задачи.
Также существуют системы, дающие двигательную обратную связь: например, когда человек воображает движение правой ноги, приводя её в движение специальным механизмом. По такому принципу работает система «Биокин» (ООО «Косима»), разработанная под руководством Герасименко Ю.П. (Институт физиологии им. И.П. Павлова РАН) (рис. 4) [21]. Она включает в себя обратную связь, функциональную электростимуляцию (ФЭС) и чрескожную электростимуляцию спинного мозга (ЧЭССМ), что делает её высокоэффективным инструментом в области нейрореабилитации нижних конечностей [22].
Рисунок 4. Биокин. Комплекс для нейрореабилитации нижних конечностей, основанный на применении ИМК с обратной связью, ФЭС (функциональной электростимуляции) и ЧЭССМ (чрескожной электростимуляции спинного мозга).
Такие системы позволяют замкнуть сенсомоторную петлю: от посылаемого мозгом эфферентного (исходящего) сигнала двигательной активности к афферентному (приходящему) сигналу о сенсорной обратной связи (рис. 5) [23].
Рисунок 5. Нейропластичность, вызываемая использованием ИМК, основанном на воображении движений. При повреждении моторных областей коры реальное движение становится невыполнимым, поэтому для активации процессов нейропластичности остаётся только возможность воображения движений. Использование ИМК со зрительной и тактильной обратной связью обеспечивает усиление этих процессов.
Данный механизм реабилитации может объяснить концепция пластичности Хебба: при одновременной активации двух связанных друг с другом нейронов усиливается их синаптическое взаимодействие, что приводит к более надёжному контакту между ними (рис. 6). Если предположить, что передача сигнала от моторной коры головного мозга к мышцам конечностей была нарушена из-за инсульта или травмы, то одновременная активация сенсорной и моторной коры может усиливать ранее неактивные контакты между нейронами за счет пластичности и таким образом вести к восстановлению двигательной функции конечностей [24].
Рисунок 6. Механизм пластичности Хебба. Усиление синаптического взаимодействия между двумя нейронами происходит из-за повторяющейся стимуляции постсинаптической клетки пресинаптической клеткой.
Рисунок 7. Образование новый нейронных связей в области повреждения спинного мозга (ПСМ).
При восстановлении двигательной функции после травмы спинного мозга задействованы те же механизмы нейропластичности. При таком повреждении часть нервных волокон, в том числе двигательных, оказывается прервана, что вызывает паралич конечностей, а часть сохраняет свою целостность. Благодаря этому при проведении нейрореабилитации существует возможность активации процессов нейропластичности: неповреждённые волокна образуют синаптические связи с двигательными нейронами (мотонейронами), которые, в свою очередь, передают сигнал мышцам (рис. 7) [25].
Для увеличения эффективности нейрореабилитации при помощи ИМК часто дополнительно используют функциональную электростимуляцию мышц (ФЭС). Она обеспечивает сокращение мышцы в тот момент, когда пользователь воображает движение с участием этой мышцы (рис. 8) [26]. Это приводит к усилению нейропластичности по механизму Хебба: происходит одновременная активация моторных областей головного мозга, передающих сигнал мотонейронам спинного мозга, и чувствительных нейронов, активируемых сокращающейся под влиянием ФЭС мышцей, что замыкает сенсомоторную петлю.
Рисунок 8. Система ИМК-ФЭС. При воображении движений сигнал из моторной коры обрабатывается компьютером (ПК) и передаётся к прибору функциональной электростимуляции (ФЭС), который вызывает сокращение соответствующей мышцы. Далее сигнал от мышцы передается в сенсорную кору, обеспечивая обратную связь.
Электростимуляция спинного мозга
В последние годы большую эффективность в нейрореабилитации после повреждения спинного мозга показала его электростимуляция (ЭССМ). Спинной мозг имеет два утолщения: в области шеи и поясницы, что соответствует месту выхода из них корешков двигательных нейронов верхних и нижних конечностей. В поясничном утолщении спинного мозга находятся специализированные нейронные сети, обеспечивающие автоматический процесс шагания (генераторы шагательных движений, ГШД). Иными словами, если наложить на твердую оболочку спинного мозга в месте поясничного утолщения электроды, подающие ток определенной амплитуды и частоты, можно вызвать непроизвольные шагательные движения даже у людей с параличом нижних конечностей [27]. Однако такой способ требует хирургического вмешательства, так что существует риск развития послеоперационных осложнений.
В настоящее время наиболее безопасной и безболезненной считается чрескожная электростимуляция спинного мозга (ЧЭССМ). На видео 1 (Edgerton Lab, University of California) можно видеть, как вызываются непроизвольные шагательные движения ног при облегченном положении больного, с подвешенными на рамах-качелях ногами [28].
Видео 1. Непроизвольная ходьба при чрескожной электростимуляции спинного мозга.
При использовании ЧЭССМ появляется вопрос правильного расположения стимулирующих электродов. Если при установке инвазивных электродов во время операции хорошо различимы сегменты и корешки спинного мозга, то при установке накожных электродов могут возникнуть затруднения с нахождением нужного участка. Данную задачу решают с помощью подачи одиночных импульсов на электрод и регистрации рефлекторных мышечных ответов — ведь каждому сегменту спинного мозга соответствуют строго определённые группы мышц.
Также существует проблема недостаточной амплитуды посылаемых импульсов — из-за дегенеративных процессов при повреждении спинного мозга требуется большая амплитуда стимуляции для получения нужного ответа. Однако это чревато получением ожогов. В нашей лаборатории было создано оптимальное устройство для неинвазивной электрической стимуляции спинного мозга [29].
Кроме того, была разработана система, детектирующая фазы шагательного цикла в онлайн-режиме и стимулирующая спинной мозг согласно этим фазам [30]. Во время ходьбы в разные моменты напрягаются разные мышцы, и под определёнными углами сгибаются суставы, что можно регистрировать специальными приборами — акселерометрами и гироскопами. Обе ноги движутся скоординировано, и на основании положения одной ноги можно предсказать положение другой. Принцип работы системы следующий: пациенту с гемипарезом на здоровую ногу накладываются датчики движения, которые передают сигнал к прибору для ЧЭССМ. Он, в свою очередь, стимулирует в определённые моменты времени группы мотонейронов спинного мозга, отвечающих за движение мышц-сгибателей и разгибателей ноги, что способствует нормализации ходьбы и восстановлению движения пораженной конечности.
Успехи современной нейрореабилитации
Самым масштабным исследованием в области нейрореабилитации с использованием ИМК, основанного на воображении движений, является работа Donati с соавторами, опубликованная в Nature в 2016 году [31]. В этом исследовании приняли участие восемь человек с параличом нижних конечностей, вызванным повреждением спинного мозга. Для них была разработана специальная система реабилитации, включающая в себя шесть этапов с увеличивающейся сложностью, и с каждым пациентом было проведено около 255 (!) сессий в течение года.
Первый этап включал в себя глубокое погружение в среду виртуальной реальности, во время которого испытуемый управлял перемещением своего аватара (компьютерного персонажа), воображая движение нижних конечностей в положении сидя. Затем пациент делал то же самое, только в положении стоя, с опорой на специальный стол. Во время третьего этапа проходили тренировки на беговой дорожке: испытуемый ходил с использованием прибора, поддерживающего вес тела (Lokomat). На четвёртом этапе осуществлялось движение ног уже в воздухе, а не по беговой дорожке. На пятом этапе пациент тренировался на беговой дорожке с помощью роботизированной системы, поддерживающей конечности и контролируемой ИМК. И на заключительной стадии испытуемый ходил в экзоскелете, управляемом ИМК: экзоскелет делал шаг, когда человек представлял себе движение соответствующей ноги. Во время всех тренингов испытуемые получали тактильную обратную связь — вибрацию, которая подавалась на предплечье, когда виртуальная или роботизированная нога с той же стороны касалась земли. Схему эксперимента вы можете увидеть на рисунке 9, а сам процесс реабилитации — на видео 2.
Рисунок 9. Схема эксперимента, включающая в себя шесть этапов: 1 — ИМК + виртуальная реальность (ВР) в положении сидя; 2 — ИМК + ВР в положении стоя; 3 — ходьба по беговой дорожке с поддержанием веса тела; 4 — движение ног в воздухе; 5 — ходьба по беговой дорожке с помощью роботизированной системы, контролируемой ИМК; 6 — ходьба в экзоскелете, управляемом ИМК. Обозначения: ЭЭГ — электроэнцефалография; ЭМГ — электромиография, регистрирующая активность мышц; Такт. — тактильная обратная связь.
Видео 2. Процесс проведения эксперимента.
Через 12 месяцев тренировок по этой системе у всех восьми пациентов повысились показатели по тактильным ощущениям, а также восстановился свободный контроль ключевых мышц нижних конечностей. В результате был виден заметный прогресс в их способности ходить. Многие пациенты смогли ходить при помощи вспомогательных приборов. Кроме этого, у всех пациентов было отмечено значительное повышение эмоциональной стабильности и оценки качества жизни, а также снизился уровень депрессивности и увеличилась самооценка. Улучшились состояние кожи и функция пищеварительной системы, что связано, по-видимому, с нормализацией активности симпатической и парасимпатической систем. Дело в том, что вдоль позвоночника расположены узлы вегетативной нервной системы, которая регулирует работу внутренних органов. Они повреждаются при травмировании спинного мозга, что вызывает нарушение деятельности пищеварительной системы, которая в свою очередь влияет на состояние кожи посредством выделения сигнальных молекул, в том числе и провоспалительных [32], [33].
Неврологическое восстановление было связано с механизмами пластичности как на уровне спинного мозга, так и на уровне сенсомоторной коры. Кортикальная и спинномозговая пластичность изменяет нейронные связи в сохранившейся области спинного мозга при помощи моторных и сенсорных связей (рис. 10).
Рисунок 10. Пластичность спинного мозга (СМ) и коры головного мозга, осуществляющаяся с помощью моторных (красных) и сенсорных (синих) связей.
Заключение
Современная наука в области нейрореабилитации стремительно развивается и достигает удивительных результатов — в буквальном смысле ставит на ноги людей, ранее прикованных к кровати или инвалидной коляске. Появляются новые, более эффективные способы регистрации сигналов мозга; использование ИМК дополняется использованием обратной связи, ФЭС и ЧЭССМ; углубляются знания о механизмах нейропластичности; проводятся масштабные исследования в области разработки техник нейрореабилитации. Однако остается проблема доступности данных методов. Они очень дорогостоящие и доступны только в определённых клиниках; далеко не каждый может себе их позволить. В нашей лаборатории ведётся разработка нейрореабилитационных систем, которые просты в применении и по цене доступны для закупок в государственных бюджетных больницах.
Благодарности
Автор выражает благодарность своему научному руководителю Бобровой Елене Вадимовне, заведующему лабораторией Герасименко Юрию Петровичу и безвременно покинувшему нас в прошлом году Александру Алексеевичу Фролову (01.11.1943–10.06.2020) — одному из ведущих российских исследователей в области ИМК.