на рисунке прямые и параллельны чему равен угол
На рисунке Прямые A и B параллельны Найдите величину угла 2 если угол 1 равен 135 градусов
Завдання N° 2 «Перевірте себе» в тестовий формі
9) Оскільки точка М- середина відрізка, то АМ=МС
Р abc= AB+BC+AC=AB+BC+AM+MC=(AB+AM)+(BC+MC)=2(AB+AM)
16=2 (AB+AM)
AB+AM=8(см)
P abc=AB+BM+AM=BM+(AB+AM)
12=BM+8
BM=12-8=4(см).
11) Серединному перпендикуляру не належать усі точки Х, для яких ХМ=ХВ.
один из углов 45, значит второй тоже 45, а значит этот треугольник равнобедренный(т.к. углы при основании равны.)
Значит боковые стороны у него равны, а то есть катеты.
катет можно обозначить за x.
значит второй тоже x.
По теореме пифагора(квадрат гипотенузы равен сумме квадратов катетов) составляем уравнение
x=3 x=-3(не удов. усл. зад.)
катеты будут равны 3 см.
S треугольника= половина основания на высоту, т. е. 1/2 катет на катет, в нашем случае
2)На гипотенузе при высоте каждый угол равен 90′ Так как треугольник прямоугольный, можно сказать, что, если разделить его прямой угол на две части, одна из которых будет равна 55, то вторая будет равна 35 градусам. У нас получилось два маленьких прямоугольных треугольника в одном большом. Сумма углов любого треугольника равна 180 градусов, следовательно, третий угол в маленьком нижнем треугольнике на картинке будет равен 180-(55+90)=35 градусов. Острые углы — это все углы меньше 90 градусов.
3) Доказательство: Из теоремы о сумме углов треугольника следует, что в этих треугольниках два других острых угла также равны, поэтому они равны по второму признаку равенства треугольников, т. е. по гипотенузе и двум прилежащим к ней углам.
если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.
Углы при параллельных прямых и секущей. Вертикальные, смежные, односторонние, соответственные, накрест лежащие углы
Углы и — вертикальные. Очевидно, вертикальные углы равны, то есть
Соответственные углы равны, то есть
Накрест лежащие углы равны, то есть
Чтобы применять все эти факты в решении задач ЕГЭ, надо научиться видеть их на чертеже. Например, глядя на параллелограмм или трапецию, можно увидеть пару параллельных прямых и секущую, а также односторонние углы. Проведя диагональ параллелограмма, видим накрест лежащие углы. Это — один из шагов, из которых и состоит решение.
Ты нашел то, что искал? Поделись с друзьями!
Напомним, что биссектриса угла — это луч, выходящий из вершины угла и делящий угол пополам.
Периметр параллелограмма — это сумма всех его сторон, то есть
Мы знаем, что равнобедренной (или равнобокой) называется трапеция, у которой боковые стороны равны. Следовательно, равны углы при верхнем основании, а также углы при нижнем основании.
Углы и — односторонние при параллельных прямых и секущей, следовательно,
Параллельность прямых
Определение параллельности прямых
Начнем с главного — определимся, какие прямые параллельны согласно евклидовой геометрии. Мы недаром упомянули Евклида, ведь именно в его трудах, написанных за 300 лет до н. э., до нас дошли первые упоминания о параллельности.
Параллельными называются прямые в одной плоскости, не имеющие точек пересечения, даже если их продолжать бесконечно долго. Обозначаются они следующим образом: a II b.
Казалось бы, здесь все просто, но со времен Евклида над определением параллельных прямых и признаками параллельности прямых бились лучшие умы. Особый интерес вызывал 5-й постулат древнегреческого математика: через точку, которая не относится к прямой, в той же плоскости можно провести только одну прямую, параллельную первой. В XIX веке российский математик Н. Лобачевский смог опровергнуть постулат и указать на условия, при которых возможно провести как минимум 2 параллельные прямые через одну точку.
Впрочем, поскольку школьная программа ограничена евклидовой геометрией, вышеуказанное утверждение мы принимаем как аксиому.
На плоскости через любую точку, не принадлежащую некой прямой, можно провести единственную прямую, которая была бы ей параллельна.
Свойства и признаки параллельных прямых
Есть ряд признаков, по которым можно определить, что одна прямая параллельна другой. К счастью, свойства и признаки параллельности прямых тесно связаны, поэтому не придется запоминать много информации.
Начнем со свойств. Для этого проведем третью прямую, пересекающую параллельные прямые — она будет называться секущей. В результате у нас образуется 8 углов.
Если секущая проходит через две параллельные прямые, то:
∠4 + ∠6 = 180°; ∠3 + ∠5 = 180°.
∠1 = ∠5, ∠3 = ∠7, ∠4 = ∠8, ∠2 = ∠6.
Вышеуказанные свойства являются одновременно признаками, по которым мы можем сделать вывод о параллельности прямых. Причем достаточно установить и доказать лишь один признак — остальные будут к нему прилагаться.
А сейчас посмотрим, как все это помогает решать задачи и практиковаться в определении параллельности двух прямых.
Задача 1
Прямые MN и KP пересекают две другие прямые, образуя несколько углов. Известно, что ∠1 = 73°; ∠3 = 92°; ∠2 = 73°. Требуется найти величину ∠4.
Решение
Поскольку ∠1 и ∠2 являются соответственными, их равенство говорит о том, что MN II KP. Следовательно, ∠3 = ∠MPK = 92°.
Согласно другому свойству параллельных прямых ∠4 + ∠MPK = 180°.
Задача 2
Две параллельные прямые а и b удалены друг от друга на расстояние 27 см. Секущая к этим прямым образует с одной из них угол в 150°. Требуется найти величину отрезка секущей, расположенного между а и b.
Решение
Поскольку а II b, значит ∠MKD + ∠KDN = 180°.
Теперь рассмотрим треугольник KDM. Мы знаем, что отрезок DM представляет собой расстояние между прямыми а и b, а значит, DM ┴ b и наш треугольник является прямоугольным.
Поскольку катет, противолежащий углу в 30°, равен ½ гипотенузы, DM = 1/2DK.
Геометрия. 7 класс
Определение
Выберите верное продолжение определения.
Две прямые на плоскости называются параллельными, если они
имеют одну общую точку
имеют две общих точки
Свойства углов
На рисунке ∠1 = 100°. Заполните на основании рисунка пропуски в тексте.
Углы ∠1 + ∠2 = ° по свойству углов, ∠1 = ∠4 (по свойству углов). Значит, ∠2 = °, ∠3 = °, ∠4 = °.
Выберите признак
Соедините линиями каждый признак параллельных прямых и соответствующий ему чертёж.
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Если при пересечении двух прямых секущей сумма односторонних углов равна 180°, то прямые параллельны.
Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
Виды углов
Подставьте названия углов к соответствующим изображениям.
Параллельные прямые
Отметьте, на каких рисунках представлены пары параллельных прямых.
Параллельны или перпендикулярны
Выберите правильный ответ из выпадающего списка.
На плоскости, если a ║ b, c┴a, то:
Взаимное расположение прямых
Перетащите верный ответ.
Если a || b, b || c, то прямая а с.
Докажите
Докажите, что прямые параллельны. Выделите цветом утверждения, соответствующие рисунку.
Три прямые
Посмотрите на рисунок. Подчеркните верное утверждение.
Параллельны ли прямые?
Можно ли утверждать, что на рисунке есть параллельные прямые? Выберите правильные ответы возле рисунков.
Докажите признак
Восстановите последовательность этапов доказательства признака параллельности прямых: если при пересечении двух прямых секущей сумма односторонних углов равна 180°, то прямые параллельны.
∠1 = ∠3 = 180° – ∠2, это накрест лежащие углы
∠3 + ∠2 = 180° – по свойству смежных углов, откуда ∠3 = 180° – ∠2
∠1 +∠2 = 180° по условию, откуда ∠1 = 180° – ∠2
следовательно, a║b по теореме 1.
Докажите
Найдите правильную последовательность доказательства параллельности прямых.
Подчеркните верный ответ.
Выделите цветом верный ответ
Установите взаимное расположение прямой AB и биссектрисы CD угла BCК.
Прямые AB и CD параллельны / не параллельны
Четырехугольник
Введите с клавиатуры недостающие элементы текста.
В четырёхугольнике ABCD все стороны равны. Укажите, из равенства каких углов можно сделать вывод о параллельности его сторон.
Геометрия. 10 класс
Конспект урока
Геометрия, 10 класс
Урок №5. Взаимное расположение прямых в пространстве
Перечень вопросов, рассматриваемых в теме
Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.
Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости.
Два отрезка называются параллельными, если они лежат на паралельных прямых.
Открытый электронный ресурс:
Теоретический материал для самостоятельного изучения
Мы уже знаем, что прямы в пространстве могут располагаться параллельно или пересекаться. Существует еще один вид- скрещивающиеся прямые. С ним мы мимолетно познакомились на предыдущем уроке. А сегодня нам предстоит разобраться с этой темой более подробно.
Определение. Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости. (рис. 1)
Рисунок 1 – скрещивающиеся прямые
На прошлом уроке в качестве наглядного примера нами был приведен куб.
Сегодня предлагаем вам обратить внимание на окружающую вас обстановку и найти в ней скрещивающиеся прямые.
Примеры скрещивающихся прямых вокруг нас:
Одна дорога проходит по эстакаде, а другая под эстакадой
Горизонтальные линии крыши и вертикальные линии стен
Разберем и докажем теорему, которая выражает признак скрещивающихся прямых.
Теорема. Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся (не лежат в одной плоскости).
Доказательство.
Рассмотрим прямую AB лежащую в плоскости и прямую CD, которая пересекает плоскoсть в точке D, не лежащей на прямой AB (рис. 2).
Рисунок 2 – скрещивающиеся прямые АВ и СD
Итак, возможны три случая расположения прямых в пространстве:
Разберем и докажем еще одну теорему о скрещивающихся прямых.
Теорема. Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна.
Доказательство
Рассмотрим скрещивающиеся прямые AB и CD.(рис. 3)
1. Через точку D можно провести прямую DE параллельную AB.
2. Через пересекающиеся прямые CD и DE можно провести плоскость α
3. Так как прямая АB не лежит в этой плоскости и параллельна прямой DE, то она параллельна плоскости.
4. Эта плоскость единственная, так как любая другая плоскость, проходящая через CD, будет пересекаться с DE и AB, которая ей параллельна.
Теорема доказана.
Рисунок 3 – прямые АВ, СD, DЕ
Любая прямая, например ОО1, рассекает плоскость на две полуплоскости. Если лучи ОА и О1А1 параллельны и лежат в одной полуплоскости, то они называются сонаправленными.
Лучи О1А1 и ОА не являются сонаправленными. Они параллельны, но не лежат в одной полуплоскости. (рис. 4)
Рисунок 4 – сонаправленные лучи
Теорема.Если стороны двух углов соответственно сонаправленны, то такие углы равны. (рис. 5)
Доказательство:
при доказательстве ограничимся случаем, когда углы лежат в разных плоскостях.
Отметим на сторонах угла O произвольные точки A и B.
На соответствующих сторонах угла O1 отложим отрезки OA1 и O₁B₁ равные соответственно ОA и OB.
2. В плоскости рассмотрим четырехугольник OAA1O1.
Так как противолежащие стороны OA и O1A1 этого четырехугольника равны и параллельны по условию, то этот четырехугольник– параллелограмм и, следовательно, равны и параллельны стороны AA1 и OO1.
3. В плоскости, аналогично можно доказать, что OBB1O1 параллелограмм, поэтому равны и параллельны стороны ВВ1 и OO1.
4. Если две отрезка AA1 и BB1 равны параллельны третьему отрезку OO1, значит, они равны и параллельны, т. е. АА1||BB1 и AA1 = BB1.
По определению четырехугольник АВВ1А1 – параллелограмм и из этого получаем АВ=А1В1.
5.Из выше построенного и доказанного АВ=А1В1, ОA =O1A1 и OB =O1B1 следует, что треугольники AOB и A1 O1 B1. равны по трем сторонам, и поэтому О= О1.
Рисунок 5 – равные углы с сонаправленными сторонами