на что заменяется непрерывная амплитуда сигнала

Лекция «кодирование звуковой информации»

на что заменяется непрерывная амплитуда сигнала. Смотреть фото на что заменяется непрерывная амплитуда сигнала. Смотреть картинку на что заменяется непрерывная амплитуда сигнала. Картинка про на что заменяется непрерывная амплитуда сигнала. Фото на что заменяется непрерывная амплитуда сигнала

Временная дискретизация звука. Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем он громче для человека, чем больше частота сигнала, тем выше тон. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов (двоичных нулей и единиц). В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки причем для каждого такого участка устанавливается определенная величина амплитуды. Непрерывная зависимость амплитуды сигнала от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность «ступенек». Глубина кодирования. Каждой «ступеньке» присваивается определенное значение уровня громкости звука. Уровни громкости звука можно рассматривать как набор возможных состояний N, для кодирования которых необходимо определенное количество информации I, которое называется глубиной кодирования звука. на что заменяется непрерывная амплитуда сигнала. Смотреть фото на что заменяется непрерывная амплитуда сигнала. Смотреть картинку на что заменяется непрерывная амплитуда сигнала. Картинка про на что заменяется непрерывная амплитуда сигнала. Фото на что заменяется непрерывная амплитуда сигнала

Качество цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т. е. частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее «лесенка» цифрового звукового сигнала повторяет кривую аналогового сигнала. Частота дискретизации звука — это количество измерений громкости звука за одну секунду.

Качество оцифрованного звука.

Источник

Кодирование звуковой информации 🎤 Оцифровка звука

Одной из основных задач информатики является представление данных в виде удобном для хранения и передачи. Эти данные могут быть разного типа – звуковые, текстовые, графические и т.д. В этой статье мы расскажем про кодирование звуковой информации. Из этой статьи Вы узнаете основные принципы и определения. Также после прочтения сможете посчитать объем аудио файла. Читайте!

Основные определения

Для того чтобы разобраться в теме надо знать, что представляет собой звуковая информация (звук).

Звук – это непрерывная аналоговая волна, которая распространяется в окружающей среде. В роли среды может выступать воздух, жидкость, твердое тело, электричество и т.д.

Звук, как непрерывную волну, характеризуют две характеристики – частота и амплитуда.

Представление и кодирование звуковой информации в компьютере

Для представления и кодирования звука используются специальное оборудование и программы. Рассмотрим весь процесс более подробно.

на что заменяется непрерывная амплитуда сигнала. Смотреть фото на что заменяется непрерывная амплитуда сигнала. Смотреть картинку на что заменяется непрерывная амплитуда сигнала. Картинка про на что заменяется непрерывная амплитуда сигнала. Фото на что заменяется непрерывная амплитуда сигнала

Наибольший интерес представляет процесс оцифровки, также называемым аналого-цифровым преобразованием. В результате него аналоговый сигнал заменяется на цифровой.

Основной принцип аналогово-цифрового преобразования заключается в том, что через равные промежутки времени измеряется амплитуда волны. Также этот процесс называется дискретизация.

Дискретизация – это процесс в результате, которого непрерывная функция представляется в виде дискретной последовательности её значений. Схематично дискретизацию можно представить так:

на что заменяется непрерывная амплитуда сигнала. Смотреть фото на что заменяется непрерывная амплитуда сигнала. Смотреть картинку на что заменяется непрерывная амплитуда сигнала. Картинка про на что заменяется непрерывная амплитуда сигнала. Фото на что заменяется непрерывная амплитуда сигнала

Дискретизация характеризуется двумя такими величинами, как:

Первая величина отображает, как часто берутся дискреты и измеряется в Герцах (количество измерений за одну секунду). Частота шага по времени находится по теореме Котельникова.

Количество уровней (ступенек) до которых округляются значения сигнала, зависит от аналого-цифрового преобразователя. На данный момент используются 16, 32 и 64 битные устройства.

Количество бит, затрачиваемое для номеров уровней, называется глубиной кодирования звуковой информации.

Глубина кодирования связано с количеством уровней по формуле:

Где i разрядность АЦП в битах.

Чем чаще берутся дискреты за единицу времени и больше глубина кодирования, тем выше качество звуковых данных на выходе и дороже АЦП.

Расчет объема аудио файла

«Вес» аудио файла зависит от качества оцифровки, чтобы его вычислить, необходимо использовать следующую формулу:

Пример: рассчитать объем аудио файла со следующими характеристиками – моно звучание, частота дискретизации 8 кГц, глубина — 8 бит (телефонная связь) и длительностью 60 секунд.

​ \[V = 60*1*8000*8=3840000 \ бит \] ​

Форматы аудио

Форматов для хранения аудио много, однако, все они делятся на две большие группы в зависимости от того, какой из методов сжатия используется – LOSELESS или LOSSY.

Форматы кодирования использующие алгоритмы LOSSY:

Заключение

Вот Вы и узнали про кодирование звуковой информации в компьютере. Знаете, от чего зависит качество, что такое глубина кодирования, а также про основные форматы для хранения аудио. Можете использовать это сообщение для подготовки краткого конспекта. Также на нашем сайте вы можете почитать другие статьи, касающиеся информатике, например про множества или байты и биты.

Источник

Кодирование звука и видео

на что заменяется непрерывная амплитуда сигнала. Смотреть фото на что заменяется непрерывная амплитуда сигнала. Смотреть картинку на что заменяется непрерывная амплитуда сигнала. Картинка про на что заменяется непрерывная амплитуда сигнала. Фото на что заменяется непрерывная амплитуда сигнала

Тема урока: «Кодирование звука и видео»

Цель урока: сформировать у учащихся знания о кодировании звуковой, видео информации и решения задач по кодированию информации.

· Образовательные: ознакомление учащихся с волновой формой представления звука, основными характеристиками звука, способами кодирования звуковой информации в компьютере, стандартным программным обеспечением звукозаписи, стандартными форматами звуковых файлов;

· Развивающие: развитие логического мышления, умений анализировать представленный материал и обобщать;

· Воспитательные: воспитание самостоятельности, усидчивости, внимательности

Приветствие, проверка отсутствующих, проверка готовности учащихся к уроку.

2. Повторение предыдущего материала

Смотри приложение (кодирование графической информации)

3. Изучение нового материала

Временная дискретизация звука. Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем он громче для человека, чем больше частота сигнала, тем выше тон. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов (двоичных нулей и единиц).

на что заменяется непрерывная амплитуда сигнала. Смотреть фото на что заменяется непрерывная амплитуда сигнала. Смотреть картинку на что заменяется непрерывная амплитуда сигнала. Картинка про на что заменяется непрерывная амплитуда сигнала. Фото на что заменяется непрерывная амплитуда сигналаВ процессе кодирования непрерывного звукового сигнала производится его временная дискретизация. Непрерывная звуковая волне разбивается на отдельные маленькие временные участки (см. рис. 1.2), причем для каждого такого участка устанавливается определенная величина амплитуды. Непрерывная зависимость амплитуды сигнала от времени A

Глубина кодирования. Каждой «ступеньке» присваивается определенное значение уровня громкости звука. Уровни громкости звука можно рассматривать как набор возможных состояний N, для кодирования которых необходимо определенное количество информации I, которое называется глубиной кодирование звука.

Глубина кодирования звука — это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука.

Если известна глубина кодирования, то количество уровней громкости цифрового звука можно рассчитать по формуле (1.1). Пусть глубина кодирования звука составляет 16 битов, тогда количество уровней громкости звука равно:

N = 2J= 2 16 = 65 536.

Частота дискретизации. Качество цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т. е. частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем, точнее «лесенка» цифрового звукового сигнала повторяет кривую аналогового сигнала.

Частота дискретизации звука — это количество измерений громкости звука за одну секунду.

Качество оцифрованного звука. Чем больше глубина и частота дискретизации звука, тем более качественных будет звучание оцифрованного звука. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, будет при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки (режим моно). Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, будет при частоте дискретизации 48 ООО раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим стерео).

Необходимо помнить, что чем выше качество цифрового звук, тем больше информационный объем высококачественного звукового файла. Можно оценить информационный объем цифрового стереозвукового файла длительностью зву­чания 1 секунда при среднем качестве звука (16 битов, 48 ООО измерений в секунду). Для этого глубину кодирования необходимо умножить на количество измерений в 1 секунду и умножить на 2 (стереозвук):

16 бит х 48 ООО х 2 = 1 536 ООО бит = = 192 ООО байт = 187,5 Кбайт.

Звуковые редакторы. Звуковые редакторы позволяют не только записывать и воспроизводить звук, но и редактировать его. Оцифрованный звук представляется в звуковых редакторах в наглядной форме, поэтому операции копирования, перемещения и удаления частей звуковой дорожки можно легко осуществлять с помощью мыши. Кроме того, можно накладывать звуковые дорожки друг на друга (микшировать звуки) и применять различные акустические эффекты (эхо, воспроизведение в обратном направлении и др.).

Глубина кодирования звука

Уровни громкости звука можно рассматривать как набор возможных состояний N, для кодирования которых необходимо определенное количество информации I, которое называется глубиной кодирования звука

N – Количество уровней громкости

I – Глубина кодирования

Видеоинформация формируется в результате организации потокового видео – последовательности «движущихся изображений». Оцифровка видеофрагмента связана с проблемами обеспечения очень больших скорости обмена и объема данных. Проблема повышения скорости обмена решается путем разработки быстродействующих накопителей данных. Для уменьшения объема данных, содержащихся в видеопотоке (до 9 Мб/с), для записи информации в ЭВМ обычно применяют кодирование со сжатием потока данных. Размер файла сжатого дискретного неподвижного изображения зависит от четырех параметров: площади изображения, разрешения, числа битов, необходимых для представления пикселя, и коэффициента сжатия. В видеофильме к этому еще добавляется число образующих его неподвижных изображений. Выбор коэффициента сжатия – компромисс между пропускной способностью системы и качеством восстанавливаемого изображения. Чем выше коэффициент сжатия, тем ниже качество изображения. Поэтому выбор указанных параметров обосновывается технико-экономическим анализом и алгоритмом сжатия.

Существует немало технологий сжатия/восстановления изображений. Наиболее популярная предложена объединенной группой экспертов в области фотографии (Joint Photographic Experts Group, JPEG) и позволяет сократить размеры графического файла в 10–12 раз. Для сжатия видеоинформации применяют технологию стандарта MPEG

(Motion Picture Expert Group). Алгоритм MPEG преобразует изображение η поток сжатых данных, учитывая то, что человек, видящий движущийся объект, сосредоточивает внимание на нем, а неподвижный фон воспринимает в меньшей степени. Это позволяет выделять меняющиеся и «замороженные» фрагменты в кадре: актер движется, а декорация не меняется, что позволяет экономить на размере информации, основную картинку оцифровать один раз, а далее фиксировать и передавать только изменения. Видеоформат MPEG-1, созданный в конце 1980-х гг. и использовавшийся в Video-CD, уступил место более качественному MPEG-2, а новый стандарт MPEG-4, разработанный фирмой Microsoft в 1999 г., и его модификация DivX позволили размещать видеофильм хорошего качества на обычном компакт-диске.

Мультимедиаинформация – сочетание текстовой, звуковой, графической, видеоинформации, представляемой на экране компьютера или мультимедиапроектора. Мультимедиаинформация обладает огромными объемами, поэтому сжимается программами сжатия, а перед воспроизведением восстанавливается, как говорят, «на лету» по мере поступления потока данных. Мультимедийные компьютерные программы позволяют формировать параллельные потоки информации: текстовой, визуальной и звуковой.

4. Закрепление материала. Решение задач

Оценить информационный объем цифрового стереозвукового файла длительность звучания 1 секунда при глубине 16 бит и частоте дискретизации 24 кГц.

на что заменяется непрерывная амплитуда сигнала. Смотреть фото на что заменяется непрерывная амплитуда сигнала. Смотреть картинку на что заменяется непрерывная амплитуда сигнала. Картинка про на что заменяется непрерывная амплитуда сигнала. Фото на что заменяется непрерывная амплитуда сигналаЗадача 2

Определите объем памяти для хранения цифрового аудиофайла, время звучания которого составляет 2 минуты при частоте дискретизации 44,1 кГц и разрядности (глубине звука) 16 бит.

Определите объем памяти для хранения цифрового аудиофайла, время звучания которого составляет 2 минуты при частоте дискретизации 44,1 кГц и разрешении 16 бит.

Одна минута записи цифрового аудиофайла занимает на диске 1,3 Мбайт, разрядность звуковой платы – 8 бит. С какой частотой дискретизации записан звук?

N =16 бит*24000Гц*2(стереозвук!)*1сек=768000 бит = 93,75 Кбайт.

N =16 бит*44,1*1000Гц 2*60сек= 84672000бит = 10Мбайт.

N = 16 бит*44,1*1000Гц 2*60сек*= 84672000бит = 10Мбайт.

частота дискретизации (в Гц)=N/(глубина звука (в бит) * время звучания (в сек) )

T=1,3 * 1024 * 1024 * 8(бит)/(8(бит) * 1 *60( сек))=22719Гц=22КГц

5. Практическая работа

«Создание и редактирование оцифрованного звука»

6. Подведение итогов.

A. В чем состоит принцип двоичного кодирования звука?

B. От каких параметров зависит качество двоичного кодирования звука?

7. Домашнее задание

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Источник

Обработка звука

Под обработкой звука следует понимать различные преобразования звуковой информации с целью изменения каких-то характеристик звучания. К обработке звука относятся способы создания различных звуковых эффектов, фильтрация, а также методы очистки звука от нежелательных шумов, изменения тембра и т.д. Все это огромное множество преобразований сводится, в конечном счете, к следующим основным типам:

1. Амплитудные преобразования. Выполняются над амплитудой сигнала и приводят к ее усилению/ослаблению или изменению по какому-либо закону на определенных участках сигнала.

2. Частотные преобразования. Выполняются над частотными составляющими звука: сигнал представляется в виде спектра частот через определенные промежутки времени, производится обработка необходимых частотных составляющих, например, фильтрация, и обратное «сворачивание» сигнала из спектра в волну.

3. Фазовые преобразования. Сдвиг фазы сигнала тем или иным способом; например, такие преобразования стерео сигнала, позволяют реализовать эффект вращения или «объёмности» звука.

4. Временные преобразования. Реализуются путем наложения, растягивания/сжатия сигналов; позволяют создать, например, эффекты эха или хора, а также повлиять на пространственные характеристики звука.

Аналоговый и дискретный способы представления звука

Информация, в том числе графическая и звуковая, может быть представлена в аналоговой или дискретной форме.

При аналоговом представлении физическая величина принимает бесконечное множество значений, причем ее значения изменяются непрерывно.

При дискретном представлении физическая величина принимает конечное множество значений, причем ее величина изменяется скачкообразно.

на что заменяется непрерывная амплитуда сигнала. Смотреть фото на что заменяется непрерывная амплитуда сигнала. Смотреть картинку на что заменяется непрерывная амплитуда сигнала. Картинка про на что заменяется непрерывная амплитуда сигнала. Фото на что заменяется непрерывная амплитуда сигнала

Примером аналогового хранения звуковой информации является виниловая пластин­ка (звуковая дорожка изменяет свою форму непрерывно), а дискретного — аудиокомпакт-диск (звуковая дорожка которого содержит участки с различной отражающей способностью).

Восприятие звука человеком

Звуковые волны улавливаются слуховым органом и вызывают в нем раздражение, которое передается по нервной системе в головной мозг, создавая ощущение звука.

Колебания барабанной перепонки в свою очередь передаются во внутреннее ухо и раздражают слуховой нерв. Так образом человек воспринимает звук.

В аналоговой форме звук представляет собой волну, которая характеризуется:

Герц (Гц или Hz) — единица измерения частоты колебаний. 1 Гц= 1/с

Человеческое ухо может воспринимать звук с частотой от 20 колебаний в секунду (20 Герц, низкий звук) до 20 000 колебаний в секунду (20 КГц, высокий звук).

на что заменяется непрерывная амплитуда сигнала. Смотреть фото на что заменяется непрерывная амплитуда сигнала. Смотреть картинку на что заменяется непрерывная амплитуда сигнала. Картинка про на что заменяется непрерывная амплитуда сигнала. Фото на что заменяется непрерывная амплитуда сигнала

на что заменяется непрерывная амплитуда сигнала. Смотреть фото на что заменяется непрерывная амплитуда сигнала. Смотреть картинку на что заменяется непрерывная амплитуда сигнала. Картинка про на что заменяется непрерывная амплитуда сигнала. Фото на что заменяется непрерывная амплитуда сигнала

Кодирование звуковой информации

Для того чтобы комп ьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов (двоичных нулей и единиц).

на что заменяется непрерывная амплитуда сигнала. Смотреть фото на что заменяется непрерывная амплитуда сигнала. Смотреть картинку на что заменяется непрерывная амплитуда сигнала. Картинка про на что заменяется непрерывная амплитуда сигнала. Фото на что заменяется непрерывная амплитуда сигнала

Качество кодирования звуковой информации зависит от :

1)частотой дискретизации, т.е. количества измерений уровня сигнала в единицу времени. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее процедура двоичного кодирования.

2)глубиной кодирования, т.е. количества уровней сигнала.

Современные звуковые карты обеспечивают 16-битную глубину кодирования звука. Количество различных уровней сигнала (состояний при данном кодировании) можно рассчитать по формуле: N = 2 i = 2 16 = 65536, где i — глубина звука.

Таким образом, современные звуковые карты могут обеспечить кодирование 65536 уровней сигнала. Каждому значению амплитуды звукового сигнала присваивается 16-битный код.

Форматы звуковых файлов

РСМ. РСМ расшифровывается как pulse code modulation, что и является в переводе как импульсно-кодовая. Файлы именно с таким расширением встречаются довольно редко. Но РСМ является основополагающей для всех звуковых файлов.

RIFF. Resource Interchange File Format. Уникальная система хранения любых структурированных данных.

MOD. Файл хранит в себе короткий образец звука, который потом можно использовать в качестве шаблона для инструмента.

AIF или AIFF. Audio Interchange File Format. Данный формат распространен в системах Apple Macintosh и Silicon Graphics. Заключает в себе сочетание MOD и WAV.

MID. Файл, хранящий в себе сообщения MIDI-системе, установленной на Вашем компьютере или в устройстве.

МР3. Самый скандальный формат за последнее время. Многие для объяснения параметров сжатия, которые в нем применяют, сравнивают его с jpeg для изображений. Там очень много наворотов в вычислениях, чего и не перечислишь, но коэффициент сжатия в 10-12 раз сказали о себе сами. Специалисты говорят о контурности звука как о самом большом недостатке данного формата. Действительно, если сравнивать музыку с изображением, то смысл остался, а мелкие нюансы ушли. Качество МР3 до сих пор вызывает много споров, но для «обычных немузыкальных» людей потери не ощутимы явно.

RA. Real Audio или потоковая передача аудиоданных. Довольно распространенная система передачи звука в реальном времени через Интернет. Скорость передачи порядка 1 Кб в секунду. Полученный звук обладает следующими параметрами: 8 или 16 бит и 8 или 11 кГц.

Источник

Учитель информатики

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

Кодирование звуковой информации

Информатика. 10 класса. Босова Л.Л. Оглавление

§ 16. Кодирование звуковой информации

16.1. Звук и его характеристики

Звук — это распространяющиеся в воздухе, воде или другой среде волны с непрерывно меняющейся амплитудой и частотой (рис. 3.12).

на что заменяется непрерывная амплитуда сигнала. Смотреть фото на что заменяется непрерывная амплитуда сигнала. Смотреть картинку на что заменяется непрерывная амплитуда сигнала. Картинка про на что заменяется непрерывная амплитуда сигнала. Фото на что заменяется непрерывная амплитуда сигнала

Рис. 3.12. Звуковая волна

На практике вместо абсолютной используют относительную силу (уровень) звука, измеряемую в децибелах (дБ). Вот некоторые значения уровня звука:

на что заменяется непрерывная амплитуда сигнала. Смотреть фото на что заменяется непрерывная амплитуда сигнала. Смотреть картинку на что заменяется непрерывная амплитуда сигнала. Картинка про на что заменяется непрерывная амплитуда сигнала. Фото на что заменяется непрерывная амплитуда сигнала

Частота определяется как количество колебаний в секунду и выражается в герцах (Гц). Чем больше частота, тем выше звук, и наоборот. Человек способен слышать звук в широком частотном диапазоне, но важное для жизни значение имеют только звуки от 125 до 8000 Гц.

Например, звуковые волны в диапазоне 500-4000 Гц соответствуют человеческому голосу. Звучание детского голоса, пение птиц, шёпот относятся к высоким частотам. Звук контрабаса, рычание зверей, раскаты грома — к низким.

16.2. Понятие звукозаписи

Звукозапись — это процесс сохранения информации о параметрах звуковых волн.

Способы записи звука разделяются на аналоговые и цифровые. При аналоговой записи на носителе размещается непрерывный «слепок» звуковой волны. Так, на грампластинке пропечатывается непрерывная канавка, изгибы которой повторяют амплитуду и частоту звука.

на что заменяется непрерывная амплитуда сигнала. Смотреть фото на что заменяется непрерывная амплитуда сигнала. Смотреть картинку на что заменяется непрерывная амплитуда сигнала. Картинка про на что заменяется непрерывная амплитуда сигнала. Фото на что заменяется непрерывная амплитуда сигнала

Аналоговый способ записи звука

на что заменяется непрерывная амплитуда сигнала. Смотреть фото на что заменяется непрерывная амплитуда сигнала. Смотреть картинку на что заменяется непрерывная амплитуда сигнала. Картинка про на что заменяется непрерывная амплитуда сигнала. Фото на что заменяется непрерывная амплитуда сигнала

Цифровой способ записи звука

16.3. Оцифровка звука

Чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму. Для этого его подвергают временной дискретизации и квантованию: параметры звукового сигнала измеряются не непрерывно, а через определённые промежутки времени (временная дискретизация); результаты измерений записываются в цифровом виде с ограниченной точностью (квантование).

Вообще говоря, в компьютер приходит не сам звук, а электрический сигнал, снимаемый с какого-либо устройства: например, микрофон преобразует звуковое давление в электрические колебания, которые в дальнейшем и обрабатываются.

Если записывается стереозвук (ведётся двухканальная запись), то оцифровке подвергается не один электрический сигнал, а сразу два и, следовательно, количество сохраняемой цифровой информации удваивается.

Сущность временной дискретизации заключается в том, что аналоговый звуковой сигнал разбивается на отдельные маленькие временные участки и для каждого такого участка устанавливается определённая величина интенсивности звука (рис. 3.13). Другими словами, через какие-то промежутки времени мы измеряем уровень аналогового сигнала. Количество таких измерений за одну секунду называется частотой дискретизации.

Частота дискретизации — это количество измерений громкости звука за одну секунду.

на что заменяется непрерывная амплитуда сигнала. Смотреть фото на что заменяется непрерывная амплитуда сигнала. Смотреть картинку на что заменяется непрерывная амплитуда сигнала. Картинка про на что заменяется непрерывная амплитуда сигнала. Фото на что заменяется непрерывная амплитуда сигнала

Рис. 3.13. Временная дискретизация звукового сигнала (А(t) — амплитуда, t — время)

Частота дискретизации измеряется в герцах (Гц) и килогерцах (кГц). 1 кГц = 1000 Гц. Частота дискретизации, равная 100 Гц, означает, что за одну секунду проводилось 100 измерений громкости звука.

Качество звукозаписи зависит не только от частоты дискретизации, но также и от глубины кодирования звука.

Глубина кодирования звука или разрешение — это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука.

В результате измерений звукового сигнала (см. рис. 3.13) на каждой его «ступеньке» будет получено некоторое значение громкости, при этом все результаты измерений будут лежать в некотором диапазоне.

Пусть под запись одного результата измерения громкости в памяти компьютера отведено n бит. Вы знаете, что это позволяет закодировать ровно 2 n разных результатов измерений. Так, при n = 8 можно закодировать 256 разных результатов измерений громкости звука. Поэтому весь диапазон, в котором могут находиться результаты измерений громкости звука, можно разбить на 256 разных поддиапазонов — уровней громкости звука, каждому из которых присвоить свой уникальный код. После этого каждый имеющийся результат измерений громкости звука можно соотнести с некоторым поддиапазоном, в который он попадает, и кодировать его номером (кодом) соответствующего уровня громкости.

В зависимости от ситуации на практике используются разные значения частоты дискретизации и глубины кодирования (табл. 3.13).

Таблица 3.13

Примеры параметров оцифровки звука

на что заменяется непрерывная амплитуда сигнала. Смотреть фото на что заменяется непрерывная амплитуда сигнала. Смотреть картинку на что заменяется непрерывная амплитуда сигнала. Картинка про на что заменяется непрерывная амплитуда сигнала. Фото на что заменяется непрерывная амплитуда сигнала

Пример. Оценим объём звукового стереоаудиофайла с глубиной кодирования 16 бит и частотой дискретизации 44,1 кГц, который хранит звуковой фрагмент длительностью звучания 15 секунд.

Объём такого звукового фрагмента равен:

2 (канала) • 16 бит • 44 100 Гц • 15 с = 2 646 000 байт ≈ 2 584 Кбайта.

Увеличивая частоту дискретизации и глубину кодирования, можно более точно сохранить и впоследствии восстановить форму звукового сигнала. При этом объём сохраняемых данных будет увеличиваться.

Важно понимать, каких параметров оцифровки достаточно, чтобы сохраняемый звук был достаточно близок к исходному, а содержащий его файл имел минимально возможный объём. В начале 30-х годов прошлого века было установлено, что это возможно, если частота временной дискретизации будет в два раза выше максимальной частоты измеряемого сигнала.

В 1928 году американский учёный Гарри Найквист высказал утверждение, что частота дискретизации должна быть в два или более раза выше максимальной частоты измеряемого сигнала. В 1933 году наш соотечественник В. А. Котельников и независимо от него американец Клод Шеннон в 1949 году сформулировали и доказали теорему, более сильную чем утверждение Найквиста, о том, при каких условиях и как по дискретным значениям можно восстановить форму непрерывного сигнала.

САМОЕ ГЛАВНОЕ

Звук — это распространяющиеся в воздухе, воде или другой среде волны с непрерывно меняющейся амплитудой и частотой.

Чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму. Для этого его подвергают временной дискретизации и квантованию: параметры звукового сигнала измеряются не непрерывно, а через определённые промежутки времени (временная дискретизация); результаты измерений записываются в цифровом виде с ограниченной точностью (квантование).

Таким образом, при оцифровке звука искажение сохраняемого сигнала происходит дважды: во-первых, при дискретизации теряется информация об истинном изменении звука между измерениями, а во-вторых, при квантовании сохраняются не точные, а близкие к ним дискретные значения.

Объём оцифрованного звукового фрагмента в битах находится как произведение частоты дискретизации в Гц, глубины кодирования звука в битах, длительности звучания записи в секундах и количества каналов.

Вопросы и задания

1. Каким образом происходит преобразование непрерывного звукового сигнала в дискретный цифровой код?

2. Как частота дискретизации и глубина кодирования влияют на качество цифрового звука?

3. Производится четырёхканальная (квадро) звукозапись с частотой дискретизации 32 кГц и 32-битным разрешением. Запись длится 4 минуты, её результаты заносятся в файл, сжатие данных не производится. Определите приблизительно размер полученного файла (в мегабайтах). В качестве ответа укажите ближайшее к размеру файла целое число, кратное 10.

4. Музыкальный фрагмент был записан в формате моно, оцифрован и сохранён в виде файла без использования сжатия данных. Размер полученного файла — 49 Мбайт. Затем тот же музыкальный фрагмент был записан повторно в формате стерео (двухканальная запись) и оцифрован с разрешением в 4 раза выше и частотой дискретизации в 3,5 раза меньше, чем в первый раз. Сжатие данных не производилось. Укажите в мегабайтах размер файла, полученного при повторной записи.

5. Музыкальный фрагмент был оцифрован и записан в виде файла без использования сжатия данных. Получившийся файл был передан в город А по каналу связи за 32 секунды. Затем тот же музыкальный фрагмент был оцифрован повторно с разрешением в 3 раза выше и частотой дискретизации в 3 раза выше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б. Пропускная способность канала связи с городом Б в 2 раза выше, чем канала связи с городом А. Сколько секунд длилась передача файла в город Б?

6. Музыкальный фрагмент был оцифрован и записан в виде файла без использования сжатия данных. Получившийся файл был передан в город А по каналу связи за 96 секунд. Затем тот же музыкальный фрагмент был оцифрован повторно с разрешением в 4 раза выше и частотой дискретизации в 3 раза ниже, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б за 16 секунд. Во сколько раз пропускная способность канала связи с городом Б больше пропускной способности канала связи с городом А?

7. В сети Интернет найдите информацию о записи музыкальных произведений в формате MIDI. Почему запись звука в этом формате считают аналогичной векторному методу кодирования графических изображений?

Дополнительные материалы к главе смотрите в авторской мастерской.

Оглавление
§ 15. Кодирование графической информации

§ 16. Кодирование звуковой информации

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *