регулирует частоту и глубину дыхания какой мозг
Регулирует частоту и глубину дыхания какой мозг
Обычно человек не замечает, как он дышит, потому что процесс этот регулируется независимо от его воли. В какой-то мере, однако, дыхание можно регулировать сознательно, о чем мы и поговорим ниже.
Непроизвольную регуляцию дыхания осуществляет дыхательный центр, находящийся в продолговатом мозге (одном из отделов заднего мозга). Вентральная (нижняя) часть дыхательного центра ответственна за стимуляцию вдоха; ее называют центром вдоха (инспнра-торным центром). Стимуляция этого центра увеличивает частоту и глубину вдоха. Дорсальная (верхняя) часть и обе латеральные (боковые) тормозят вдох и стимулируют выдох; они носят собирательное название центра выдоха (экспираторного центра).
Дыхательный центр связан с межреберными мышцами межреберными нервами, а с диафрагмой — диафрагмальными. Бронхиальное дерево (совокупность бронхов и бронхиол) иннервируется блуждающим нервом. Ритмично повторяющиеся нервные импульсы, направляющиеся к диафрагме и межреберным мышцам обеспечивают осуществление вентиляционных движений.
Расширение легких при вдохе стимулирует находящиеся в бронхиальном дереве рецепторы растяжения (проприоцепторы) и они посылают через блуждающий нерв все больше и больше импульсов в экспираторный центр. Это на время подавляет инспираторный центр и вдох. Наружные межреберные мышцы теперь расслабляются, эластично сокращается растянутая легочная ткань — происходит выдох. После выдоха рецепторы растяжения в бронхиальном дереве более уже не подвергаются стимуляции. Поэтому экспираторный центр отключается и вдох может начаться снова.
Механизмы регуляции дыхания
Весь этот цикл непрерывно и ритмично повторяется на протяжении всей жизни организма. Форсированное дыхание осуществляется при участии внутренних межреберных мышц.
Основной ритм дыхания поддерживается дыхательным центром продолговатого мозга, даже если все входящие в него нервы перерезаны. Однако в обычных условиях на этот основной ритм накладываются различные влияния. Главным фактором, регулирующим частоту дыхания, служит не концентрация кислорода в крови, а концентрация С02. Когда уровень С02 повышается (например, при физической нагрузке), имеющиеся в кровеносной системе хеморецепторы каротидных и аортальных телец посылают нервные импульсы в инспираторный центр. В самом продолговатом мозге также имеются хеморецепторы. От инспираторного центра через диафрагмальные и межреберные нервы поступают импульсы в диафрагму и наружные межреберные мышцы, что ведет к их более частому сокращению, а следовательно, к увеличению частоты дыхания. Накапливающийся в организме С02 может причинить большой вред организму.
При соединении С02 с водой образуется кислота, способная вызвать денатурацию ферментов и других белков. Поэтому в процессе эволюции у организмов выработалась очень быстрая реакция на любое повышение концентрации С02. Если концентрация С02 в воздухе увеличивается на 0,25%, то легочная вентиляция удваивается. Чтобы вызвать такой же результат, концентрация кислорода в воздухе должна снизиться с 20% до 5%. Концентрация кислорода тоже влияет на дыхание, однако в обычных условиях кислорода всегда бывает достаточно, и потому его влияние относительно невелико. Хеморецепторы, реагирующие на концентрацию кислорода, располагаются в продолговатом мозге, в каротидных и аортальных тельцах, так же, как и рецепторы С02.
В известных пределах частота и глубина дыхания могут регулироваться произвольно, о чем свидетельствует, например, наша способность «затаить дыхание». К произвольной регуляции дыхания мы прибегаем при форсированном дыхании, при разговоре, пении, чихании и кашле.
В этом случае импульсы, возникающие в полушариях головного мозга, передаются в дыхательный центр, который и выполняет соответствующие действия.
Регуляция вдоха при помощи рецепторов растяжения и хеморецепторов представляет собой пример отрицательной обратной связи. Произвольная активность полушарий головного мозга способна преодолеть действие этого механизма.
Регуляция дыхания
Определение понятия
Регуляция дыхания — это согласованное нервное управление дыхательными мышцами, последовательно осуществляющими дыхательные циклы, состоящие из вдоха и выдоха.
Дыхательный центр — это сложное многоуровневое структурно-функциональное образование мозга, осуществляющее автоматическую и произвольную регуляцию дыхания.
Регуляция дыхания построена на общих принципах автоматической регуляции, которые используются в организме.
Тормозные нейроны обеспечивают автоматическое подавление этого возбуждения через определённое время.
В дыхательном центре используется принцип реципрокного (т.е. взаимоисключающего) взаимодействия двух центров: вдоха и выдоха. Их возбуждение находится в обратно пропорциональной зависимости. Это означает, что возбуждение одного центра (например, центра вдоха) тормозит связанный с ним второй центр (центр выдоха).
Функции дыхательного центра
— Обеспечение вдоха.
— Обеспечение выдоха.
— Обеспечение автоматии дыхания.
— Обеспечение приспособления параметров дыхания к условиям внешней среды и деятельности организма.
Например, при повышении температуры (как в окружающей среде, так и в организме) дыхание учащается.
Уровни дыхательного центра
Виды инспираторных нейронов
Автоматию дыхания обеспечивают комплексы из 4-х нейронов с обязательным присутствием тормозных.
Взаимодействие с другими центрами мозга
Дыхательные инспираторные и экспираторные нейроны имеют выход не только на дыхательные мышцы, но и на другие ядра продолговатого мозга. Например, при возбуждении дыхательного центра реципрокно тормозится центр глотания и в то же время, наоборот, возбуждается сосудо-двигательный центр регуляции сердечной деятельности.
На бульбарном уровне (т.е. в продолговатом мозге) можно выделить пневмотаксический центр, расположенный на уровне варолиева моста, выше инспираторных и экспираторных нейронов. Этот центр регулирует их активность и обеспечивает смену вдоха и выдоха. Инспираторные нейроны обеспечивают вдох и одновременно от них возбуждение поступает в пневмотаксический центр. Оттуда возбуждение бежит к экспираторным нейронам, которые возбуждаются и обеспечивают выдох. Если перерезать пути между продолговатым мозгом и варолиевым мостом, то уменьшится частота дыхательных движений, засчёт того, что уменьшается активирующее действие ПТДЦ (пневмотаксического дыхательного центра) на инспираторные и экспираторные нейроны. Это также приводит к удлинению вдоха засчёт длительного сохранения тормозного влияния экспираторных нейронов на инспираторные.
Регуляция деятельности дыхательного центра
Бульбарный отдел дыхательного центра является главным, он обеспечивает автоматию дыхания, но его деятельность может изменяться под действием гуморальных и рефлекторных влияний.
«Ни один из вдохов не похож на другой»: как мозг регулирует работу легких
Теории и практики
Сердечный ритм, терморегулирование, секреция желез и работа многих других систем организма не зависит от нашего сознательного участия. Но, в отличие от всех этих процессов, дыхание бывает как произвольным, так и автономным, и отвечают за это разные участки мозга. Иногда даже в одном конкретном цикле дыхания происходит разделение труда: автономный вдох и произвольный выдох. С дыханием связаны и другие интересные вопросы. Почему выдох почти в два раза длиннее, чем вдох? Для чего мы зеваем и отчего икаем? Каковы причины синдрома внезапной детской смерти? И зачем дышать в пакет, если у вас паника? Обо всем этом — в отрывке из книги «Захватывающий мир легких» пульмонолога Кая-Михаэля Бе.
Захватывающий мир легких
Кай-Михаэль Бе
Попурри. 2019
пока больной находился в сознании, у него было регулярное глубокое дыхание, а стоило ему уснуть, как оно останавливалось, словно кто-то выдернул шнур из розетки.
Но следующего ночного эпизода и очередной комы пациент уже не перенес. На фоне кислородного голодания у него случился инфаркт, и вскоре он умер. Поразило его «проклятие Ундины».
Американские врачи впервые описали этот редкий и загадочный случай в 1962 году. Вскоре феномен повторился у трех пациентов, перенесших операцию на мозге: в состоянии бодрствования все они дышали совершенно нормально, но, как только наступала ночь и они засыпали, дыхание останавливалось. Если их вовремя не будили, возникал серьезный дефицит кислорода, угрожавший жизни. Такая непроизвольная потеря организмом своих функций напомнила врачам легенду о русалке Ундине: для обеспечения верности любимого, жившего на суше, она заколдовала его таким образом, чтобы в случае измены он утрачивал контроль над вегетативными жизненными функциями. Поэтому врачи, описывавшие случаи непроизвольной ночной остановки дыхания, назвали это заболевание «проклятием Ундины». Персонаж Ундины вдохновил Ханса Кристиана Андерсена на написание сказки «Русалочка», а Уолт Дисней снял на ее основе мультфильм. Разумеется, в нем не было ни смертей, ни остановок дыхания и все жили счастливо до скончания веков!
Что же кроется за этим «проклятием»?
Мозг управляет как произвольным, так и автономным дыханием, но отвечают за это разные его участки.
Главный дыхательный центр человека находится в глубине головного мозга неподалеку от его перехода в спинной мозг. Это так называемый продолговатый мозг, а точнее говоря, его часть, носящая название «мост». Здесь находятся нервные клетки, которые, подобно метроному, регулярно посылают импульсы, активизирующие дыхание, что обеспечивает спокойный равномерный ритм дыхания, составляющий от 10 до 15 вдохов в минуту, в том числе и во сне. Командный центр в продолговатом мозге связан нервными волокнами спинного мозга с дыхательными мышцами. Эти волокна на уровне третьего шейного позвонка отходят от спинномозгового канала, образуя правый и левый диафрагмальные нервы, которые спускаются через грудную полость к диафрагме. Поэтому повреждения шейного отдела позвоночника всегда несут в себе угрозу для жизни. В отличие от поперечного поражения спинного мозга в грудном или шейном отделе, при котором наступает паралич, здесь речь идет о полном отказе дыхания. Неконтролируемое возбуждение этих нервов выражается в таком неприятном явлении, как икота. Ее причиной становятся внезапные подергивания диафрагмы под влиянием случайных нервных импульсов.
Но дыхательный центр представляет собой не только передающую, но и принимающую станцию, которая также важна для регулирования дыхания. В частности, он должен реагировать на изменения потребности организма в воздухе в зависимости от физической нагрузки и соответствующим образом регулировать частоту дыхания. Эту информацию дыхательный центр в первую очередь получает от так называемых хеморецепторов — датчиков, которые расположены на стенках аорты и в самом продолговатом мозге и которые реагируют на изменения содержания углекислого газа и кислорода в крови. Кроме того, в крупных группах мышц существуют датчики растяжения, передающие в мозг сигналы об усиленной деятельности мышц, чтобы тот повысил частоту дыхания. Возникает своего рода замкнутая цепь автоматического регулирования. При повышении активности мышц увеличивается расход кислорода для восполнения энергии, а за счет этого растет выработка углекислого газа. Совместно с другими отходами производства в мышцах, такими, например, как соединения молочной кислоты, углекислый газ вызывает повышение кислотности крови. Оба фактора — высокое содержание углекислого газа и изменение показателя рН — активизируют датчики в аортах и мозге, а тот, в свою очередь, увеличивает частоту импульсов дыхания. Диафрагма совершает более глубокие и частые движения, вследствие чего из организма выводится больше углекислого газа, а в него поступает больше кислорода. Уровень рН нормализуется. Регулирующая цепь замыкается, и частота дыхания вновь снижается.
Как ни странно, дыхательный центр буквально помешан на углекислом газе.
Как бы ни был важен кислород для выработки энергии и поддержания жизнедеятельности органов, все датчики центра дыхания заботятся исключительно об удалении отходов, реагируют только на изменения концентрации углекислого газа и показателей кислотности крови. Колебания содержания кислорода их абсолютно не волнуют, и на это есть веская причина: почти все процессы обмена веществ в организме протекают только при определенных показателях рН. Так что поддержание их стабильности — главная задача продолговатого мозга.
Кроме того, дыхательный центр получает нервные импульсы от других областей мозга, в частности от гипоталамуса. Это приводит к тому, что характер дыхания непроизвольно меняется под влиянием таких эмоций, как грусть, радость, возбуждение, гнев, агрессия, влюбленность. Произвольное управление дыханием осуществляется в коре головного мозга. Она способна вносить изменения в основной ритм, задаваемый продолговатым мозгом, когда дыхание требуется для других процессов, обычно для речи. Но если кора мозга отдыхает (например, во сне), то командование автоматически берет на себя продолговатый мозг.
Иногда даже в одном конкретном цикле дыхания происходит разделение труда: автономный вдох и произвольный выдох.
Ведь, в отличие от вдоха, который осуществляется за счет активного сокращения диафрагмы и расширения грудной клетки, выдох почти всегда является чисто пассивным процессом: легкие, грудная клетка и диафрагма просто возвращаются в исходное состояние, словно растянутая пружина, с которой сняли нагрузку. На этот возврат мозг отводит определенное время. У здоровых людей выдох длится примерно вдвое дольше, чем вдох. Если процесс затягивается (например, из-за снижения эластичности легких вследствие заболевания), мозг включает режим активных усилий для выдоха, чтобы оставаться «в графике». То же самое происходит и при высокой частоте дыхания, когда организм работает под нагрузкой, — в этой ситуации продолжительность обычного пассивного выдоха была бы слишком большой. Однако при всей гармонии бесспорным остается одно: автономная составляющая контроля дыхания играет доминирующую роль. Попробуйте сами задержать дыхание, насколько возможно. В итоге все равно победит продолговатый мозг.
Нарушения в работе дыхательного центра — это всегда тяжелейшие заболевания.
У пациентов с «проклятием Ундины» структуры продолговатого мозга, контролирующие непроизвольное дыхание во сне, полностью или частично разрушены, например в результате инсульта.
Могут сказаться также травмы, новообразования и инфекции. Существует и врожденная форма «проклятия». Если кора мозга исправно выполняет свои функции, то в состоянии бодрствования она подменяет продолговатый мозг. Чтобы не лишать пациентов сна, по ночам их приходится подключать к аппарату искусственной вентиляции легких или устанавливать электрический стимулятор работы диафрагмы.
Бесперебойная работа продолговатого мозга важна еще и потому, что он не только управляет вегетативными функциями во сне, но и контролирует их. Едва возникают экстренные ситуации (снижение артериального давления, болевые импульсы из различных частей тела, изменение содержания углекислого газа в крови), он тут же поднимает по тревоге кору головного мозга, и человек моментально просыпается. К сожалению, эта хитроумная система «сдержек и противовесов» не всегда работает идеально. Как и все сложные процессы управления центральной нервной системой, она нуждается в развитии и обучении.
Особенно трагичным примером сбоя в системе является синдром внезапной детской смерти. У малышей по неизвестной причине оказывается нарушена система аварийной сигнализации при отказе дыхания.
Паузы в дыхании, которые у младенцев возникают регулярно и являются признаком «обучения» дыхательного центра, внезапно перестают давать мозгу сигнал к пробуждению, и ребенок умирает во сне без видимых причин. Это кошмар для любого родителя.
Источник: A24 / giphy.com
Другое, значительно более частое, но в большинстве своем не опасное нарушение контрольных функций дыхания носит название гипервентиляционного синдрома. Эмоциональное или психическое возбуждение, вызванное, к примеру, страхом либо паникой, приводит к чрезмерной стимуляции дыхательного центра в продолговатом мозге.
Глубокое ускоренное дыхание снижает уровень углекислого газа в крови, а показатель рН растет, создавая щелочную реакцию. Следствием становятся судороги, головокружение и помрачение сознания.
Эти симптомы дополнительно усиливают ощущение страха в гипоталамусе, и возникает заколдованный круг. Если пациент не может успокоиться самостоятельно, то нормализовать его состояние помогает повторное вдыхание выдыхаемого углекислого газа (для этого достаточно приложить ко рту полиэтиленовый пакет и подышать из него). Симптомы исчезают, и эмоциональное возбуждение затихает. Таким образом, если у вашей начальницы опять начинается «гипервентиляция», отнеситесь к этому снисходительно — возможно, все дело в гипоталамусе. В таких случаях достаточно энергичного возгласа: «Задержи дыхание!» Подобный приказ должен восприниматься не как неуместная дерзость, а как ценная медицинская рекомендация, заменяющая применение полиэтиленового пакета: благодаря этому углекислый газ временно перестает удаляться из организма, его содержание в крови нормализуется, а состояние опять приходит в норму. Кора мозга вмешивается в процесс, разрывая цепь между гипоталамусом и продолговатым мозгом. Данный пример демонстрирует, что, когда речь идет о вегетативных последствиях эмоционального всплеска, не надо безучастно наблюдать за происходящим. Вы можете взять на себя командные функции нервной системы и повлиять на ситуацию. Тесная связь эмоций, автономной нервной системы и произвольного контроля дыхания открывает широкие возможности. По крайней мере, один из элементов этой цепи находится под вашим личным контролем! Необходимо только освоить приемы, с помощью которых можно влиять на собственное самочувствие, сознательным усилием успокаивать вегетативную нервную систему. […]
Что же передают легкие по своим каналам? Пустые сплетни? Или мы имеем дело с неиспользуемыми избыточными мощностями? Отнюдь, от легких поступает не меньше информации, чем от органов чувств, но все эти сведения перерабатываются мозгом в подсознании. Правда, есть исключение: раздражение, приводящее к рефлекторному кашлю, или нехватка воздуха воспринимаются напрямую, как и сигналы от органов чувств. Но информация, обрабатываемая подсознанием, влияет на другие автономные функции организма, например на артериальное давление, сердечный ритм, пищеварение, потоотделение, проявление эмоций… А также на психические процессы.
Какую же информацию посылают легкие, если речь не идет об оптических и акустических сигналах, болевых либо тактильных ощущениях? Почти все эти сигналы имеют химическую или физическую природу. Хотя процесс дыхания и выглядит монотонным, ни один из 15 вдохов, которые мы делаем в минуту, не похож на другой, ведь каждый литр вдыхаемого воздуха особенный. Легкие относятся к воздуху не как потребитель, а как тонкий ценитель. Подобно сомелье, который находит в крошечном глотке вина привкусы дубовой бочки, земли, абрикоса, персика, сигары и мокрой кожи, легкие во вдыхаемом воздухе выделяют такие параметры, как температура, влажность, содержание солей, показатель рН, состав газов. Кроме того, воздух может содержать раздражающие и вредные вещества, чужеродные частицы, аллергены.
В легких, как и на языке и в носу, имеются вкусовые сосочки и рецепторы запахов.
Они могут выявлять продукты бактериального обмена веществ и определять на вкус многие яды. У них есть такие же рецепторы, которые в носу и во рту воспринимают, к примеру, освежающий аромат растительных эфирных масел. Но поскольку обработка сигналов от этих рецепторов в легких происходит без участия сознания, то мы можем только догадываться, какой эффект раздражители оказывают на дыхательные пути и автономную нервную систему. Бесспорно лишь то, что для распознавания, различения и измерения всех этих компонентов нужны очень чувствительные нервы. А их в легких хватает.
Чувствительные нервные волокна легких начинаются там, где можно собрать максимум информации: в бронхиальных мышцах, железах, альвеолах и, прежде всего, в эпителии. Здесь происходят главные события. Зачем же прокладывать линии передач от клеток соединительной ткани, в которых ничего не случается, если рядом бурлит жизнь? Эпителий дыхательных путей предлагает самую лучшую и разнообразную программу. Там регулярно происходят неприятности и скандалы, обеспечивающие самый высокий зрительский рейтинг! Не все волокна передают сенсации из эпителия, некоторым приходится довольствоваться скучной, но важной работой датчиков растяжения тканей. Их сигналы имеют большое значение, потому что они в буквальном смысле защищают легкие от разрывов. Когда легкие под воздействием диафрагмы достигают определенной степени растяжения, датчики посылают в дыхательный центр продолговатого мозга сигнал стоп. Мозг в свою очередь прекращает сокращение диафрагмы и подает сигнал на начало выдоха. Главное — ничего не порвать.
Спортсмены знают, насколько важна растяжка как средство профилактики травм. Легкие тоже время от времени осуществляют спонтанную растяжку — во время зевания.
Если дыхание на протяжении длительного времени носит спокойный и поверхностный характер, то датчики растяжения начинают скучать и вызывают зевательный рефлекс. Точно так же как мы устраиваем дома сквозняк, чтобы быстро проветрить комнаты.
Но вернемся к нервным окончаниям эпителия дыхательных путей. Здесь размещается густая сеть рецепторов, реагирующих на химические и физические раздражители, которыми могут быть частицы пыли, вещества, растворенные в водяных парах, продукты жизнедеятельности бактерий, соляная кислота, капсаицин, отвечающий за жгучий вкус перца чили, слизь, а также сигнальные вещества иммунной системы, выделяемые при воспалениях, и даже холод и тепло. Нервы сообщают обо всем, что оказывает на них воздействие. В здоровом состоянии их чувствительные окончания защищены эпителием дыхательных путей, но, если он поврежден, окончания лишаются защиты, выступают над поверхностью и начинают реагировать на раздражения. Самыми частыми причинами повреждений эпителия являются простудные вирусы и воспаления, возникающие, к примеру, в результате аллергии, инфекции или контакта с вредными веществами. В этом случае чувствительные нервные окончания посылают мозгу сигналы тревоги, который отвечает на них защитными рефлексами бронхов, устраняющими причину раздражения или предотвращающими его распространение на более глубокие участки дыхательных путей. К таким рефлекторным реакциям относятся кашель, выработка слизи и спазм бронхиальных мышц.
Чувствительные нервные окончания эпителия особенно интересны в плане изучения хронических заболеваний дыхательных путей. По своим функциям в бронхах они удивительно напоминают рецепторы, фиксирующие повреждения кожи, — ноцицепторы. Задача последних заключается в том, чтобы предупреждать мозг о грозящих повреждениях кожи в результате внешнего воздействия. Создавая болевое ощущение, они провоцируют немедленную реакцию, например отдергивание руки от горячей кухонной плиты. В дыхательных путях в таких случаях вместо боли возникает кашель.
Как и болевые рецепторы кожи, чувствительные нервные окончания в легких могут подвергаться постоянному раздражению. Если в первом случае отмечаются хронические боли, то во втором — хронический нескончаемый кашель, который может продолжаться несколько месяцев.
Пока неясно, каким образом можно нормализовать нарушенный рефлекс кашля. Но то, что существует принципиальная возможность манипулировать степенью возбудимости нервных окончаний, доказывают курильщики. Первоначальный рефлекторный кашель со временем исчезает, в противном случае все бы закончилось уже на первой сигарете. Обращает на себя внимание и еще один аспект, наблюдаемый у начинающих курильщиков: несмотря на сильный кашель, возникающий при курении первой сигареты, спазматического сужения бронхов практически не бывает. Таким образом, необязательно могут появляться все три рефлекторные реакции, иногда они делят обязанности между собой. Это подтверждается и повседневными наблюдениями практикующих врачей: лишь немногие астматики наряду с сужением бронхов страдают и сильным кашлем. При заболевании бронхитом у одних пациентов отмечается сухой кашель, а у других происходит чрезмерное образование слизи. Почему так бывает, нам пока неизвестно. […]
В рубрике «Открытое чтение» мы публикуем отрывки из книг в том виде, в котором их предоставляют издатели. Незначительные сокращения обозначены многоточием в квадратных скобках.
Мнение автора может не совпадать с мнением редакции.