нейтрино что это простыми словами
Не только детекторы. Экскурс в прикладную физику нейтрино
Фундаментальная наука иногда кажется настолько оторванной от повседневной реальности, что хочется вдохновляться, как минимум, масштабностью ее проблем или зрелищностью экспериментов и установок. Типичным примером такой научной дисциплины, которая ассоциируется с абсолютной фундаментальностью и при этом грандиозностью, является изучение нейтрино.
Немного истории
Нейтрино — это совокупное название группы легчайших элементарных частиц, относящихся к фермионам. Существование нейтрино было предсказано Вольфгангом Паули в 1930 году, а экспериментально подтверждено в 1956 году Клайдом Коуэном и Фредериком Рейнесом. При этом Паули лишь неформально, в виде чистой гипотезы, предположил, что «имеется возможность того, что в ядрах существуют электрически нейтральные частицы, которые я буду называть «нейтронами» и которые обладают спином ½. Масса «нейтрона» по порядку величины должна быть сравнимой с массой электрона и во всяком случае не более 0,01 массы протона». Таким образом он пытался объяснить наблюдаемую природу бета-распада. Он назвал такую неоткрытую частицу «нейтроном». Только через два года, в 1932, Джеймс Чедвик открыл в атоме крупную элементарную частицу, сравнимую по массе с протоном, и назвал ее «нейтрон», а неуловимый фермион Паули впоследствии удостоился названия «нейтрино» (нейтрончик) с легкой руки Энрико Ферми.
С тех самых пор нейтрино окружены ореолом загадочности в силу своих поразительных свойств. Они всерьез и надолго обосновались в научной фантастике – так, Кельвин, главный герой «Соляриса», предполагает, что именно из нейтрино разумный океан формировал своих фантомов, в том числе, фантом Хари, возлюбленной Кельвина. Вкратце напомню основные уникальные и парадоксальные аспекты нейтрино:
Долгое время продолжалась дискуссия о том, обладают ли нейтрино массой. При наличии массы у этих частиц они не вписываются в Стандартную модель физики частиц. Соответственно, это означает, что физика не ограничивается Стандартной Моделью, а за пределами Стандартной Модели существует еще и Новая Физика, изучение которой начнется с нейтрино. Сегодня известно, что нейтрино имеют ненулевую массу, примерно в шесть миллионов раз меньше, чем у электрона.
Нейтрино практически не взаимодействуют с веществом – именно поэтому Паули и допускал, что они никогда не будут открыты. Поэтому детекторы нейтрино, которые иногда называют «нейтринными обсерваториями» устанавливаются глубоко в толще воды, льда, горных пород. Такая толща служит уловителем практически для всех прочих элементарных частиц, поэтому высока вероятность зафиксировать в детекторе именно нейтрино, как солнечные, так и астрофизические, возникающие, например, при взрывах сверхновых.
Как и у всех частиц, у нейтрино существует своя античастица — антинейтрино. Отличия свойств нейтрино и антинейтрино помогают пролить свет на отличия вещества и антивещества в целом и, возможно, позволят выяснить, почему во Вселенной существует колоссальная асимметрия между количеством вещества и антивещества, куда подевалось почти все антивещество – ведь, теоретически, после Большого Взрыва они должны были образоваться в равных количествах.
С этими и другими темами мне довелось познакомиться подробно и достаточно давно. В 2014-2015 году я работал переводчиком в издательстве «Альпина Нон-Фикшн», и в этот период, в первые несколько месяцев 2015 года, перевел книгу Рэя Джаявардханы «Охотники за нейтрино». На тот момент мне казалось, что эта тема слишком академична и сложна для широкой читательской аудитории, но книга оказалась настолько интересной, а я так надолго увлекся этой темой, «когда она еще не была мейнстримом», что возвращаюсь к ней до сих пор. Разброс рассматриваемых тем, связанных с нейтрино, впрочем, меняется слабо. Пишут о новых детекторах, все более точных измерениях массы и скорости нейтрино, о космологической ценности этих исследований. Не буду здесь углубляться в эти аспекты, поскольку они хорошо и подробно рассмотрены на русском языке (и при этом богато иллюстрированы). Но позволю себе привести список статей с Хабра, которые вышли уже после книги Джаявардханы и кажутся мне наиболее интересными:
BAIKAL-GVD. Охотники за нейтрино (2.02.2020). Пост автора @DNLP о кластере глубоководных детекторов нейтрино, устанавливаемых в озере Байкал. Отличный материал с большим количеством видео и техническими деталями. На самом деле, идея использовать Байкал в качестве естественного водного резервуара гениальна, а географическое расположение детектора позволяет в большом количестве отлавливать нейтрино, прилетающие к нам со стороны Южного полюса. Аналогичный, совсем свежий материал недавно вышел на сайте «Медузы».
«Вещество и антивещество: что это такое, в чем разница и при чем тут нейтрино» (24.09.2019). Автор – @Bars21. Подробный разбор парадокса #3 из вышеприведенного списка.
«Поймай меня, если сможешь: радиоволны, каскад частиц и лед для поимки нейтрино» (11.03.2020) Пост автора @Dmytro_Kikot, дающий представление о подледном лове нейтрино.
Итак, завершая такое пространное вступление, я перейду к сути этой статьи. При всей важности нейтрино в качестве диагностического инструмента в теоретической физике, ядерной физике, космологии и астрономии, для этих неуловимых частиц уверенно просматриваются возможности практического применения. Именно о них пойдет речь в оставшейся, наиболее интересной части статьи.
Нейтрино и телекоммуникация
Идея об использовании нейтрино в качестве носителя информации привлекательна в силу того, что нейтрино беспрепятственно проникают через любой материал. Таким образом, они могли бы служить надежным носителем информации в таких средах, где распространение электромагнитных волн затруднено или невозможно.
В 2010 году было высказано предположение, что нейтрино могут применяться для однонаправленной связи с субмаринами, постоянно находящимися в подводном положении. Пучок нейтрино можно было бы направить в расположенный в условленной точке океана детектор. При попадании нейтрино в такой детектор рождались бы мюоны, испускающие излучение Черенкова, а подводная лодка могла бы считывать переданную информацию при помощи детекторов, проходя мимо при патрулировании зоны. В источнике такая точка именуется «почтовый ящик»; указано, что в силу почти полного отсутствия помех на такой глубине, «ящиков» в заданной зоне могло бы быть несколько, а скорость передачи информации в «мюонное хранилище» (muon storage) могла бы составлять более 100 бит/с.
Предыдущий пример подсказывает, что наибольшую проблему в данном случае составляет вычленение сигнала из шума, то есть, необходимость создания детектора, который различал бы информативную последовательность нейтрино на фоне нейтрино естественного происхождения. Кроме того, в примере с подводными лодками не удается уйти от пропускания пучков нейтрино через толщу воды, которой в данном случае служит сам океан. Но сохранились сведения о работах, предполагающих нейтринную коммуникацию без использования водного резервуара. В 2016 году исследовательская лаборатория Pirelli в Милане опубликовала материал о том, что с начала 2000-х ведутся работы по синтезу кристаллов кремния или кварца, используемых в качестве детекторов нейтрино. Кристалл охлаждается почти до абсолютного нуля, и при попадании пучка нейтрино температура этого кристалла немного возрастает, что можно зафиксировать при помощи приборов. Такие детекторы были бы не только гораздо компактнее водных резервуаров, но и обеспечивали бы когерентное рассеяние полученных нейтрино, и их осцилляции затем можно было бы считывать и расшифровывать. Правда, пока ни о каких практических результатах этих исследований не сообщается
Широкую известность получил эксперимент, поставленный в 2012 году в Национальной ускорительной лаборатории им. Энрико Ферми (Фермилабе) в Чикаго – в ходе упоминаемого эксперимента ученым действительно удалось передать в пучке нейтрино информацию, а именно закодировать слово «neutrino». Информация была передана с мощнейшего современного генератора нейтрино NuMI на расстояние более километра и зафиксирована детектором MINERvA. Вот как процесс проиллюстрирован на рис. 1 к упоминаемой научной статье:
Несомненно, перед нами лишь proof-of-concept (доказательство осуществимости), показанное почти 10 лет назад, но развитие нейтринной телекоммуникации ограничено техническими, а не фундаментальными сложностями. Таким образом, подобные технологии вполне могут стать реальностью.
Нейтрино и контроль над использованием ядерных реакторов
Одним из самых распространенных источников нейтрино на Земле являются ядерные реакторы. Предпринимаются попытки устанавливать уловители нейтрино (точнее — антинейтрино) вблизи от ядерного реактора, на расстоянии в пределах 10 метров, для изучения свойств этих частиц. О таком эксперименте подробно рассказано в интервью д.ф.-м.н. Дмитрия Наумова, зам. директора по научной работе Лаборатории ядерных проблем Объединенного института ядерных исследований (ОИЯИ) в Дубне. При этом Наумов отмечает, что по свойствам улавливаемых антинейтрино можно достоверно определить, не используется ли реактор для производства оружейного плутония-239. Любая компания, занимающаяся эксплуатацией ядерного реактора, обязана предоставлять данные о том, сколько плутония получает в ходе работы, и нейтрино позволяют проверить эти данные. Впрочем, существовали гораздо более фантастичные проекты, связанные с нейтринным шпионажем. В 2010 году группа французских физиков во главе с Тьерри Ласьерром опубликовала статью о том, как, регистрируя потоки нейтрино, можно обнаруживать незадекларированные ядерные реакторы. Более того, авторы предлагали устанавливать нейтринные детекторы на кораблях и следить за развитием ядерных программ Ирана и Северной Кореи, заходя в прибрежные воды этих государств.
Нейтрино и геологические изыскания
Эта прикладная возможность отчасти смыкается с предыдущей — предполагается, что детекторы нейтрино полезны при поиске месторождений урана и тория. Но гораздо более интересные возможности открываются при измерении свойств солнечных нейтрино, которые, как было указано выше, свободно пронизывают Землю насквозь. Изучая изменение осцилляций нейтрино при их прохождении через толщу пород можно было бы проводить «томографию» литосферы, находить в ней полости, анализировать плотность веществ, заполняющих эти полости. Такая технология открыла бы путь к обнаружению глубоких месторождений нефти. В частности, подобные идеи исследованы в статье перуанских ученых, опубликованной в 2015 году. Предполагается, что для такой цели могли бы использоваться не только солнечные нейтрино, но и направленные пучки нейтрино, сгенерированные искусственно. В таком случае геологоразведочные работы можно было бы существенно ускорить, затрачивая на поиск месторождений не годы, а месяцы. Впрочем, на момент публикации статьи еще не существовало столь мощных генераторов нейтрино, которые позволили бы воплотить эту технологию.
Впрочем, спектрометрия литосферы с использованием нейтрино вновь возвращает нас от прикладных задач, решаемых при помощи нейтрино, к фундаментальным. При наличии достаточно точных детекторов нейтрино можно было бы подробно изучить не только состав земной коры и распределение химических элементов в ней, но и продвинуться в исследовании свойств и состава земного ядра. Нейтринное зондирование позволило бы проверить (и окончательно опровергнуть?) даже весьма сомнительную теорию о существовании естественных ядерных реакторов в недрах планеты, но в эту тему я точно углубляться не буду.
Заключение
Надеюсь, у меня получился по-настоящему приземленный рассказ об исследовании нейтрино в XXI веке, и читатели убедились, что эти удивительные частицы важны отнюдь не только в космологии и теоретической физике. Если вам известны какие-то иные попытки практического применения нейтрино и технологии на их основе – давайте поговорим об этом в комментариях.
Просто о сложном: загадка самой мелкой частицы во Вселенной, или как поймать нейтрино
altavir
Нейтрино, невероятно крошечная частица Вселенной, удерживает пристальное внимание ученых уже без малого столетие. За исследования нейтрино вручили больше Нобелевских премий, чем за работы о других частицах, а для его изучения строят огромные установки с бюджетом небольших государств. Александр Нозик, старший научный сотрудник Института ядерных исследований РАН, преподаватель МФТИ и участник эксперимента по поиску массы нейтрино «Троицк ню-масс», рассказывает, как его изучать, но главное — как вообще его поймать.
Загадка похищенной энергии
Александр Нозик
Со временем приборы становились все точнее, и вскоре возможность списать подобную аномалию на погрешность аппаратуры пропала. Так появилась загадка. В поисках ее разгадки ученые высказывали разнообразные, даже совершенно абсурдные по нынешним меркам предположения. Сам Нильс Бор, например, делал серьезное заявление, что законы сохранения не действуют в мире элементарных частиц. Спас положение Вольфганг Паули в 1930 году. Он не смог приехать на конференцию физиков в Тюбингене и, не имея возможности участвовать дистанционно, прислал письмо, которое попросил зачитать. Вот выдержки из него:
Вольфганг Паули
«Дорогие радиоактивные дамы и господа. Я прошу вас выслушать со вниманием в наиболее удобный момент посланца, доставившего это письмо. Он расскажет вам, что я нашел отличное средство для закона сохранения и правильной статистики. Оно заключается в возможности существования электрически нейтральных частиц… Непрерывность Β-спектра станет понятной, если предположить, что при вместе с каждым электроном испускается такой «нейтрон», причем сумма энергий «нейтрона» и электрона постоянна…»
В финале письма были следующие строки:
«Не рисковать — не победить. Тяжесть положения при рассмотрении непрерывного Β-спектра становится особенно яркой после слов проф. Дебая, сказанных мне с сожалением: «Ох, лучше не думать обо всем этом… как о новых налогах». Следовательно, необходимо серьезно обсудить каждый путь к спасению. Итак, уважаемый радиоактивный народ, подвергните это испытанию и судите».
Позже сам Паули высказывал опасения, что, хотя его идея и спасает физику микромира, новая частица так никогда и не будет открыта экспериментально. Говорят, он даже спорил со своими коллегами, что, если частица есть, обнаружить ее при их жизни не удастся. В последующие несколько лет Энрико Ферми создал теорию бета-распада с участием частицы, названной им нейтрино, которая блестящим образом согласовалась с экспериментом. После этого ни у кого не осталось сомнений в том, что гипотетическая частица существует на самом деле. В 1956 году, за два года до смерти Паули, нейтрино было экспериментально обнаружено в обратном бета-распаде группой Фредерика Райнеса и Клайда Коуэна (Райнес получил за это Нобелевскую премию).
Дело о пропавших солнечных нейтрино
Как только стало понятно, что нейтрино хоть и сложно, но все же можно зарегистрировать, ученые начали пытаться уловить нейтрино внеземного происхождения. Самый очевидный их источник — Солнце. В нем постоянно происходят ядерные реакции, и можно подсчитать, что через каждый квадратный сантиметр земной поверхности проходит около 90 миллиардов солнечных нейтрино в секунду.
На тот момент самым эффективным методом ловли солнечных нейтрино был радиохимический метод. Суть его такова: солнечное нейтрино прилетает на Землю, взаимодействует с ядром; получается, скажем, ядро 37Ar и электрон (именно такая реакция была использована в эксперименте Рэймонда Дэйвиса, за который ему впоследствии дали Нобелевскую премию). После этого, подсчитав количество атомов аргона, можно сказать, сколько нейтрино за время экспозиции взаимодействовало в объеме детектора. На практике, разумеется, все не так просто. Надо понимать, что требуется считать единичные атомы аргона в мишени весом в сотни тонн. Соотношение масс примерно такое же, как между массой муравья и массой Земли. Тут-то и обнаружилось, что похищено ⅔ солнечных нейтрино (измеренный поток оказался в три раза меньше предсказанного).
Разумеется, в первую очередь подозрение пало на само Солнце. Ведь судить о его внутренней жизни мы можем только по косвенным признакам. Неизвестно, как на нем рождаются нейтрино, и возможно даже, что все модели Солнца неправильные. Обсуждалось достаточно много различных гипотез, но в итоге ученые стали склоняться к мысли, что все-таки дело не в Солнце, а в хитрой природе самих нейтрино.
Небольшое историческое отступление: в период между экспериментальным открытием нейтрино и опытами по изучению солнечных нейтрино произошло еще несколько интересных открытий. Во-первых, были открыты антинейтрино и доказано, что нейтрино и антинейтрино по-разному участвуют во взаимодействиях. Причем все нейтрино во всех взаимодействиях всегда левые (проекция спина на направление движения отрицательна), а все антинейтрино — правые. Мало того что это свойство наблюдается среди всех элементарных частиц только у нейтрино, оно еще и косвенно указывает на то, что наша Вселенная в принципе не симметрична. Во-вторых, было обнаружено, что каждому заряженному лептону (электрону, мюону и ) соответствует свой тип, или аромат, нейтрино. Причем нейтрино каждого типа взаимодействуют только со своим лептоном.
Вернемся к нашей солнечной проблеме. Еще в 50-х годах XX века было высказано предположение, что лептонный аромат (тип нейтрино) не обязан сохраняться. То есть если в одной реакции родилось электронное нейтрино, то по пути к другой реакции нейтрино может переодеться и добежать как мюонное. Этим можно было бы объяснить нехватку солнечных нейтрино в радиохимических экспериментах, чувствительных только к электронным нейтрино. Эта гипотеза была блестящим образом подтверждена при измерениях потока солнечных нейтрино в сцинтилляционных экспериментах с большой водной мишенью SNO и Kamiokande (за что недавно вручили еще одну Нобелевскую премию). В этих экспериментах изучается уже не обратный бета-распад, а реакция рассеяния нейтрино, которая может происходить не только с электронными, но и с мюонными нейтрино. Когда вместо потока электронных нейтрино стали измерять полный поток всех типов нейтрино, результаты прекрасно подтвердили переход нейтрино из одного типа в другой, или нейтринные осцилляции.
Покушение на Стандартную модель
Открытие осцилляций нейтрино, решив одну проблему, создало несколько новых. Суть в том, что еще со времен Паули нейтрино считались безмассовыми частицами подобно фотонам, и это всех устраивало. Попытки измерить массу нейтрино продолжались, но без особого энтузиазма. Осцилляции все изменили, поскольку для их существования масса, пусть и маленькая, обязательна. Обнаружение массы у нейтрино, разумеется, привело экспериментаторов в восторг, но озадачило теоретиков. Во-первых, массивные нейтрино не вписываются в Стандартную модель физики элементарных частиц, которую ученые строили еще с начала XX века. Во-вторых, та самая загадочная левосторонность нейтрино и правосторонность антинейтрино хорошо объясняется только опять-таки для безмассовых частиц. При наличии массы левые нейтрино должны с некоторой вероятностью переходить в правые, то есть в античастицы, нарушая, казалось бы, незыблемый закон сохранения лептонного числа, или вовсе превращаться в нейтрино, не участвующие во взаимодействии. Сегодня такие гипотетические частицы принято называть стерильными нейтрино.
Нейтринный детектор «Супер-Камиоканде» © Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo
Разумеется, экспериментальные поиски массы нейтрино тут же резко возобновились. Но сразу возник вопрос: как же измерить массу того, что никак не удается поймать? Ответ один: не ловить нейтрино вообще. На сегодняшний день наиболее активно разрабатываются два направления — прямой поиск массы нейтрино в и наблюдение безнейтринного двойного бета-распада. В первом случае идея очень проста. Ядро распадается с излучением электрона и нейтрино. Нейтрино поймать не удается, но поймать и измерить с очень большой точностью возможно электрон. Спектр электронов несет информацию и о массе нейтрино. Такой эксперимент — один из самых сложных в физике частиц, но при этом его безусловный плюс в том, что он основан на базовых принципах сохранения энергии и импульса и его результат мало от чего зависит. Сейчас самое лучшее ограничение на массу нейтрино составляет около 2 эВ. Это в 250 тысяч раз меньше, чем у электрона. То есть саму массу не нашли, а только ограничили верхней рамкой.
С двойным бета-распадом все сложнее. Если предположить, что нейтрино при перевороте спина превращается в антинейтрино (такую модель называют по имени итальянского физика Этторе Майорана), то возможен процесс, когда в ядре происходят одновременно два бета-распада, но нейтрино при этом не вылетают, а сокращаются. Вероятность такого процесса связана с массой нейтрино. Верхние границы в подобных экспериментах лучше — 0,2‒0,4 эВ, — но зависят от физической модели.
Бозон Хиггса здесь не поможет
Проблема массивного нейтрино не решена до сих пор. Теория Хиггса не может объяснить настолько маленькие массы. Требуется ее существенное усложнение или привлечение каких-то более хитрых законов, по которым нейтрино взаимодействуют c остальным миром. Физикам, занимающимся исследованием нейтрино, часто задают вопрос: «А как исследование нейтрино может помочь среднестатистическому обывателю? Какую финансовую или другую выгоду можно извлечь из этой частицы?» Физики разводят руками. И они действительно этого не знают. Когда-то исследование полупроводниковых диодов относилось к чисто фундаментальной физике, без практического применения. Разница в том, что технологии, которые разрабатываются для создания современных экспериментов по физике нейтрино, широко используются в промышленности уже сейчас, так что каждая вложенная в эту сферу копейка довольно быстро окупается. Сейчас в мире ставятся несколько экспериментов, масштаб которых сравним с масштабом Большого адронного коллайдера; эти эксперименты направлены исключительно на исследование свойств нейтрино. В каком из них удастся открыть новую страницу в физике, неизвестно, но открыта она будет совершенно точно.
Почему так тяжело изучать нейтрино и что эта частица расскажет об истории Вселенной
Нейтрино является одной из самых распространенных частиц во Вселенной, при этом ее невероятно сложно обнаружить. Изучать нейтрино важно, потому что они содержат в себе информацию о явлениях и процессах, которые их порождают: это значит, что с помощью частицы можно узнать о происхождении Вселенной. Рассказываем обо всех тайнах, которые хранят в себе нейтрино.
Читайте «Хайтек» в
Что такое нейтрино?
Нейтрино — это сверхлегкие частицы, образующиеся в процессе ядерных реакций. Большинство из тех, что были обнаружены на Земле, исходят от Солнца, которое превращает водород в гелий. Но в 1930-х годах было предсказано, что Солнце должно также производить нейтрино другого типа посредством реакций с участием углерода, азота и кислорода — так называемые «нейтрино CNO». И лишь почти век спустя детектор Borexino впервые обнаружил эти частицы.
До недавнего времени было вообще непонятно, есть ли у нее масса. В последние годы стало ясно, что есть, но очень маленькая. Ее точное значение неизвестно по сию пору, а имеющиеся оценки в общем сводятся к тому, что нейтрино примерно на 10 порядков легче протона. Примерно так же соотносится вес кузнечика (около 1 грамма) с водоизмещением современного атомного авианосца George Bush (около 100 тыс. тонн).
Частица не имеет или почти не имеет электрического заряда — эксперименты пока не дали однозначного ответа, а из всех фундаментальных физических взаимодействий достоверно участвует только в слабом и гравитационном.
Нейтрино подразделяются на три поколения: электронные, мюонные и тау-нейтрино. Они обычно перечисляются именно в таком порядке, и это не случайно: так отображается последовательность их открытия. Кроме этого, есть еще антинейтрино — это античастицы трех разных типов, соответствующих «обычным». Нейтрино разных поколений могут самопроизвольно превращаться друг в друга. Ученые называют это нейтринными осцилляциями, за их открытие присудили Нобелевскую премию по физике 2015 года.
Нейтрино — результат ядерных (и термоядерных, мы далее не будем выделять их отдельно) реакций. Их, неуловимых, очень много. По подсчетам физиков-теоретиков, на каждый нуклон (то есть протон или нейтрон) во Вселенной приходится около 10 9 нейтрино. Тем не менее, мы совершенно его не замечаем: частицы проходят сквозь нас.
Как ученые ищут нейтрино?
Современные детекторы регистрируют не сами нейтрино — это пока невозможно. Объектом регистрации оказываются результаты взаимодействия частицы с веществом, заполняющим детектор. Его выбирают так, чтобы с ним реагировали нейтрино определенных, интересующих разработчиков, энергий. Поскольку энергия нейтрино зависит от механизма их образования, можно считать, что детектор рассчитан на частицы определенного происхождения.
Как только стало понятно, что нейтрино хоть и сложно, но все же можно зарегистрировать, ученые начали пытаться уловить нейтрино внеземного происхождения. Самый очевидный их источник — Солнце. В нем постоянно происходят ядерные реакции, и можно подсчитать, что через каждый квадратный сантиметр земной поверхности проходит около 90 млрд солнечных нейтрино в секунду.
На тот момент самым эффективным методом ловли солнечных нейтрино был радиохимический метод. Суть его такова: солнечное нейтрино прилетает на Землю, взаимодействует с ядром; получается, скажем, ядро 37Ar и электрон (именно такая реакция была использована в эксперименте Рэймонда Дэйвиса, за который ему впоследствии дали Нобелевскую премию).
После этого, подсчитав количество атомов аргона, можно сказать, сколько нейтрино за время экспозиции взаимодействовало в объеме детектора. На практике, разумеется, все не так просто. Надо понимать, что требуется считать единичные атомы аргона в мишени весом в сотни тонн. Соотношение масс примерно такое же, как между массой муравья и массой Земли. Обнаружилось, что похищено ⅔ солнечных нейтрино (измеренный поток оказался в три раза меньше предсказанного).
Общей особенностью всех современных нейтринных телескопов являются меры, направленные на экранирование аппаратуры от всех посторонних частиц. Нейтрино, хотя их в природе очень много, засекаются детекторами очень редко. Любой посторонний шум от космических или земных частиц наверняка их заглушит.
Поэтому стандартное размещение нейтринной обсерватории — в шахте или, в некоторых случаях, под водой, чтобы вышележащая толща блокировала ненужное излучение. Эта толща тоже тщательно подбирается — горные породы, например, должны быть как можно менее радиоактивными. Граниты нам не подойдут, глины тоже. Хорошее место для детектора — шахта в толще чистого известняка.
Лучшее направление для работы нейтринной обсерватории — прием частиц, пришедших снизу, сквозь нашу планету. Для нейтрино она прозрачна, для всего остального — нет.
Современные детекторы определяют нейтринное событие по «разрушительному эффекту». Когда неуловимая частица все-таки взаимодействует с веществом детектора, она вызывает разрушение первоначального атомного ядра с образованием каких-то иных частиц. Их-то затем и обнаруживают в детекторе.
Чтобы вызвать такую реакцию, нейтрино должно иметь собственную энергию не ниже определенного, нужного для данного детектора, уровня. Поэтому современная техника всегда имеет ограничение снизу — регистрирует нейтрино, имеющие энергию выше определенного уровня. В таком порядке мы их и рассмотрим.
Зачем мы вообще изучаем нейтрино?
Нейтрино рассказывают нам чрезвычайно много о том, как Вселенная создается и удерживается от распада. Нет другого способа ответить на многие вопросы.
Натаниэль Боуден, ученый из Ливерморской Национальной лаборатории имени Лоуренса
Эксперты сравнили поиск этих частиц с работой археологов, восстанавливающих доисторические артефакты с целью понять, какой жизнь была тогда. Лучшее понимание нейтрино может раскрыть тайны других элементов астрономии и физики: от темной материи до расширения Вселенной.
Эксперимент COHERENT Окриджской национальной лаборатории состоял из пяти детекторов частиц, предназначенных для непосредственного наблюдения высокоспецифического взаимодействия между нейтрино и ядрами атомов. В прошлом году эти ученые опубликовали исследование в Science о взаимодействии между двумя нейтрино, которое было выдвинуто в качестве гипотезы десятилетиями ранее, но никогда прежде не наблюдались.
Это не просто еще одна частица. Это попытка найти, причем сравнительно простым и относительно дешевым методом, — если сравнивать с Большим адронным коллайдером, например, — новую физику. Новая физика — это и понимание того, что такое темная материя: возможно, она окажется теми самыми стерильными нейтрино. И, что возможно, выход на новые технологии. Нельзя исключать, что новые нейтрино окажутся представителями неизвестного класса частиц, которые еще и взаимодействуют между собой каким-то иным способом. Если мы нападем на след этого нового взаимодействия, то не исключено, что мы научимся его использовать на практике: подобно тому, как открытие ядерного взаимодействия привело к появлению ядерных технологий.
Григорий Рубцов, заместитель директора Института ядерных исследований.
Изучение испускаемых Землей нейтрино может помочь нам хотя бы понять, сколько в земном веществе радиоактивных элементов и где они в основном находятся. По части последнего существуют разные версии, начиная от того, что уран с торием — атрибут нижней части земной коры, и кончая тем, что источники радиации в ходе формирования планеты «утонули» к ее центру, и там существует нечто вроде ядерного реактора, причем периодически действующего.
Накопившиеся продукты распада, когда их становится достаточно много, останавливают цепную реакцию. Потом в раскаленной среде они потихоньку диффундируют наверх (они легче), освобождая место для новых порций делящегося материала, после чего процесс запускается снова. Если это так, то подобная цикличность могла бы помочь в объяснении перемен магнитной полярности Земли и, надо думать, во многом другом.
Интересен также вопрос о доле ядерных реакций в общем тепловыделении Земли. Напомним, что земные недра суммарно выдают порядка 47 ТВт тепла в год, но ученые до сих пор смутно представляют себе, какая часть этой энергии приходится на радиогенное тепло, а какая — на остаточное тепло, выделившееся когда-то при гравитационной дифференциации земного вещества.
Чем это интересно для обычного человека?
Технологии, которые разрабатываются для создания современных экспериментов по физике нейтрино, широко используются в промышленности уже сейчас, так что любое вложение в эту сферу окупается. Сейчас в мире ставятся несколько экспериментов, масштаб которых сравним с масштабом Большого адронного коллайдера.
Эти эксперименты направлены исключительно на исследование свойств нейтрино. В каком из них удастся открыть новую страницу в физике, неизвестно, но открыта она будет совершенно точно.
Как мы продвинулись в изучении нейтрино?
Накануне стало известно, что Японские ученые из Университета Цукубы и Токийского университета разработали космологическую модель, которая точно отражает роль нейтрино в эволюции Вселенной.
В результате выяснилось, что в областях, где много нейтрино, обычно присутствуют массивные скопления галактик. Еще один важный вывод: нейтрино подавляет кластеризацию темной материи и галактик, а также изменяет температуру в зависимости от собственной массы.
Также стало известно, что Borexino, огромный подземный детектор частиц в Италии, уловил невиданный ранее тип нейтрино, исходящий от Солнца. Эти нейтрино подтверждают гипотезу 90-летней давности и дополняют наше представление о циклах синтеза Солнца и других звезд. В 1930-х годах было предсказано, что Солнце должно также производить нейтрино другого типа посредством реакций с участием углерода, азота и кислорода — так называемые нейтрино CNO. И лишь почти век спустя детектор Borexino впервые обнаружил эти частицы.
Реакция CNO выделяет лишь крошечную часть от общего количества солнечной энергии, но у более массивных звезд она считается основной движущей силой термоядерного синтеза. Экспериментальное обнаружение нейтрино CNO означает, что ученые наконец получили связь между последними частями головоломки и могут расшифровать весь цикл солнечного термоядерного синтеза.
Подтверждение того, что CNO осуществляется в процессе термоядерной активности нашей звезды, где подобные реакции занимают не более 1%, укрепляет нашу уверенность в том, что мы точно понимаем, как работают звезды.
Франк Калаприс, главный исследователь Borexinо
Детекторы нейтрино предназначены для отслеживания тех редких случаев, когда эти «призрачные частицы» случайно сталкиваются с другими атомами. Обычно в таких устройствах используются огромные объемы детекторной жидкости или газа, которые испускают вспышку света при «ударе» нейтрино. Подобные эксперименты обычно проводятся внутри камеры глубоко под землей, вдали от помех и воздействия других космических лучей.
Команда потратила годы, регулируя температуру инструмента, чтобы замедлить движение жидкости внутри детектора, и сосредоточилась на сигналах, исходящих из центральной области контейнера. В феврале 2020 года команда наконец-то уловила искомый сигнал и потратила почти год на его расшифровку и на то, чтобы удостовериться в отсутствии ошибок.
Эти данные могут не только улучшить наше понимание цикла слияния звезд, но и помочь ученым выяснить, насколько «металлическими» являются Солнце и другие звезды.