на подготовительном этапе энергетического обмена энергия что делает

На подготовительном этапе энергетического обмена энергия что делает

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

Видео YouTube

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

СТАДИИ ЭНЕРГЕТИЧЕСКОГО ОБМЕНА

Энергетический обмен (катаболизм, диссимиляция) — это процессы расщепления ве­ ществ с высвобождением энергии. Высвобожденная энергия преобразуется в энергию АТФ. Наиболее важными процессами энергетического обмена являются дыхание и брожение.

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

Энер­ге­ти­че­ский обмен – это со­во­куп­ность хи­ми­че­ских ре­ак­ций по­сте­пен­но­го рас­па­да ор­га­ни­че­ских со­еди­не­ний, со­про­вож­да­ю­щих­ся вы­сво­бож­де­ни­ем энер­гии, часть ко­то­рой рас­хо­ду­ет­ся на син­тез АТФ. Син­те­зи­ро­ван­ная АТФ ста­но­вит­ся уни­вер­саль­ным ис­точ­ни­ком энер­гии для жиз­не­де­я­тель­но­сти ор­га­низ­мов. Она об­ра­зу­ет­ся в ре­зуль­та­те ре­ак­ции фос­фо­ри­ли­ро­ва­ния – при­со­еди­не­ния остат­ков фос­фор­ной кис­ло­ты к мо­ле­ку­ле АДФ. На эту ре­ак­цию рас­хо­ду­ет­ся энер­гия, ко­то­рая затем на­кап­ли­ва­ет­ся в мак­ро­эр­ги­че­ских свя­зях мо­ле­ку­лы АТФ, при рас­па­де мо­ле­ку­лы АТФ или при ее гид­ро­ли­зе до АДФ клет­ка по­лу­ча­ет около 40 кДж энер­гии.

АТФ – по­сто­ян­ный ис­точ­ник энер­гии для клет­ки, она мо­биль­но может до­став­лять хи­ми­че­скую энер­гию в любую часть клет­ки. Когда клет­ке необ­хо­ди­ма энер­гия – до­ста­точ­но гид­ро­ли­зо­вать мо­ле­ку­лу АТФ. Энер­гия вы­де­ля­ет­ся в ре­зуль­та­те ре­ак­ции дис­си­ми­ля­ции (рас­щеп­ле­ния ор­га­ни­че­ских ве­ществ), в за­ви­си­мо­сти от спе­ци­фи­ки ор­га­низ­ма и усло­вий его оби­та­ния энер­ге­ти­че­ский обмен про­хо­дит в два или три этапа. Боль­шин­ство живых ор­га­низ­мов от­но­сят­ся к аэро­бам, ис­поль­зу­ю­щим для об­ме­на ве­ществ кис­ло­род, ко­то­рый по­сту­па­ет из окру­жа­ю­щей среды. Для аэро­бов энер­ге­ти­че­ский обмен про­хо­дит в три этапа:

В ор­га­низ­мах, ко­то­рые оби­та­ют в бес­кис­ло­род­ной среде и не нуж­да­ют­ся в кис­ло­ро­де для энер­ге­ти­че­ско­го об­ме­на – анаэ­ро­бах и аэро­бах, при недо­стат­ке кис­ло­ро­да про­хо­дят энер­ге­ти­че­ский обмен в два этапа:

Ко­ли­че­ство энер­гии, ко­то­рое вы­де­ля­ет­ся при двух­этап­ном ва­ри­ан­те на­мно­го мень­ше, чем в трех­этап­ном.

ЭТАПЫ ЭНЕРГЕТИЧЕСКОГО ОБМЕНА

Под­го­то­ви­тель­ный этап – во время него круп­ные пи­ще­вые по­ли­мер­ные мо­ле­ку­лы рас­па­да­ют­ся на более мел­кие фраг­мен­ты. В же­лу­доч­но-ки­шеч­ном трак­те мно­го­кле­точ­ных ор­га­низ­мов он осу­ществ­ля­ет­ся пи­ще­ва­ри­тель­ны­ми фер­мен­та­ми, у од­но­кле­точ­ных – фер­мен­та­ми ли­зо­сом. По­ли­са­ха­ри­ды рас­па­да­ют­ся на ди- и мо­но­са­ха­ри­ды, белки – до ами­но­кис­лот, жиры – до гли­це­ри­на и жир­ных кис­лот. В ходе этих пре­вра­ще­ний энер­гии вы­де­ля­ет­ся мало, она рас­се­и­ва­ет­ся в виде тепла, и АТФ не об­ра­зу­ет­ся. Об­ра­зу­ю­щи­е­ся в ходе под­го­то­ви­тель­но­го этапа со­еди­не­ния-мо­но­ме­ры могут участ­во­вать в ре­ак­ци­ях пла­сти­че­ско­го об­ме­на (в даль­ней­шем из них син­те­зи­ру­ют­ся ве­ще­ства, необ­хо­ди­мые для клет­ки) или под­вер­гать­ся даль­ней­ше­му рас­щеп­ле­нию с целью по­лу­че­ния энер­гии.

Боль­шин­ство кле­ток в первую оче­редь ис­поль­зу­ют уг­ле­во­ды, жиры оста­ют­ся в пер­вом ре­зер­ве и ис­поль­зу­ют­ся по окон­ча­ния за­па­са уг­ле­во­дов. Хотя есть и ис­клю­че­ния: в клет­ках ске­лет­ных мышц при на­ли­чии жир­ных кис­лот и глю­ко­зы пред­по­чте­ние от­да­ет­ся жир­ным кис­ло­там. Белки рас­хо­ду­ют­ся в по­след­нюю оче­редь, когда запас уг­ле­во­дов и жиров будет ис­чер­пан – при дли­тель­ном го­ло­да­нии.

Бес­кис­ло­род­ный этап (гли­ко­лиз) – про­ис­хо­дит в ци­то­плаз­ме кле­ток. Глав­ным ис­точ­ни­ком энер­гии в клет­ке яв­ля­ет­ся глю­ко­за. Ее бес­кис­ло­род­ное рас­щеп­ле­ние на­зы­ва­ют анаэ­роб­ным гли­ко­ли­зом. Он со­сто­ит из ряда по­сле­до­ва­тель­ных ре­ак­ций по пре­вра­ще­нию глю­ко­зы в лак­тат. Его при­сут­ствие в мыш­цах хо­ро­шо из­вест­но устав­шим спортс­ме­нам. Этот этап за­клю­ча­ет­ся в фер­мен­та­тив­ном рас­щеп­ле­нии ор­га­ни­че­ских ве­ществ, по­лу­чен­ных в ходе пер­во­го этапа. Так как глю­ко­за яв­ля­ет­ся наи­бо­лее до­ступ­ным суб­стра­том для клет­ки как про­дукт рас­щеп­ле­ния по­ли­са­ха­ри­дов, то вто­рой этап можно рас­смот­реть на при­ме­ре ее бес­кис­ло­род­но­го рас­щеп­ле­ния – гли­ко­ли­за (Рис. 1).

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

Рис. 1. Бес­кис­ло­род­ный этап

Гли­ко­лиз – мно­го­сту­пен­ча­тый про­цесс бес­кис­ло­род­но­го рас­щеп­ле­ния мо­ле­ку­лы глю­ко­зы, со­дер­жа­щей шесть ато­мов уг­ле­ро­да, до двух мо­ле­кул пи­ро­ви­но­град­ной кис­ло­ты (пи­ру­ват). Ре­ак­ция гли­ко­ли­за ка­та­ли­зи­ру­ет­ся мно­ги­ми фер­мен­та­ми и про­те­ка­ет в ци­то­плаз­ме клет­ки. В ходе гли­ко­ли­за при рас­щеп­ле­нии од­но­го моля глю­ко­зы вы­де­ля­ет­ся около 200 кДж энер­гии, 60 % ее рас­се­и­ва­ет­ся в виде тепла, 40 % – для син­те­зи­ро­ва­ния двух мо­ле­кул АТФ из двух мо­ле­кул АДФ. При на­ли­чии кис­ло­ро­да в среде пи­ро­ви­но­град­ная кис­ло­та из ци­то­плаз­мы пе­ре­хо­дит в ми­то­хон­дрии и участ­ву­ет в тре­тьем этапе энер­ге­ти­че­ско­го об­ме­на. Если кис­ло­ро­да в клет­ке нет, то пи­ро­ви­но­град­ная кис­ло­та пре­об­ра­зу­ет­ся в жи­вот­ных клет­ках или пре­вра­ща­ет­ся в мо­лоч­ную кис­ло­ту.

В мик­ро­ор­га­низ­мах, ко­то­рые су­ще­ству­ют без до­сту­па кис­ло­ро­да – по­лу­ча­ют энер­гию в про­цес­се бро­же­ния, на­чаль­ный этап ана­ло­ги­чен гли­ко­ли­зу: рас­пад глю­ко­зы до двух мо­ле­кул пи­ро­ви­но­град­ной кис­ло­ты, и далее она за­ви­сит от фер­мен­тов, ко­то­рые на­хо­дят­ся в клет­ке – пи­ро­ви­но­град­ная кис­ло­та может пре­об­ра­зо­вы­вать­ся в спирт, ук­сус­ную кис­ло­ту, про­пи­о­но­вую и мо­лоч­ную кис­ло­ту. В от­ли­чие от того, что про­ис­хо­дит в жи­вот­ных тка­нях, у мик­ро­ор­га­низ­мов этот про­цесс носит на­зва­ние мо­лоч­но­кис­ло­го бро­же­ния. Все про­дук­ты бро­же­ния ши­ро­ко ис­поль­зу­ют­ся в прак­ти­че­ской де­я­тель­но­сти че­ло­ве­ка: это вино, квас, пиво, спирт, кис­ло­мо­лоч­ные про­дук­ты. При бро­же­нии, так же как и при гли­ко­ли­зе, вы­де­ля­ет­ся всего две мо­ле­ку­лы АТФ.

Кис­ло­род­ный этап стал воз­мо­жен после на­коп­ле­ния в ат­мо­сфе­ре до­ста­точ­но­го ко­ли­че­ства мо­ле­ку­ляр­но­го кис­ло­ро­да, он про­ис­хо­дит в ми­то­хон­дри­ях кле­ток. Он очень сло­жен по срав­не­нию с гли­ко­ли­зом, это про­цесс мно­го­ста­дий­ный и идет при уча­стии боль­шо­го ко­ли­че­ства фер­мен­тов. В ре­зуль­та­те тре­тье­го этапа энер­ге­ти­че­ско­го об­ме­на из двух мо­ле­кул пи­ро­ви­но­град­ной кис­ло­ты фор­ми­ру­ет­ся уг­ле­кис­лый газ, вода и 36 мо­ле­кул АТФ (Рис. 2).

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

Две мо­ле­ку­лы АТФ за­па­са­ют­ся в ходе бес­кис­ло­род­но­го рас­щеп­ле­ния мо­ле­ку­ла­ми глю­ко­зы, по­это­му сум­мар­ный энер­ге­ти­че­ский обмен в клет­ке в слу­чае рас­па­да глю­ко­зы можно пред­ста­вить как:

С 6 Н 12 О 6 + 6О 2 + 38АДФ + 38Н 3 РО 4 = 6СО 2 + 44Н 2 О + 38АТФ

В ре­зуль­та­те окис­ле­ния одной мо­ле­ку­лы глю­ко­зы ше­стью мо­ле­ку­ла­ми кис­ло­ро­да об­ра­зу­ет­ся шесть мо­ле­кул уг­ле­кис­ло­го газа и вы­де­ля­ет­ся трид­цать во­семь мо­ле­кул АТФ.

Мы видим, что в трех­этап­ном ва­ри­ан­те энер­ге­ти­че­ско­го об­ме­на вы­де­ля­ет­ся го­раз­до боль­ше энер­гии, чем в двух­этап­ном ва­ри­ан­те – 38 мо­ле­кул АТФ про­тив 2.

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

В отсутствие кислорода или при его недостатке про­ исходит брожение. Брожение является эволюционно бо­ лее ранним способом получения энергии, чем дыхание, однако оно энергетически менее выгодно, поскольку ко­ нечными продуктами брожения являются органические вещества, богатые энергией. Существует несколько видов брожения, названия которых определяются конечными продуктами: молочнокислое, спиртовое, уксуснокислое и др. Так, в скелетных мышцах в отсутствие кислорода протекает молочнокислое брожение, в ходе которого пировиноградная кислота восстанавли­ вается до молочной кислоты. При этом восстановленные ранее коферменты НАДН расходу­ ются на восстановление пирувата:

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

Источник

Лекция № 11. Энергетический обмен

Энергетический обмен

Энергетический обмен (катаболизм, диссимиляция) — совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии. Энергия, освобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме АТФ и других высокоэнергетических соединений. АТФ — универсальный источник энергообеспечения клетки. Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования — присоединения неорганического фосфата к АДФ.

У аэробных организмов (живущих в кислородной среде) выделяют три этапа энергетического обмена: подготовительный, бескислородное окисление и кислородное окисление; у анаэробных организмов (живущих в бескислородной среде) и аэробных при недостатке кислорода — два этапа: подготовительный, бескислородное окисление.

Подготовительный этап

Заключается в ферментативном расщеплении сложных органических веществ до простых: белковые молекулы — до аминокислот, жиры — до глицерина и карбоновых кислот, углеводы — до глюкозы, нуклеиновые кислоты — до нуклеотидов. Распад высокомолекулярных органических соединений осуществляется или ферментами желудочно-кишечного тракта или ферментами лизосом. Вся высвобождающаяся при этом энергия рассеивается в виде тепла. Образовавшиеся небольшие органические молекулы могут быть использованы в качестве «строительного материала» или могут подвергаться дальнейшему расщеплению.

Бескислородное окисление, или гликолиз

Этот этап заключается в дальнейшем расщеплении органических веществ, образовавшихся во время подготовительного этапа, происходит в цитоплазме клетки и в присутствии кислорода не нуждается. Главным источником энергии в клетке является глюкоза. Процесс бескислородного неполного расщепления глюкозы — гликолиз.

Потеря электронов называется окислением, приобретение — восстановлением, при этом донор электронов окисляется, акцептор восстанавливается.

Следует отметить, что биологическое окисление в клетках может происходить как с участием кислорода:

так и без его участия, за счет переноса атомов водорода от одного вещества к другому. Например, вещество «А» окисляется за счет вещества «В»:

или за счет переноса электронов, например, двухвалентное железо окисляется до трехвалентного:

Гликолиз — сложный многоступенчатый процесс, включающий в себя десять реакций. Во время этого процесса происходит дегидрирование глюкозы, акцептором водорода служит кофермент НАД + (никотинамидадениндинуклеотид). Глюкоза в результате цепочки ферментативных реакций превращается в две молекулы пировиноградной кислоты (ПВК), при этом суммарно образуются 2 молекулы АТФ и восстановленная форма переносчика водорода НАД·Н2:

Дальнейшая судьба ПВК зависит от присутствия кислорода в клетке. Если кислорода нет, у дрожжей и растений происходит спиртовое брожение, при котором сначала происходит образование уксусного альдегида, а затем этилового спирта:

У животных и некоторых бактерий при недостатке кислорода происходит молочнокислое брожение с образованием молочной кислоты:

В результате гликолиза одной молекулы глюкозы высвобождается 200 кДж, из которых 120 кДж рассеивается в виде тепла, а 80% запасается в связях АТФ.

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

Кислородное окисление, или дыхание

Заключается в полном расщеплении пировиноградной кислоты, происходит в митохондриях и при обязательном присутствии кислорода.

Пировиноградная кислота транспортируется в митохондрии (строение и функции митохондрий — лекция №7). Здесь происходит дегидрирование (отщепление водорода) и декарбоксилирование (отщепление углекислого газа) ПВК с образованием двухуглеродной ацетильной группы, которая вступает в цикл реакций, получивших название реакций цикла Кребса. Идет дальнейшее окисление, связанное с дегидрированием и декарбоксилированием. В результате на каждую разрушенную молекулу ПВК из митохондрии удаляется три молекулы СО2; образуется пять пар атомов водорода, связанных с переносчиками (4НАД·Н2, ФАД·Н2), а также одна молекула АТФ.

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

Суммарная реакция гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа выглядит следующим образом:

Две молекулы АТФ образуются в результате гликолиза, две — в цикле Кребса; две пары атомов водорода (2НАДЧН2) образовались в результате гликолиза, десять пар — в цикле Кребса.

Последним этапом является окисление пар атомов водорода с участием кислорода до воды с одновременным фосфорилированием АДФ до АТФ. Водород передается трем большим ферментным комплексам (флавопротеины, коферменты Q, цитохромы) дыхательной цепи, расположенным во внутренней мембране митохондрий. У водорода отбираются электроны, которые в матриксе митохондрий в конечном итоге соединяются с кислородом:

Купить проверочные работы
и тесты по биологии

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

Протоны закачиваются в межмембранное пространство митохондрий, в «протонный резервуар». Внутренняя мембрана непроницаема для ионов водорода, с одной стороны она заряжается отрицательно (за счет О2 — ), с другой — положительно (за счет Н + ). Когда разность потенциалов на внутренней мембране достигает 200 мВ, протоны проходят через канал фермента АТФ-синтетазы, образуется АТФ, а цитохромоксидаза катализирует восстановление кислорода до воды. Так в результате окисления двенадцати пар атомов водорода образуется 34 молекулы АТФ.

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

1 — наружная мембрана; 2 — межмембранное пространство, протонный резервуар;
3 — цитохромы; 4 — АТФ-синтетаза.

При перфорации внутренних митохондриальных мембран окисление НАД·Н2 продолжается, но АТФ-синтетаза не работает и образования АТФ в дыхательной цепи не происходит, энергия рассеивается в форме тепла (клетки «бурого жира» млекопитающих).

Суммарная реакция расщепления глюкозы до углекислого газа и воды выглядит следующим образом:

где Qт — тепловая энергия.

Перейти к лекции №10 «Понятие об обмене веществ. Биосинтез белков»

Перейти к лекции №12 «Фотосинтез. Хемосинтез»

Смотреть оглавление (лекции №1-25)

Источник

Энергетический обмен

Обмен веществ

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

Энергетический обмен

Возможно три этапа диссимиляции: подготовительный, анаэробный и аэробный. Среда обитания определяет количество этапов диссимиляции. Их может быть три, если организм обитает в кислородной среде, и два, если речь идет об организме, обитающем в бескислородной среде (к примеру, в кишечнике).

Подготовительный этап осуществляется ферментами в ЖКТ. В результате действия ферментов сложные вещества превращаются в более простые: полимеры распадаются на мономеры. Это сопровождается разрывом химических связей и выделением энергии, большая часть которой рассеивается в виде тепла.

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

Этот этап является последним для организмов-анаэробов, обитающих в условиях, где кислород отсутствует. На этапе гликолиза происходит расщепление молекулы глюкозы: образуется 2 молекулы АТФ и 2 молекулы пировиноградной кислоты (ПВК). Происходит данный этап в цитоплазме клеток.

Таким образом, суммарно с одной молекулы глюкозы можно получить 38 АТФ (гликолиз + кислородный этап).

Кислородный этап протекает на кристах митохондрий (складках, выпячиваниях внутренней мембраны), где наибольшая концентрация окислительных ферментов. Главную роль в этом процессе играет так называемый цикл Кребса, который подробно изучает биохимия.

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

Пластический обмен

АТФ является универсальным источником энергии в клетке: энергия макроэргических связей АТФ используется для реакций пластического обмена (ассимиляции), протекающих с затратой энергии: синтеза белка на рибосоме (трансляции), удвоению ДНК (репликации) и т.д.

В результате пластического обмена в нашем организме происходит синтез белков, жиров и углеводов.

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Урок Бесплатно Энергетический обмен

Ведение

Метаболизм состоит из двух взаимно противоположных, но взаимосвязанных процессов пластического и энергетического обмена.

Энергетический обмен необходим организму для образования энергии, которая, в свою очередь, будет израсходована на важные биологические процессы, происходящие в клетках, тканях, органах, в том числе и на пластический обмен.

Все наши движения, мыслительные и физиологические процессы (пищеварение, кровообращение, выделение), любое проявление жизнедеятельности требуют затрат энергии.

Энергетический обмен также называют катаболизм или диссимиляцией. Это достаточно длительный процесс, который происходит вплоть до того момента, пока все питательные вещества, поступившие в организм, не расщепятся до углекислого газа, воды или других простых соединений, которые организм уже не сможет использовать.

Этот процесс аналогичен горению, при котором выделяется вода, углекислый газ и огромное количество энергии.

Катаболизм- это прежде всего многоступенчатый процесс, он не нуждается в высоких температурах, а выделившаяся энергия по большей части не переходит в тепловую, чтобы безвозвратно рассеяться, а запасается для дальнейших нужд в виде молекул АТФ.

Все это делает этот процесс невероятно эффективным и уникальным!

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

Первый этап энергетического обмена (подготовительный)

Энергетический обмен— это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ.

Каким же образом энергия реакции расщепления используется клеткой?

Ученые обнаружили, что любая деятельность клетки всегда точно совпадает во времени с распадом молекул АТФ.

К примеру, при синтезе белков, углеводов, жиров в клетке идет активный распад АТФ.

В результате опытов было обнаружено, что любая работа мышц сопровождается активным расщеплением АТФ в их клетках.

Ученые сделали вывод, что именно АТФ является непосредственным источником энергии, необходимой для сокращения мышц и для синтеза сложных соединений.

Известно, что в среднем содержание АТФ в клетках составляет от 0,05% до 0,5% ее массы, то есть запас молекул АТФ в организме ограничен, и после распада АТФ должно произойти его восстановление.

Многоуровневый процесс энергетического обмена- это последовательные реакции восстановления молекул АТФ, которые происходят при участии ферментов.

Это можно сравнить с аккумулятором для телефона- когда его заряд садится, то устройство необходимо вновь зарядить.

Если в клетке постоянно измерять содержание АТФ, то его количество существенно не изменяется, но количество углеводов, белков, жиров будет уменьшаться. Это объясняется тем, что реакции расщепления углеводов, белков, жиров и других веществ обеспечивают быстрое и полное восстановление израсходованной АТФ.

В каждой клетке нашего организма в течение суток АТФ примерно 10 тысяч раз распадается и вновь заново образуется.

Таким образом, АТФ- это единый и универсальный источник энергии для функциональной деятельности клетки.

Следует отметить, что возможна передача энергии из одних частей клетки в другие.

Синтез АТФ может происходить в одном месте и в одно время, а использоваться может в другом месте и в другое время.

Синтез АТФ в основном происходит в митохондриях, образовавшаяся здесь АТФ по каналам эндоплазматической сети направляется в те места клетки, где возникает потребность в энергии.

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

Это одно из проявлений высочайшей организованности и упорядоченности всех химических реакций, протекающих в клетке.

Растения могут преобразовывать энергию солнечных лучей в АТФ на первом этапе фотосинтеза; хемосинтезирующие бактерии способны запасать энергию в форме АТФ, получаемую при реакциях окисления различных неорганических соединений.

Следует отметить, что фотосинтезирующие и хемосинтезирующие организмы также способны получать энергию благодаря окислению органических веществ, синтезированных в собственных клетках из неорганических соединений.

У гетеротрофов (животных, грибов) образование АТФ идет в клетках при помощи реакций окисления органических веществ, поступающих вместе с пищей.

В клетках растений:

Крахмал →глюкоза → АТФ

В клетках животных:

гликоген → глюкоза → АТФ

Энергетический обмен делится на три последовательных этапа:

Подготовительный этап

Вся пища, которая поступает в наш организм, подвергается ферментативному расщеплению, при котором:

На этом этапе вся выделившаяся при расщеплении веществ энергия рассеивается в виде тепла.

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

У одноклеточных животных подготовительный этап протекает в клетках, где и происходит расщепление сложных органических веществ на простые вещества под действием ферментов лизосом.

У многоклеточных организмов расщепление веществ начинает происходить в пищеварительном канале, а далее в клетках под действием лизосом.

У меня есть дополнительная информация к этой части урока!

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

В ротовой полости человека фермент α-амилаза расщепляет полисахариды (крахмал, гликоген) до мальтозы (дисахарида).

Фермент мальтаза, которая входит в состав слюны, действует на мальтозу и расщепляет ее до глюкозы.

Если долго пережевывать крахмалистую пищу, то можно почувствовать сладковатый привкус, это означает, что небольшая часть крахмала расщепилась до глюкозы (сладкий вкус возникает при пережевывании хлеба).

В желудке идет начальная стадия расщепления белков, гидролиз, под влиянием фермента пепсина.

В желудке небольшая часть жиров гидролизуется под действием липазы, а их переваривание происходит в тонком кишечнике.

Образовавшиеся небольшие органические молекулы могут быть использованы в качестве «строительного материала» или могут подвергаться дальнейшему расщеплению (гликолизу).

Вывод: на первом этапе энергетического обмена происходит распад сложных органических веществ на простые с выделением энергии, которая вся рассеивается в виде тепла.

Пройти тест и получить оценку можно после входа или регистрации

Второй этап энергетического обмена (гликолиз)

Ключевое место в метаболизме всех типов клеток занимают реакции с участием сахаров, например, глюкозы, потому что процесс расщепления глюкозы идет наиболее быстро и легче, ведь организму необходимо достаточно быстро восстанавливать энергетические затраты.

Аминокислоты и белки использовать для образования энергии слишком не выгодно, так как большая их часть является структурными компонентами клеток. В этом случае организм разрушал бы сам себя.

Жиры могут использоваться для получения энергии, но главным образом после того, как израсходовались запасы углеводов, ведь жиры из-за своей гидрофобности очень медленно окисляются и малоподвижны в клетках. При этом из жиров в отсутствие кислорода АТФ получить нельзя, а из глюкозы можно.

Поэтому организм выбирает наиболее выгодный путь получения энергии в виде молекул АТФ за счет расщепления, в первую очередь, глюкозы.

Второй этап энергетического обмена называют бескислородным, так как процесс расщепления глюкозы и образования молекул АТФ идет без участия кислорода.

Гликолиз идет в цитоплазме клеток без участия кислорода. Он состоит из последовательных реакций, каждая из которых катализируется общим ферментом.

В ходе реакций гликолиза молекула глюкозы С6Н12О6 распадается на две трехуглеродные молекулы пировиноградной кислоты (ПВК)С3Н4О3, при этом суммарно образуются две молекулы АТФ и вода.

Акцептором (лат. accipio- «я принимаю, получаю») водорода в реакции гликолиза служит кофермент НАД+.

НАД+ переносит электроны из одной реакции в другую.

НАД+ является окислителем и забирает электрон от другой молекулы и один водород, восстанавливаясь в НАД H, который далее служит восстановителем и уже отдаёт электроны.

Уравнение реакции гликолиза:

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

У меня есть дополнительная информация к этой части урока!

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

Клетка кроме аккумулятора АТФ использует и другие вещества, например, аккумуляторы водорода.

Существуют приемщики (акцепторы) водорода- ферменты, которые могут брать у одних веществ водород и переносить его к другим веществам.

Таких переносчиков три типа:

Еще существует переносчик остатков карбоновых кислот, который называется КоА (КоэнзимА).

НАДФ (никотинамидадениндинуклеотидфосфат)- отличается от НАД содержанием ещё одного остатка фосфорной кислоты.

НАДФ принимает на себя водород и электроны окисляемого соединения и передаёт их на другие вещества.

В хлоропластах растительных клеток НАДФ восстанавливается при световых реакциях фотосинтеза и затем обеспечивает водородом синтез углеводов при темновых реакциях.

ФАД+ присоединяет к себе сразу два атома водорода и превращается ФАД Н2.

Все эти вещества активно участвуют в процессах образования молекул АТФ

Дальнейшая судьба ПВК может быть различной и зависит от того, какой тип извлечения энергии предпочитают организмы: анаэробный (бескислородный) или аэробный (кислородный).

Например, паразитические черви, живущие в кишечнике организмов хозяев, выбирают бескислородный путь преобразования ПВК, так как они мало подвижны и их клеткам хватает энергии, которая образуется при гликолизе глюкозы.

Эти виды паразитов выбирают именно такой путь преобразования энергии еще и потому, что при распаде глюкозы образуются ядовитые вещества (ацетон, уксусная кислота и этиловый спирт), которые действуют угнетающе на организм хозяина и ослабляют его иммунитет, что, в свою очередь, помогает паразиту существовать в агрессивной для него среде.

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

У меня есть дополнительная информация к этой части урока!

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

Есть такое заболевание (гиполактазия), при котором человек не может усваивать лактозу, которая является основным сахаром, содержащимся в молоке и молочных продуктах.

Если человек употребил пищу с содержанием лактозы, то это может привести к тому, что кишечная палочка (бактерия нашего кишечника) всю поступившую лактозу начинает перерабатывать сама, в результате чего активно размножается и выделяет много ядовитых веществ, которые образовались в ходе гликолиза (распада сахара).

Организм пытается вывести из себя все эти вредные вещества, усиливается работа кишечника, происходит резь и вздутие живота из-за ядовитых веществ и активного размножения бактерий.

Но в целом кишечная палочка помогает человеку расщепить те вещества, которые не способен расщепить он сам (к примеру, клетчатку) и получить витамины группы В

Образовавшаяся в результате гликолиза пировиноградная кислота подвергается дальнейшему преобразованию уже на внутренней мембране митохондрий, то есть переходит на третий этап энергетического обмена.

Вывод: на втором этапе энергетического обмена, гликолизе, из 1 молекулы глюкозы образуется 2 молекулы ПВК и 2 молекулы АТФ.

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

Если в клетку прекратилась подача кислорода, то ПВК подвергается брожению, к примеру, в клетках растений, которые были затоплены во время весенних паводков.

В зависимости от того, какие конечные продукты образуются, выделяют несколько видов брожения.

Рассмотрим основные виды:

1. Спиртовое брожение

Встречается в основном у дрожжей и растений.

Конечными продуктами являются этанол и углекислый газ.

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

При доступе кислорода процесс брожения ослабевает, на смену ему приходит дыхание.

Подавление спиртового брожения кислородом называется эффектом Пастера.

Спиртовое брожение используется в пищевой промышленности: хлебопекарной, виноделии.

При этом типе брожения сначала происходит образование уксусного альдегида, а затем этилового спирта:

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

2. Молочнокислое брожение

Осуществляется с помощью лактобактерий, бифидобактерий, стрептококков.

Из ПВК они образуют молочную кислоту, ацетон, янтарную и уксусную кислоту.

Молочнокислые бактерии широко используются в молочной промышленности для получения молочнокислых продуктов, а также в создании пробиотиков.

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

У меня есть дополнительная информация к этой части урока!

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

Пробиотики- класс микроорганизмов и веществ микробного и иного происхождения, использующихся в терапевтических целях, а также пищевые продукты и биологически активные добавки, содержащие живые микрокультуры.

Пробиотики обеспечивают при систематическом употреблении в пищу благоприятное воздействие на организм человека в результате нормализации состава и (или) повышения биологической активности нормальной микрофлоры кишечника

У животных и человека при недостатке кислорода также может происходить молочнокислое брожение с образованием молочной кислоты.

В мышцах есть запасы углеводов в виде гликогена. При долгой и усиленной работе, кровь не успевает снабдить мышцы достаточным количеством кислорода, в результате чего мышечные клетки вынуждены переходить на бескислородный способ получения АТФ.

При этом образуется молочная кислота, вызывающая боли в мышцах.

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

Квашение- разновидность молочнокислого брожения, в процессе которого образуется молочная кислота, оказывающая на продукты (наряду с добавляемой поваренной солью) консервирующее и размягчающее действие.

Квашение применяется при консервировании овощей и в кожевенном производстве.

У меня есть дополнительная информация к этой части урока!

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

Скелетные мышцы человека неоднородны. Мышца может состоять из нескольких типов волокон в разных пропорциях.

Красные волокна содержат много митохондрий и обладают высокой способностью к аэробному окислению глюкозы и жирных кислот. Они хорошо снабжаются кровью и приспособлены к продолжительной работе.

В белых мышечных волокнах мало митохондрий, но много запасов гликогена, в них с большой скоростью происходит анаэробный (бескислородный) распад гликогена с образованием молочной кислоты.

Мышцы с большой долей белых волокон быстрее переходят от состояния покоя к максимальной активности, сокращаются энергично, но в них быстрее наступает утомление: запасы гликогена в мышечных клетках быстро истощаются, а поступление глюкозы из крови и ее использование происходят медленно.

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

3. Маслянокислое брожение

Масляная кислота, бутанол, ацетон, уксусная и ряд других органических кислот являются продуктами сбраживания углеводов бактериями- сахаролитическими анаэробами.

Благодаря определению наличия тех или иных кислот в клетке можно установить, какие бактерии образовали эти кислоты.

Знание механизмов брожения имеет большое практическое значение не только для живых организмов, но и для человека:

Недостатком процессов брожения является извлечение незначительной доли той энергии, которая заключена в связях органических молекул.

Для бактерий, паразитических видов, живущих в бескислородной среде, энергии, образующейся в результате брожения или гликолиза, достаточно для существования, поэтому они, в отличие от человека, не нуждаются в кислороде.

Также брожение является жизненно важным процессом для хвойных растений. В зимний период устьица хвои закупориваются смолой и газообмен с окружающей средой практически прекращается, в этом случае для получения энергии в клетках активно идет процесс спиртового брожения.

на подготовительном этапе энергетического обмена энергия что делает. Смотреть фото на подготовительном этапе энергетического обмена энергия что делает. Смотреть картинку на подготовительном этапе энергетического обмена энергия что делает. Картинка про на подготовительном этапе энергетического обмена энергия что делает. Фото на подготовительном этапе энергетического обмена энергия что делает

Пройти тест и получить оценку можно после входа или регистрации

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *