на что влияет технологический процесс процессора
Современные техпроцессы — грандиозный обман: разбираемся в маркетинговых тонкостях процессоров
Мы уже привыкли, что помимо ядер и частот многие производители указывают и даже хвастаются техпроцессом, по которому был произведен чип. Более того, эта величина считается лучше, если она меньше — редкость для «железа». Но что это такое, техпроцесс? Как он считается? Застряла ли Intel на самом деле на 14 нанометрах? Давайте разбираться.
Разумеется, без теории нам сегодня не обойтись. Итак, что же такое процессор? Грубо говоря, это скопление миллионов и миллиардов транзисторов, конденсаторов и резисторов в определенных комбинациях. Нам интересны только транзисторы — именно благодаря им наши процессоры могут выполнять вычисления.
Каким образом? Транзистор по сути — это переключатель. Если ток через него не течет, то это можно обозвать логическим нулем. Течет — единицей. Бинго, мы получили простейшую двоичную логику. И если у одного транзистора может быть только два состояния, то у двух — уже четыре, а у десяти — больше тысячи. Вот и получается, что современные CPU с миллиардами транзисторов позволяют обсчитывать все что угодно, начиная от физики в играх и заканчивая моделированием черных дыр.
Но что-то мы отвлеклись. Итак, нам нужно создать транзисторы. Много транзисторов. Не вдаваясь глубоко в подробности, получаются они путем фотолитографии: свет определенной длины волны проходит через маску и оставляет на заготовке след, который собственно и является транзистором. На деле там все куда сложнее, но это уже тема для отдельной статьи.
И вот тут мы сталкиваемся с проблемой: разрешающая способность фотолитографического оборудования конечна — но, разумеется, постоянно увеличивается. Поэтому нужно было ввести параметр, который позволял бы сравнивать процессоры, созданные различными производителями на различном оборудовании.
Процесс фотолитографии.
Так и был введен техпроцесс. И нет, он показывает не размер транзистора, как многие думают. По сути он показывает технологический предел оборудования — то есть минимальный «штрих», который лазер через маску можно оставить на заготовке. И в случае с транзисторами он совпадал с самой тонкой их частью — затвором.
Логика тут проста: если у вас есть сверло на 10 мм, вы никак не сможете сделать дырку в 5 мм. А вот в 15 или 20 мм — без проблем. С фотолитографией все аналогично: если разрешающая способность вашего оборудования, допустим, 5 микрометров (5 мкм, 5000 нм), то вы не сможете сделать затвор транзистора меньше этой величины. А сам транзистор при этом, разумеется, будет в разы больше.
Почему такой параметр как техпроцесс важен? Да потому что он по сути показывает общую технологичность процессора: чем меньше техпроцесс, тем больше транзисторов можно поместить на той же площади — а, значит, тем быстрее будет работать процессор. Более того, чем меньше транзистор, тем меньше он требует энергии для работы и тем меньше выделяет тепла.
Разумеется, на заре создания процессоров никаких проблем с уменьшением техпроцесса не было: даже не меняя лазеры, которые изначально работали на длине волны в 700 нм (красный свет), можно было уменьшать сами маски, что позволило увеличить разрешающую способность оборудования — а, значит, уменьшить затворы транзисторов — более чем в 3 раза, с 10 до 3 мкм, всего за четыре года, с 1971 по 1975-ый.
Что интересно, так как техпроцесс в те годы был больше длины волны видимого света (сотни нанометров), то можно было в микроскоп разглядеть отдельные транзисторы, например, первого коммерческого процессора Intel 4004, который работал на частоте всего 500-740 кГц:
В дальнейшем пришлось перейти на фиолетовые лазеры (400 нанометров), продолжать играться с масками, но в общем и целом никаких проблем не было: к 1985 году была преодолена планка в 1 мкм, а начало нового тысячелетия мы встретили со 130-нм процессорами с частотой выше 1 ГГц, вмещающими в себя сотни миллионов транзисторов, которые в обычный микроскоп уже не разглядишь.
Я не просто так заострил внимание на 130 нанометрах — это был последний техпроцесс, который позволял сравнивать чипы различных компаний между собой и с предшественниками, чтобы оценить энергоэффективность и рост производительности.
Первый звоночек прозвучал в начале нулевых при переходе к якобы 90-нм техпроцессу. Да, это первый условный техпроцесс: 90 нм, которые мы можем встретить в Pentium 4, указывали уже не на разрешение фотолитографического оборудования, а на то, что площадь транзистора уменьшилась вдвое по сравнению с предыдущим 130-нм техпроцессом.
А раз площадь уменьшилась вдвое, то линейные размеры должны снизиться примерно в 1.4 раза. И если вы поделите 130 на 90, то столько и получите. И 90 при делении на 65 даст тоже самое, как и деление 65 на 45. Короче говоря, пошел откровенный «подгон» под закон Мура, который говорит нам о том, что число транзисторов на интегральной схеме удваивается раз в 2 года.
Иными словами, от абсолютно четкого параметра — затвора транзистора, который точно задает «качество» литографического оборудования — в начале нулевых производители перешли к линейным размерам транзисторов, что в общем и целом является достаточно размытым показателем, который слабо связан с затвором транзистора, что исказило саму суть техпроцесса.
В итоге ближе к концу нулевых мы получили грустную картину: вроде и AMD, и Intel производят свои процессоры на схожих техпроцессах в 45 и 40 нм, да вот только Core 2 Duo оказываются гораздо энергоэффективнее Athlon на схожих частотах, что лишний раз доказывает «маркетинговость» техпроцессов уже тогда.
Отказ от понятия «техпроцесс»
Глядя на все это безумие, инженеры, которые любят четкие физические величины, в рамках «Международного плана по развитию полупроводниковых технологий» взяли и вообще отказались от техпроцесса как от технологической переменной. Иными словами, начиная аж 2009 года указанные производителями техпроцессы — чисто маркетинг, нередко без всякой физической подоплеки.
Однако еще пару лет все продолжалось как и раньше — собственно, зачем менять то, что работает? Площади транзисторов все также получалось уменьшать, чтобы соответствовать закону Мура, поэтому производители продолжали делить старые техпроцессы на 1.4 и писать новые значения.
Второй звоночек прозвенел в начале 2010-ых: если 32-нм техпроцесс еще получилось сделать, то вот переход к 22 нм вовремя вызывал уже серьезные проблемы. Решением стал переход из 2D в 3D: если снижение размера затвора ниже
30 нм приводило к тому, что разрушался сам транзистор (он начинал пропускать ток тогда, когда не надо — через такую «узкую» преграду могли туннелировать электроны), то почему бы не сделать путь для электронов длиннее, выставив на их пути кремниевый гребень?
Так и родилась технология FinFET, что дословно переводится как «плавниковый полупроводниковый транзистор». Теперь вместо того, что бежать по прямой, электронам приходилось огибать гребень (зеленый путь на схеме ниже):
При этом, как можно заметить, физические размеры затвора транзистора не изменились, а раз теперь эффект туннелирования преодолен — можно продолжать уменьшать затвор и дальше, что все с радостью и продолжили делать.
Однако проблема в том, что это убивает определение техпроцесса. Насовсем. Все дело в том, что даже если фотолитографическое оборудование может создавать меньшие линейные затворы транзисторов, их все равно делают длиннее за счет трехмерного расположения, дабы не было туннелирования. И за счет 3D сам затвор и собственно транзистор оказываются меньше. То есть теперь техпроцесс совершенно не связан с разрешающей способностью оборудования.
Современные техпроцессы: маркетинг на маркетинге
В итоге такая путаница развязала руки маркетологам. Это наложилось в том числе и на то, что даже с ухищрениями типа FinFET мы с каждым годом все ближе к предельным возможностям кремния, и создавать более компактные транзисторы (и их затворы) становится все сложнее.
Как итог, сейчас техпроцессы компании считают так, как им удобнее. Кто-то продолжает по старинке считать занимаемую площадь (ага, трехмерного транзистора — ощутили достоверность?), кто-то считает техпроцесс по количеству транзисторов (ближе к правде, но все еще из-за трехмерной структуры не то) — короче говоря, я просто оставлю схему ниже:
Хорошо заметно, что 10-нм техпроцесс Intel на самом деле не так и плох, как его малюют: он ощутимо лучше 10-нм техпроцесса TSMC и даже по некоторым параметрам лучше тайваньских 7 нм! Так что Intel даже меньше лезет в маркетинг, чем TSMC.
Временами бывает еще забавнее: ниже показано сравнение затворов транзисторов у 14-нм процессоров Intel и 7-нм решений AMD (это опять TSMC). Хорошо видно, что разница минимальна, 24 против 22 нм. Иными словами, TSMC приукрашивает реальность аж в 3 раза!
Думаете это все? Да как бы не так: Intel планирует перейти от FinFET к HNS, Horizontal NanoSheets, горизонтальным нанолистам. Грубо говоря, это сравнимо с обработкой одним ядром сразу двух логических потоков — теперь в одном транзисторе «гребень» разделится на несколько частей:
Думаю, вы уже поняли, что заикаться про техпроцесс тут не имеет абсолютно никакого смысла. Понятно что производители нарисуют нам и 3 нм, и 2, и может даже меньше — никакой связи с физикой тут не будет и близко.
Итог — не верьте нанометрам
Что в результате? Аж 20 лет назад техпроцессы перестали привязываться к «железу». 10 лет назад техпроцесс вообще перестал быть физической величиной. Так что в будущем, когда на презентациях вам будут вещать о новых инновационных 3-нм процессорах — улыбнитесь и дождитесь тестов, которые точно расставят все точки над i.
Mobcompany.info
Сайт о смартфонах и их производителях
Что такое технологический процесс процессора и на что он влияет
Все современные вычислительные технологии базируются на основе полупроводниковой электронной техники. Для ее производства используются кристаллы кремния – одного из самых распространенных минералов в составе нашей планеты. С момента ухода в прошлое громоздких ламповых систем и с развитием транзисторных технологий этот материал занял важное место в производстве вычислительной техники.
Центральные и графические процессоры, чипы памяти, различные контроллеры – все это производится на основе кремниевых кристаллов. Уже полвека основной принцип не меняется, совершенствуются только технологии создания чипов. Они становятся более тонкими и миниатюрными, энергоэффективными и производительными. Главным параметром, который при этом усовершенствуется, является техпроцесс.
Что такое техпроцесс
Практически все современные чипы состоят из кристаллов кремния, которые обрабатываются методом литографии, с целью формирования отдельных транзисторов. Транзистор – ключевой элемент любой интегральной микросхемы. В зависимости от состояния электрического поля, он может передавать значение, эквивалентное логической единице (пропускает ток) или нулю (выступает изолятором). В чипах памяти с помощью комбинаций нулей и единиц (положений транзистора) записываются данные, а в процессорах – при переключении производятся вычисления.
В 14-нм технологии (по сравнению с 22-нм) сокращено количество барьеров, увеличена их высота, уменьшено расстояние между диэлектрическими ребрами
Технологический процесс – это процедура и порядок изготовления какой-либо продукции. В электронной промышленности, в общепринятом значении, это величина, которая указывает на разрешающую способность оборудования, применяемого при производстве чипов. От нее также напрямую зависит размер функциональных элементов, получаемых после обработки кремния (то есть, транзисторов). Чем чувствительнее и точнее оборудование используется для обработки кристаллов под заготовки процессоров – тем тоньше будет техпроцесс.
Что значит числовая величина техпроцесса
В современном полупроводниковом производстве наиболее распространена фотолитография – вытравливание элементов на кристалле, покрытом диэлектрической пленкой, с помощью воздействия света. Именно разрешающая способность оптического оборудования, излучающего свет для вытравливания, и является техпроцессом в общепринятом толковании этого слова. Это число указывает, насколько тонким может быть элемент на кристалле.
Фотолитография – вытравливание элементов на кристалле
На что влияет техпроцесс
Техпроцесс напрямую сказывается на количестве активных элементов полупроводниковой микросхемы. Чем тоньше техпроцесс – тем больше транзисторов поместится на определенной площади кристалла. В первую очередь это значит увеличение количества продукции из одной заготовки. Во вторую – снижение потребления энергии: чем тоньше транзистор – тем меньше он расходует энергии. Как итог, при равном количестве и структуре размещения транзисторов (а значит, и увеличения производительности) процессор будет меньше расходовать энергию.
Минусом перехода на тонкий техпроцесс является удорожание оборудования. Новые промышленные агрегаты позволяют делать процессоры лучше и дешевле, но сами набирают в цене. Как следствие, лишь крупные корпорации могут вкладывать миллиарды долларов в новое оборудование. Даже такие известные компании, как AMD, Nvidia, Mediatek, Qualcomm или Apple самостоятельно процессоров не делают, доверяя это задание гигантам вроде TSMC.
Что дает уменьшение техпроцесса
При уменьшении технологического процесса производитель получает возможность поднять быстродействие, сохранив прежние размеры чипа. К примеру, переход с 32 нм на 22 нм позволил вдвое увеличить плотность транзисторов. Как следствие, на том же кристалле, что раньше, стало возможным размещение не 4, а уже 8 ядер процессора.
Для пользователей главное преимущество заключается в снижении энергопотребления. Чипы на более тонком техпроцессе требуют меньше энергии, выделяют меньше тепла. Благодаря этому можно упростить систему питания, уменьшить кулер, меньше внимания уделить обдуву компонентов.
Схематический прогноз изменения техпроцесса в будущем
Техпроцесс процессоров на смартфонах
Смартфоны требовательны к аппаратным ресурсам и быстро расходуют заряд аккумулятора. Поэтому, для замедления расхода разряда, разработчики процессоров для мобильных устройств стараются внедрять в производство самые новые техпроцессы. К примеру, некогда популярные двухъядерники MediaTek MT6577 производились по техпроцессу 40 нм, а Qualcomm Snapdragon 200 ранних серий изготавливались по 45-нанометровой технологии.
В 2013-2015 годах основным техпроцессом для чипов, используемых в смартфонах, стал 28 нм. MediaTek (вплоть до Helio X10 включительно), Qualcomm Snapdragon серий S4, 400, а также модели 600, 602, 610, 615, 616 и 617 – это все 28 нм. Он же использовался и при изготовлении Snapdragon 650, 652, 800, 801, 805. «Горячий» Snapdragon 810, что интересно, был выполнен по более тонкому техпроцессу 20 нм, но это ему не сильно помогло.
Apple в своем A7 (iPhone 5S) тоже обходилась 20-нанометровой технологией. В Apple A8 для шестого Айфона применили 20 нм, а в модели A9 (для 6s и SE) уже используется новый 16 нм технологический процесс. В 2013-2014 годах Intel делали свои Atom Z3xxx по 22-нанометровой технологии. С 2015 года в производство запустили чипы с 14 нм.
Следующим шагом в развитии процессоров для смартфонов является повсеместное освоение техпроцессов 14 и 16 нм, а дальше стоит ожидать 10 нм. Первыми экземплярами на нем могут стать Qualcomm Snapdragon 825, 828 и 830.
7 нм техпроцесс в чипах: Померяемся нанометрами? РАЗБОР
Snapdragon 865, Apple A13 bionic, новый Ryzen от AMD. Отовсюду нам кричат про 7-нанометровый техпроцесс в смартфонах и ПК! Чем это отличается от знакомых 10 и 14 нанометров? Как влияет на батарейку, производительность, нагрев? А тут еще и Samsung с Google анонсируют процессоры на 5 нм, кто-то уже вообще говорит о 3 нм.
А где вообще Intel? Только что еле-еле переползли на 10 нм?
Мы решили узнать, что измеряют эти нанометры? И так ли важно ими мериться или это просто маркетинг? И реально ли Intel так безбожно устарел?
Прежде чем перейти к процессорам в наших смартфонах и компьютерах, немного основ как устроен процессор?
Знакомьтесь — это транзистор! Ключевой элемент всех процессоров. Фактически транзистор — это переключатель. Ток течет через него — это 1, ток не течет — это 0. Это и позволяет считать в двоичной системе — основа всех процессоров!
Раньше транзисторами были вакуумные лампочки. Условно — горит или не горит: единица или ноль.
Таких лампочек нужно было очень много, чтобы всё как-то работало. Например, компьютер ENIAC 1946 года, который участвовал в создании водородной бомбы насчитывал 17,5 тысяч вакуумных ламп и весил 27 Тонн, занимая 167 квадратных метров. При этом он жрал 150 кВт электричества.
И тут один из ключевых моментов, на который стоит обратить внимание. Еще раз повторю энергопотребление у этих 17,5 тысяч лампочек составляло 150 кВт.
Но в начале 1960-х случилась революция — изобретение и начало производства полевых транзисторов. Как раз у них исходным полупроводником является кремний — отсюда и всем известная силиконовая, кхм, то есть Кремниевая долина!
И тут понеслось! Размеры транзисторов уменьшились настолько, что они стали потреблять существенно меньше электричества и занимать меньше места. И количество транзисторов в вычислительной технике начало увеличиваться с огромной скоростью! А вместе с ним и мощность вычислительных систем!
В первом промышленном процессоре Intel 4004, который был выпущен в 1971 году было 2250 транзисторов.
А сейчас например в A13 Bionic этих транзисторов 8.5 миллиардов — это больше чем людей на планете! Ну пока…
Но на сколько вообще уменьшились современные транзисторы, насколько они маленькие? Простое сравнение легкое для понимания — например, с человеческим волосом!
На его срезе можно разместить почти 1.5 миллиона современных транзисторов сделанных по 7-нанометровому техпроцессу!
То есть у вас на толщине человеческого волосе можно разместить в 4 раза больше транзисторов, чем было в процессоре Intel 4004!
Почему же надо уменьшать? Тут все более-менее очевидно!
Во-первых, чем меньше транзистор — тем меньше он потребляет энергии. Вы уже это поняли на примере ламповых.
А во-вторых — их больше помещается на кристалле, а значит растёт производительность. Двойная выгода!
И тут мы переходим к понятию техпроцесса или Technology Node — что же это такое?
Если максимально упростить, то значением техпроцесса исторически являлась минимальная длина канала транзистора — как видно на картинке — не стоит его путать с размерами транзистора целиком.
То есть, чем меньше размер техпроцесса — тем лучше — это нам и пытаются донести компании, но так ли всё просто?
И тут важно другое: транзисторы бывают разные и они отличаются не только по размеру, но и по своей структуре.
Классические, планарные или плоские, транзисторы перестали использоваться относительно недавно — в 2012 году. Они уступили место трёхмерным транзисторам, где вытянули канал в третье измерение, уменьшив его толщину и тем самым уменьшив сам транзистор. Такая структура называется FinFET — они и используются сейчас.
Данная технология очень помогла уменьшить размер транзисторов и главное — сильно повысила количество транзисторов на единицу площади, что и является одним из ключевых показателей для производительности!
Но означает ли сегодня понятие техпроцесс тоже самое, что и несколько лет назад?
Во всей индустрии прослеживалась очень важная тенденция — каждый следующий техпроцесс был меньше предыдущего на 30%, что помогало удвоить количество транзисторов при сохранение того же энергопотребления — например 130*0.7=90 нм, 90*0.7=65 нм, далее до 45 нм, 32 нм, и так далее.
И это пока соответствует Закону Мура:
Количество транзисторов, размещаемых на кристалле интегральной схемы, удваивается каждые 24 месяца.
Что же стоит за этой игрой чисел?
Мы уже выяснили, что техпроцесс — это размер затвора транзистора, то есть длина канала, который пропускает или не пропускает через себя ток и этот размер ключевой!
Но оказывается это истинно, только если мы говорим о старых 32 нм — там все точно, хоть линейкой измеряй! И этот параметр был закреплен документально!
Но так было до 2009 года, когда из так называемого “Международного плана по развитию полупроводниковой технологии” было исключено понятие техпроцесса и его обозначения!
Простым языком — цифры указанные в тех процессе сегодня — это просто маркетинговый лейбл!
Производители пошли вразнос и начали называть всё подряд 10, 7 и вообще 5 нанометрами, а кто-то уже говорит и о 3 нанометрах! Можно всё это ставить в кавычки, как простое обозначение поколения процессоров!
Вот вам например структура процессора Apple A12, произведенного на заводе TSMC по 7- нанометровому техпроцессу. Обратите внимание на шкалу масштаба в левом нижнем углу.
Если сравнить масштаб и посчитать, то получается, что ширина канала — 8 нанометров, при том, что официально процесс называется 7-нанометровым.
Теперь давайте сравним 10-нанометровый процесс у Intel и 7-нанометровый у TSMC.
Кстати, знайте, что сегодня TSMC это компания, которая производит процессоры для AMD, а также делает Apple A13 и Snapdragon 865 — поэтому считайте, что мы сравниваем сразу все их чипы.
Обратите внимание на размерность. Сразу видно, что те же 10нм у Intel почти такие же как 7 нанометров у TSMC! Так что выходит Intel не так уж отстали от AMD и других производителей — они просто проиграли маркетинговую битву? Тут тоже все не так однозначно!
Внезапно по некоторым параметрам Intel даже выигрывают у TSMC.
Смотрите на 1 квадратный миллиметр 10нм кристалла Intel помещается примерно на 5 процентов больше транзисторов, чем на 7нм у того же Apple, Qualcomm или AMD.
Но при этом у повышенной плотности есть и минусы — увеличенный нагрев!
Значит получается что кристаллы Intel мощнее, но за счет плотности они больше греются. Таким образом, мы получаем тот самый пресловутый троттлинг.
А процессоры производства TSMC — Apple Qualcomm и AMD выигрывают именно за счет более просторного расположения транзисторов примерно тех же размеров.
Как они это делают — это скорее вопрос внутренней архитектуры, а не циферка, которая стоит в названии тех процесса.
Не думайте, что я забыл про архитектуру N7FF+ — да она еще плотнее чем у Intel, но если говорить о чипах серия AMD Zen 2, Applу A13, Snapdragon 865 — все сделаны на основе TSMC 7FF и она проигрывает в плотности Intel.
Единственный процессор, который уже производится по новой технологии N7FF+ с использованием экстремальной УФ-литографии — это Kirin 990 5G. Тут конечно плотность транзисторов сильно возрастает — аж на 15 процентов!
По идее производители просто идут по немного разному пути и если заглянуть в будущее, то становится понятно по какому: вот вам табличка того как все будет — чипы следующего поколения.
Нас интересует строчка про плотность транзисторов на 1 квадратный миллиметр!
По этим данным Intel более чем на 30 процентов обходит и Samsung, и TSMC в плотности транзисторов — и это при том, что тут мы сравниваем уже 7 нм у одного производителя и 5 у другого.
Откуда такой прирост? Как возможно такое повышение плотности — процы просто будут взрываться или работать только с навороченными система охлаждения?
Не совсем так. Все дело в том, что Intel планирует перейти на транзисторы совершенно другой структуры — под названием HNS — Horizontal Nano Sheets — это и позволит сделать скачок!
Но похожие планы есть и у Samsung — они идут немного в другую сторону к структуре Gate-All-Around FET.
Вот как это выглядит в реальности — не так симпатично, но вы только подумайте о том, какие они маленькие!
В итоге мы поняли, что за маркетинговыми названиями 7 нм и 5 нм скрывается битва архитектур, а в будущем мы сможем выяснить чей же путь был верным.
Что можно сказать абсолютно точно — нас ждёт огромный скачок среди всех чипов как мобильных так и десктопных уже в течение ближайших нескольких лет.
На этой ноте не хочется заканчивать тему процессоров, ведь мы изучили немало информации и документов, в том числе разобрались в процессе производства. Например, вы слышали о таком процессе Экстремальная Ультрафиолетовая Литография? Если на пальцах, это какая-то фантастика — капля олова превращается в плазму после попадания лазера: именно так создаются современные процессоры. Но сами установки может создавать только одна компания в мире и все гиганты от нее зависят.