сколько информации обрабатывает мозг в секунду
О лживых постах в ВК или сколько операций в секунду выполняет мозг человека
На написание этой статьи меня побудил пост одного из популярных пабликов ВКонтакте, в котором дословно было следующее: «Человеческий мозг в состоянии выполнять 1016 операций в секунду. Это значит, что его мощность до сих пор выше, чем мощность любого существующего на сегодняшний день компьютера.». Я разобрался кто круче, мозг, или компьютер.
Для начала разберемся, что это за операции в секунду, какова мощность вашего настольного компьютера, и какова мощность самого супермегапапского компа на планете.
Для измерения вычислительной мощности компьютеров используется единица измерения, называемая флопс (flops, flop/s). Флопс показывает, сколько операций с плавающей запятой выполняет компьютер за одну секунду. Кроме того, для измерения вычислительной мощности используется такое понятие, как тактовая частота. Тактовая частота процессора показывает, какое количество основных операций выполняет процессор в секунду, и измеряется в герцах. Основная операция, выполняемая процессором, может включать в себя множество операций с плавающей запятой, поэтому результаты измерения в флопсах и герцах различаются. Если вы найдете у себя на рабочем столе иконку «Мой компьютер», кликните по ней правой копкой мыши, в выпадающем меню откроете свойства, то истина для вас откроется. Найдите в открывшемся окне заголовок «Ситема», и там, напротив слова «процессор» будет указана тактовая частота вашего процессора. Скорее всего она будет иметь такой вид: «2.10 GHz». Число может незначительно отличаться. Так вот, 1 GHz — это 1000000000 герц, или один миллиард операций в секунду. Из этого следует, что при тактовой частоте 2.10 гигагерца проц выполняет 2100000000 операций в секунду. Это конечно побольше, чем 1016. При измерении в флопсах число возрастет в несколько раз.
Идем дальше. Суперкомпьютер Titan компании Cray inc. имеет приблизительную вычислительную мощность 20 петафлопс. 1 петафлопс равен 10^15 флопс. Можете сами подсчитать, какое получится число и сколько у него нулей. Как сказал один поэт: «Это ж долбануться. »
Теперь о головном мозге. Тут все не так просто, как с компьютерами. На современном этапе развития нейробиологии довольно трудно подсчитать вычислительную мощность мозга, и сравнить его с компьютером. Однако и так понятно, что мы не можем выполнять те же операции, что выполняет наш ноутбук с такой же скоростью и в таких же объемах. Очевидно, что комп мощнее, да? А вот и нет.
Давайте разберемся подробнее, как он работает.
Мозг — это биологическая нейронная сеть. Нейронная сеть состоит из нейронов, (в случае с мозгом — это клетки мозга), каждый из которых связан с другими нейронами. Место связи нейронов называется синапсом. Через синапс от одного нейрона передается химический или электрический импульс другому нейрону. Количество нейронов в головном мозге человека примерно равно 100000000000 (ста миллиардам). Данные в из разных источников немного различаются, но в целом картина схожа. Каждый из этих нейронов имеет от 7000 до 10000 синапсов. В среднем, через один синапс проходит 10 импульсов в секунду, т.е. мы имеем тактовую частоту 10 герц на одну синоптическую связь. А теперь занимательная математика: 100000000000 нейронов мы умножаем на 10000 их синоптических связей и умножаем все это на 10 герц. Мы получаем число с шестнадцатью нолями после единицы, а иначе 10^16. Так вот откуда взялось загадочное число 1016. Видимо оно просто трансформировалось в ходе бесконечного перепоста из паблика в паблик. И оказывается, что наш мозг имеет бОльшую вычислительную мощность, чем суперкомпьютер Titan. В конечном итоге автор поста о 1016 операциях в секунду был прав.
Мозг обрабатывает изображения за 13 миллисекунд
Нейробиологи из Массачусетского технологического института установили минимальное время, в течение которого человеку нужно показывать изображение, чтобы мозг сумел его обработать. Показатель равен 13 миллисекундам. Это значительно меньше, чем предполагалось. Раньше учёные оценивали время обработки информации примерно в 100 миллисекунд.
Во время эксперимента испытуемым предлагалось сигнализировать, если они увидят определённый тип картинки, такой как «пикник» или «улыбающаяся пара», при этом им демонстрировали серию из 6 или 12 изображений с промежутком 13-80 миллисекунд. На иллюстрации выше показан образец такой последовательности кадров.
Учёные считают, что столь высокая скорость обработки информации мозгом помогает управлять глазами и выбирать объекты для рассмотрения. Глаз способен передвигаться со скоростью 3 раза в секунду, и за это время мозг должен распознать всю информацию в поле зрения, осознать увиденное и принять решение, куда посмотреть дальше.
Начиная эксперимент, учёные предполагали, что могут установить предел распознавания мозга вдвое меньше, чем считавшиеся ранее стандартными 100 миллисекунд. К их удивлению, участники эксперимента демонстрировали явное отличие от случайного угадывания при каждом увеличении скорости показа изображений: 80 мс, 53 мс, 40 мс, 27 мс и 13 мс. Показатель 13 мс был минимально возможным временем обновления картинки на компьютерном мониторе, поэтому с дальнейшим сокращением лимита экспериментировать не получилось. Но вполне возможно, что быстродействие мозга ещё выше, чем установлено в рамках данного исследования.
Правда, учёные предполагают, что обработка изображений на самом деле может продолжаться в «фоновом режиме» и после экспонирования картинки, то есть дольше, чем 13 миллисекунд. В рамках данного эксперимента установить этот факт не удалось, потому что испытуемых опрашивали через некоторое время после показа последовательности изображений. Но очевидно, что картинки не «стираются» из памяти через 13 миллисекунд, иначе бы люди не смогли правильно ответить на вопрос. То есть фотографии остаются в каком-то отделе памяти после обработки. Известно также, что решение о конкретном направлении перемещения глаз принимается за 100-140 миллисекунд.
Теоретически, данное исследование позволяет сделать вывод, что человек способен распознавать видеоряд с частотой 77 кадров в секунду или больше, что ранее считалось невозможным. Теперь придётся и обновить информацию на соответствующей странице в Википедии, которая заявляет о способности мозга обрабатывать всего 10-12 раздельных изображений в секунду.
Научная работа опубликована в журнале ”Attention, Perception, & Psychophysics” (бесплатный доступ).
Сколько информации обрабатывает мозг в секунду
Как мозг человека обрабатывает информацию?
Сегодня считается доказанным, что человеческий мозг одновременно может обрабатывать в среднем около 7 бит информации[2]. Это могут быть отдельные звуки или визуальные сигналы, различаемые сознанием оттенки эмоций или мыслей. Минимальное время, необходимое для того, чтобы отличить один сигнал от другого составляет 1/18 секунды.
Таким образом, предел восприятия составляет 126 бит в секунду.
Условно, можно посчитать, что в течение жизни 70 лет человек обрабатывает 185 млрд бит информации, включая каждую мысль, воспоминание, действие.
Информация записывается в мозг посредством формирования нервных сетей (своего рода маршрутов).
Функции правого и левого полушария мозга
.
Как видно из картинки, все операции на рынке делает левое полушарие. Естественно, для получения профита с рынка, встает вопрос о достижении максимальной производительности функционирования левого полушария.
Существует несколько простых способов развития полушарий. Самый простой из них — увеличение объема работы, на которой ориентировано полушарие. Например, для развития логики Вам необходимо решать математические задачи, отгадывать кроссворды, а для развития воображения посещать кхудожественную галерею и т.п.
Как только вы нажали мышку правой рукой- значит сигнал к вам поступил из левого полушария.[6]
Обработка эмоциональной информации происходит в правом полушарии.
Эмоции
За всеми греховными делами стоит нейротрансмиттер Допамин, от работы которого зависит удовольствие, которое мы получаем. [4]. Измены, страсть, похоть, азарт, вредные привычки, гэмблинг, алкоголизм, мотивация — все это так или иначе связано с работой допамина в мозгу. Допамин передает информацию от нейрона к нейрону.
Допамин влияет на многие сферы нашей жизни: мотивация, память, способность к познанию, сон, настроение и т.д.
Любопытно, но допамин повышается в моменты стрессовых ситуаций.
Люди с пониженнным допамином в полосатом теле и префронтальной коре менее мотивированы, чем люди у которых допамин выше. Это доказано экспериментами на крысах [5].
Строение мозга человека
триединство мозга
белое и серое вещество
префронтальная кора
Эту часть мозга также называют лобные доли.
Именно развитие префронтальной коры отличает человека от животного.
Префронтальная кора мозга человека отвечает за логику, за самоконтроль, за целеустремленность и концентрацию внимания.
На протяжении почти всей эволюционной истории человека, эта часть мозга отвечала за физические действия: хотьба, бег, хватание и т.п. (первичный самоконтроль). Но в процессе эволюции префронтальная кора увеличивалась в размерах, а связи с другими частями мозга разрастались.
Сейчас кора склоняет человека делать то, что сложнее, выходить из зоны комфорта. Если вы заставляете себя отказаться от сладкого, подняться с дивана и пойти побегать — это результат работы именно лобных долей. Вы бегаете и не едите сладкое, потому что у вас есть логические причины для этого, которые обрабатываются именно в этой части мозга.
Повреждения префронтальной коры приводят к потери силы воли. В психологии известен случай Финеаса Гейджа (1848), личность которого резко изменилась после повреждения мозга. Он стал ругаться, он стал импульсивен, стал неуважительно обращаться с друзьями, стал неприемлить ограничения и советы, придумывает массу планов и мгновенно теряет к ним интерес.
левая лобная доля — отвечает за положительные эмоции
«Левосторонние дети», т.е. те, у которых изначально левая часть более активна чем правая, более позитивны, чаще улыбаются и т.д. Такие младенцы активнее исследуют окружающий мир.
Интересно также и то, что левая часть коры отвечает за задачи «я буду», например, заставляет подняться с дивана и пойти побегать.
правая лобная долая — отвечает за негативные эмоции. Повреждение правого полушария (отключение правой доли) может вызывать эйфории.
Эксперимент: при просмотре приятных картинок, импульсный томограф фиксирует изменения в потреблении глюкозы мозгом и записывает их как светлые пятна на фотографиях левой стороны мозга.
Правая часть коры отвечает за задачи «я не буду», например позволяет вам справляться с желанием выкурить сигарету, съесть пирожное и т.п.
центр префронтальной коры — «следит» за целями и устремлениями человека. Решает, чего вы на самом деле хотите.
мозжечковая миндалина — защитные эмоциональные реакции (в т.ч. «эгобарьер»). Находится в глубине мозга. ММ. человека не слишком отличается от ММ низших млекопитающих и работает бессознательно.
Включает центр управления, мобилизующий тело в ответ на страх.
базальное ядро — отвечат за привычки, на которые мы полагаемся в повседневной жизни.
срединная височная доля — отвечает за познавательные доли.
гиппокамп
гиппокамп — это структура в медиальном височном отделе мозга, похожая на пару подков. Гиппокамп позволяет усваивать и запоминать новую информацию. Исследования ученых показали, что размер гиппокампа напрямую связан с уровнем самооценки человека и чувством контроля над собственной жизнью.
повреждение гиппокампа может вызывать припадки
прослушивание музыки задействует: слуховую зону коры мозга, таламус, переднюю часть теменной доли коры.
островок Рейля
островок Рейля — один из ключевых участков мозга, анализирует физиологическое состояние организма и трансформирует результаты этого анализа в субъективные ощущения, которые заставляют нас действовать, например говорить или мыть машину. Передняя часть островка Рейля превращает сигналы организма в Эмоции. Исследования мозга на МРТ показали, что запахи, вкус, осязательные ощущения, боль и усталость возбуждают островок Рейля [7].
зона Брока
Система поощрения мозга
Различие мозга у мужчин и женщин
Мозг мужчины и женщины различаются[3]:
Мужчины имеют лучшую двигательную функцию и пространственную функцию, лучше концентрируются на одной мысли, лучше обрабатывают зрительные стимулы.
У женщин лучше память, они более социально адаптированы и лучше справляются с несколькими делами одновременно. Женщины лучше распознают чужое настроение и проявляют больше эмпатии.
Эти различия обусловлены разным устройством связей в головном мозгу (см. картинку)
Старение мозга человека
С годами работа работа мозга ухудшается. Мышление замедляется, а память ухудшается. Это связано с тем, что нейроны выходят на связь друг с другом уже не так быстро. Уменьшается концентрация нейротрансмиттеров и число дендритов, и из-за этого нервные клетки хуже улавливают сигналы от соседей. Удерживать подолгу информацию становится все затруднительнее. Пожилые люди дольше обрабатывают информацию, чем молодые.
Тем не менее мозг поддается тренировке. Исследования показали, что 10 занятий по часу в неделю, в ходе которых люди тренируют память или упражняются в рассуждениях, заметно усиливают когнитивные способности [7].
В то же время, в период 35-50 лет мозг бывает особенно эластичен. Человек упорядочивает информацию, накопленную за долгие годы жизни. К этому времени в мозгу разрастаются глиальные клетки (мозговой клей), — белое вещество, покрывающее аксоны, которое обеспечивает связь между клетками. Количество белого вещества максимально в период 45-50 лет. Это объясняет почему в этом возрасте люди рассуждают лучше тех, кто младше или старше.
Почему лучший компьютер по-прежнему уступает человеческому мозгу?
Печально осознавать, что в эпоху технического прогресса человеческий мозг по-прежнему остаётся загадкой. Кроме того, мы тратим миллионы долларов на развитие гигантских суперкомпьютеров и используем огромное количество энергии из невосполнимых ресурсов, чтобы обеспечить питанием эти приборы. А сравнительно маленький по размерам человеческий мозг по многим показателям по-прежнему превосходит самые мощные компьютеры.
Суперкомпьютеру требуется 82 944 процессоров и 40 минут работы, чтобы симулировать одну секунду мозговой активности человека.
В прошлом году суперкомпьютер K использовался учёными из Окинавского технологического университета в Японии и Исследовательского центра Юлих в Германии в попытке симулировать 1 секунду активности человеческого мозга.
Компьютер смог воссоздать модель из 1,73 миллиарда нейронов (нервных клеток). Однако в человеческом мозге около 100 миллиардов нейронов. То есть в человеческом мозге примерно столько нейронов, сколько звёзд в Млечном пути. Несмотря на то, что компьютеру удалось успешно симулировать 1 секунду мозговой активности, это заняло 40 минут.
Работник Корейского научного института проверяет суперкомпьютеры в Тэджоне, Южная Корея, 5 ноября 2004 г.
Суперкомпьютер К в 2011 г. был самым быстрым компьютером в мире. Его мощность около 10,51 петафлопс, т. е. примерно 10 510 триллионов операций в секунду. Технологии развиваются стремительно, поэтому сейчас К уже на четвёртом месте, на первом месте ― Tianhe-2 (33,86 петафлопс, 33 860 триллионов операций в секунду). Таким образом, за три года нам удалось утроить вычислительную мощность самого продвинутого компьютера.
Чтобы сделать эти цифры понятнее, iPhone 5п производит примерно 0,0000768 петафлопс. Итого, самый быстрый в мире компьютер примерно в 440 000 быстрее, чем графика iPhone 5, но медленнее, чем человеческий мозг.
В исследовании Мартина Хильберта из школы коммуникации Анненберга при Университете Южной Калифорнии, опубликованном в журнале Science в 2011 г., подсчитана способность мира обрабатывать информацию. Хильберт сформулировал её следующим образом: «Люди всего мира могут осуществить 6,4*1018 операций в секунду на обычных компьютерах образца 2007 г., что сравнимо с максимальным количеством нервных импульсов, возникающих в одном человеческом мозге за секунду».
Мозг дёшево обходится: он достаётся бесплатно
Для сравнения: 1 мегаватт равен 1 миллиону ватт. 100-ваттная лампочка при включении берёт 100 ватт. В итоге самый быстрый компьютер потребляет столько же энергии, сколько 176 000 лампочек.
Д-р Джефф Лайтон, технолог Dell корпорации по производству компьютеров, пишет в блоге: «Эти системы очень громоздкие, дорогие и энергозатратные».
Конечно, мозгу тоже требуется энергия. Он получает её из еды, для производства которой в современной сельскохозяйственной системе требуется топливо.
Компьютеры, которые мы используем в повседневной жизни, полезны. Но некоторые эксперты сомневаются в полезности суперкомпьютеров.
Газета South China Morning Post опубликовала статью о китайском суперкомпьютере Tianhe-2: «В отличие от персональных компьютеров, которые могут выполнять самые разные задачи –– от обработки текстов до игр и просмотра вэб-страниц, суперкомпьютеры построены для специфических задач. Для изучения их полной вычислительной возможности учёные потратили месяцы, если не годы, для написания и переписывания кодов, чтобы обучить машину эффективно выполнять свою работу».
Старший научный сотрудник из Пекинского компьютерного центра, пожелавший остаться анонимным, сказал South China Morning Post: «Пузырь суперкомпьютеров хуже, чем пузырь рынка недвижимости. Здание простоит десятилетия после того, как его построили, а компьютер, вне зависимости от того, настолько он быстрый по сегодняшним меркам, превратится в хлам уже через пять лет».
Что быстрее: компьютерный модем или человеческий мозг?
Многие учёные пытались измерить скорость обработки информации человеческим мозгом. Цифры, которые они называют, различаются и зависят от использованного подхода. Сравнение скорости модема и «скорости» работы мозга едва ли можно отнести к разряду точных наук.
Во-первых, нужно рассмотреть, сколько битов в секунду может обработать ваш мозг, затем посмотреть, сколько битов в секунду в среднем обрабатывает современный компьютер. Говоря иными словами, надо сравнить, сколько времени компьютеру требуется для загрузки изображения из Интернета, и сколько времени вам нужно, чтобы проанализировать то, что вы видите перед глазами.
Д-р Тор Норретрандерс, профессор философии из Бизнес-школы Копенгагена, написал книгу под названием «Иллюзия пользователя: сокращаем объём сознания», в которой он утверждает, что сознание обрабатывает примерно 40 бит/с, а подсознание — 11 миллионов бит/с.
Австрийский физик-теоретик Герберт В. Франке утверждал, что человеческий разум может осознанно усваивать 16 бит/с и осознанно удерживать в уме 160 бит/с. Он отмечает, что по этой причине ум может упростить любую ситуацию до 160 бит/с.
Фермин Москозо дель Прадо Мартин, когнитивный психолог из Университета Прованса во Франции, определил, что мозг обрабатывает примерно 60 бит/с. В своей статье в журнале Technology Review он сказал, что не уверен насчёт верхнего предела. То есть он не может утверждать, что мозг неспособен обработать больше 60 бит/с.
А теперь посмотрим, насколько быстро работает ваш компьютер дома.
Один мегабит в секунду равен 1 миллиону бит в секунду. Домашние модемы могут работать со скоростью от 50 мегабит в секунду до нескольких сотен мегабит в секунду. Это в миллион раз быстрее, чем ваше сознание, и, по крайней мере, в пять раз быстрее, чем ваше подсознание. То есть в этом отношении компьютеры однозначно превосходят мозг. Разумеется, эти цифры неточные, потому что с человеческим подсознанием многое до конца неясно.
Однако, хотя люди сравнительно медленно воспринимают информацию, то, как они умеют её обрабатывать, впечатляет.
Мы учимся и мы изобретаем
Учёные работают над созданием компьютеров, которые бы обладали творческими способностями. Но в настоящее время самый продвинутый искусственный интеллект в этом отношении уступает даже мозгу людей, живших тысячи лет назад.
Автор и инженер-электромеханик Райан Дьюб в статье для сайта MakeUseOf.com комментирует высказывание писателя Гэри Маркуса: «Фундаментальное различие между компьютерами и человеческим разумом ― это организация памяти».
Дьюб писал: «Чтобы найти информацию, компьютер использует расположения виртуальной памяти. В свою очередь человеческий мозг помнит, где находится информация благодаря намёкам. Они сами по себе являются единицей информации или памяти, связанной с информацией, которую надо найти.
«Это означает, что человеческий разум в состоянии связать между собой практически безграничное количество концепций самыми разными способами, а затем при получении новой информации убрать или восстановить эти связи. Эта особенность позволяет людям выйти за пределы уже изученной информации и создавать новые изобретения и искусство, что является отличительной особенностью человеческой расы».
Мозг мало изучен, и его преимущества до конца не раскрыты
National Geographic иллюстрирует, насколько сложно создать точную модель человеческого мозга. В февральском номере журнала в статье «Новая наука мозга» рассказывается, как учёные создали трёхмерную модель части мозга мыши размером с крупинку соли. Чтобы детально отобразить этот крошечный отдел, они использовали электронный микроскоп и разделили его на 200 секций, каждая толщиной в человеческий волос.
«Чтобы отобразить человеческий мозг схожим образом, потребовалось бы количество данных, превосходящее все тексты во всех библиотеках мира», ―пишет National Geographic.
В 2005 г. исследователи из Калифорнийского университета и Калифорнийского технологического института обнаружили, что лишь некоторые из 100 миллиардов нейронов в мозгу используются для хранения информации о конкретном человеке, месте или концепции. Например, они обнаружили, что когда людям показали фото актрисы Дженнифер Энистон, в мозгу реагировал один конкретный нейрон. А на фото актрисы Хэлли Берри реагировал уже другой нейрон.
Сколько информации за жизнь воспринимает человек
Книги, ТВ, Интернет … – нас окружает информация, «тонны» информации. Вы когда-нибудь задумывались над тем, сколько информации мы воспринимаем за свою жизнь?
Мне этот вопрос показался очень интересным, и я решил его прогуглить. Как и ожидалось, вменяемого ответа найти не удалось, поэтому пришлось браться за дело основательно с привлечением умных книжек и научных статей. В итоге получилось целое исследование, ходом и результатами которого я и хочу с вами поделиться.
Методика измерения
Договоренность 1. Для простоты расчетов определим срок жизни человека в 100 лет, или 36 500 дней, или 876 000 часов, или 52 560 000 минут, или 3 153 600 000 () секунд.
Договоренность 2. Режим сна и бодрствования, скорость развития и деградации восприятия для каждого человека уникальны, поэтому для простоты в дальнейших расчетах будем считать, что восприятие исследуемого человека с первой секунды жизни развито максимально. Оно не деградирует с возрастом, не знает покоя и отдыха и всегда работает на пике своих возможностей.
Как можно заметить, в исследовании мы будем ориентироваться на оценку максимально возможного объема воспринимаемой информации.
Если сильно упростить, то работу нашей когнитивной системы можно представить как сбор сенсорной информации и ее последующий анализ. По результатам анализа мы выполняем какие-либо действия, ну или не выполняем в зависимости от того, что там наанализировали.
Договоренность 3. В данной работе будем придерживаться материалистской философии и игнорировать возможности экстрасенсорного восприятия.
где — мощность потока сенсорного восприятия (бит / сек.), а — время жизни человека (сек.).
Учитывая, что мы определили в Договоренности 1, фактически нам необходимо определить только .
Первичной клеткой, выполняющей преобразование стимулов внешней среды в нервные импульсы, является рецептор. Когнитивная система человека состоит из гигантского количества рецепторов. В одном только глазу их находится около 126 миллионов [1.1]: 120 миллионов палочек (рецепторов «видящих» в черно-белом) и 6 миллионов колбочек (рецепторов, «видящих» в цвете). Каждый из этих рецепторов через последовательность нейронов, называемую проводящим путем, передает информацию в центральную нервную систему (ЦНС) (Рисунок 1).
Рисунок 1
В ЦНС разрозненные данные, поступающие от каждого отдельного рецептора, собираются в единую картину воспринимаемого нами мира.
Если рассмотреть подобную обработку данных на примере зрения, то зрительные рецепторы можно представить в виде однопиксельных видеокамер, каждая из которых подключена своим выделенным проводом (хотя это не совсем так, но об этом ниже) к головному мозгу, где из разрозненных точек формируется картинка. Таким образом мощность общего потока восприятия можно определить по Формуле 2:
где — мощность потока восприятия, протекающего по i-му проводящему пути (Рисунок 2).
Рисунок 2
Но на самом деле не все так просто.
Начнем опять-таки с глаз. Некоторые рецепторы, как правило палочки, подсоединяются к одному проводящему пути сразу по несколько штук (до 1:1000 на самых краях сетчатки [2.1]). Отмечу, что в отличии от вычислительных сетей, где один канал связи может разделяться между несколькими абонентами, проводящие пути человеческой нервной системы этого делать не умеют, и в примере с палочками по ним передается суммарная информация от всех подсоединённых к ним рецепторов. Это снижает остроту зрения, но зато существенно повышает нашу способность видеть при слабой освещенности.
Кроме того, не все рецепторы передают информацию в ЦНС. Например, рецепторы, находящиеся в сердце, замкнуты на собственную, автономную от ЦНС, внутрисердечную нервную систему, регулирующую работу сердца.
И что теперь делать?
Договоренность 4. Начнем с первого, когда по одному проводящему пути передаются данные от нескольких рецепторов. Этот факт будет говорить нам от том, что считать объем воспринимаемой информации нужно не по количеству рецепторов, а по количеству проводящих путей.
Договоренность 5. Вторую проблему о том, что не все пути ведут в ЦНС, будем решать путем игнорирования данных, идущих мимо ЦНС.
С теорией вроде разобрались, перейдем к практике.
Анатомические факты
Трехтомник «Физиология человека»
Лучшее, что мне удалось найти по теме исследования, — это глава «Нервная система с точки зрения теории информации», написанная в первом томе великолепнейшего трехтомника «Физиология человека», под редакцией Р. Шмидта. В этой главе приводится [1.2] следующая таблица (Рисунок 3):
Рисунок 3
Складывая пропускные способности всех сенсорных систем, получим:
(бит / сек).
Тогда бит, или
Пбайт
Примечание. 1 петабайт, в соответствии с ГОСТ 8.417-2002, равен .
Книга «Наглядная физиология»
В главе «Обучение, память, язык» книги «Наглядная физиология» [2.2] приводится описания процесса запоминания информации, и изображена следующая схема ее обработки человеком (Рисунок 4):
Рисунок 4
Как вы можете увидеть, авторы определили суммарный поток сенсорных данных () в бит/сек. Каких-либо пояснений о том, как у них получилось данное число, не приводится. Рассчитаем на этих данных общий объем информации, воспринимаемой человеком.
бит, или
Пбайт.
Другие источники
В введении к книге «Искусственный интеллект. Современный подход» автор, сравнивая вычислительные возможности компьютеров и головного мозга человека, приводит [3.1] следующую таблицу (Рисунок 5):
Рисунок 5
Про поток сенсорной информации тут ничего нет, но есть суммарная пропускная способность головного мозга, которую автор определил в бит/сек. Нужно понимать, что это общая пропускная способность, в которой будут и сенсорные данные, и нервные импульсы управления мышцами, и все остальное. Поэтому данную цифру можно использовать только как верхнюю границу. Больше нее человек точно воспринять не сможет. Как и в других книгах расшифровки того, откуда автор взял данные числа, не приводится.
Из десятков других просмотренных книг по физиологии и искусственному интеллекту каких-либо других цифр найти не удалось, хотя несколько раз попадалась перепечатка таблицы из трехтомника «Физиология человека».
На текущий момент мы получили результаты, отличающиеся друг от друга на порядки. Как-то это не очень здорово. Проведем собственные расчеты, чтобы понять, какие из результатов ближе к истине.
Собственные исследования
Давайте вернемся чуть-чуть назад и еще раз посмотрим на Рисунок 1. Какова максимальная мощность потока сенсорных данных, поступающих в ЦНС по одному проводящему пути? Ответить на этот вопрос очень трудно. А что если перефразировать его следующим образом: чем ограничивается поток сенсорных данных, поступающий в ЦНС по проводящему пути? Это уже интересней. Если вернуться к примеру с видеокамерами, то становится очевидно, что видеопоток, поступающий на регистратор (ЦНС) будет не больше того, что способна выдать камера (рецептор) и не больше того, что способен передать канал связи (проводящий путь).
Таким образом, мы получаем следующую зависимость (Формула 3):
где — мощность потока сенсорных данных, поступающих в ЦНС по проводящему пути; T — пропускная способность проводящего пути; R — мощность потока сенсорных данных, которую способен сгенерировать рецептор.
Пороемся еще в книгах по физиологии и попытаемся определить эти T и R.
Оценка пропускной способности проводящих путей
300 000 км/сек. Справочники по вычислительным сетям подскажут, что скорость распространения информативного сигнала в наиболее распространенных кабелях – витых парах пятой категории (UTP 5) — составляет
0,7 от скорости света в вакууме
210 000 км / сек. В человеческих нервах же этот показатель принимает значения [1.3] от 0,5 до 120 м / сек.! Как вы думаете откуда такие фантастические скорости?
Происходит это потому, что принцип протекания электрического тока в живых клетках коренным образом отличается от его протекания в проводниках. Нервный импульс, по науке называемый потенциалом действия, передается по клеточной мембране за счет последовательного изменения электрического потенциала ее фрагментов. При этом само изменение потенциала происходит за счет ионных токов, протекающих между клеткой и межклеточным пространством (Рисунок 6).
Рисунок 6, (с) Яндекс. Картинки
Однако медленная скорость распространения — это не самое главное. Важно то, что информация, передаваемая в нервной системе, модулируется частотой потенциалов действия [1.4], каждый из которых имеет одинаковую амплитуду и длительность. Подобный подход к передаче информации физиологи окрестили как «все или ничего». Считается, что он более помехоустойчив (организм стареет, он может отравится, заболеть и т.д.) нежели простейшая амплитудная модуляция.
Длительность потенциала действия в нервах составляет 1 мс [1.5], что позволяет говорить о том, что за 1 секунду может быть передано от 0 до 1000 потенциалов действия или 1001 состояние (модуляция осуществляется частотой потенциалов действия), что дает нам пропускную способность T
10 бит / сек (для двоичного представления 1001 состояния нужно (бит).
Оценка мощности информационного потока, исходящего из рецептора
Изначально в этой главе я хотел рассказать про зрительные рецепторы, а затем в следующей главе рассчитать мощность потока зрительного восприятия. Я подобрал справочные данные по чувствительности глаз и вот-вот должен был найти «тактико-технические характеристики» фоторецепторов, но… найти их так и не смог.
Справедливости ради стоит отметить, что модель восприятия (Рисунки 1 и 2), используемая в этом исследовании, довольно примитивна и имеет некоторые неточности. В частности, сигнал с фоторецептора передается не напрямую в мозг, а предварительно пробегает по нескольким промежуточных нейронам, где осуществляется его первичная обработка. Но этот недостаток не является критичным, так как обработанные данные все равно передаются в мозг, где и осуществляется их основной анализ, а количество информации в результате первичной обработки может лишь уменьшиться. Это позволяет без серьезных искажений принять договорённость, при которой рецептором будут называть не только клетку, осуществляющую трансдукцию (то есть преобразование стимула в нервный импульс), но и остальные нейроны, по которым идет сигнал, до первого нейрона проводящего пути. Так что проблема не в модели, а в отсутствии первичной информации.
Кстати говоря, по другим органам чувств ситуация с характеристиками рецепторов такая же печальная.
Оценка мощности информационного потока, получаемого от зрения
Не смотря на наш провал с оценкой мощности информационного потока, поступающего от одного зрительного рецептора, попробуем рассчитать суммарный информационный поток, поступающий от зрения целиком. Для этого примем, что его мощность ограничивается лишь числом и пропускной способностью проводящих путей.
Физиологи сходятся во мнении, что из глаза исходит нервных окончаний [2.1] (считай проводящий путей), а с учетом того, что глаза два, и один проводящий путь позволяет передать 10 бит / сек. получаем мощность потока зрительного восприятия в бит / сек = 2 500 000 байт / сек = 2,5 Мб / сек.
Полученный результат близок к результату, указанному в трехтомнике Р. Шмидта [1.2] в части зрения.
Мегапиксели vs. глаза
Многие могут задаться вопросом: «Если мы воспринимаем так мало, то почему мегапиксели камер в смартфонах растут из года в год?».
Как ни странно, но на этот вопрос довольно просто ответить. Дело в том, что человеческое зрение устроено довольно хитро. Резко и четко мы воспринимаем небольшой участок (пятно высокой четкости) в центре обозреваемой картины, все остальное размыто, а по краям изображение вообще черно-белое.
Если рассматривать улыбку на знаменитой картине Леонардо Да Винчи «Мона Лиза», то реальное восприятие будет примерно таким (Рисунок 7):
Рисунок 7
Чтобы рассмотреть всю картину мы, словно читая, будем двигать по ней пятно высокой четкости, ну а мозг из этой «видеозаписи» уже смастерит нам красивую четкую картинку.
Те 2.5 Мб / сек. зрительного восприятия, что мы намеряли ранее, поступают в основном от этого пятна высокой четкости. А учитывая то, что взгляд, двигаясь по картинке, должен всегда получать качественное и четкое изображение, получается, что рассматриваемая картинка должна быть всегда лучше, чем глаз может воспринять пятном высокой четкости. Это и есть одна из причин роста мегапикселей.