на что влияет содержание углерода в стали
Лекция №3. Железоуглеродистые сплавы
Влияние углерода, серы и фосфора на качество стали
Определение углерода, серы и фосфора в стали для металлургов, литейщиков и машиностроителей имеет первоочередную важность. Это позволяет получить качественную продукцию и исключить неисправимый брак. Государственные стандарты регламентируют содержание примесей в стали и методы определения их содержания.
Углерод в стали
Углерод — полиморфный неметаллический элемент, который способен растворяться в железе в жидком и твердом состоянии с образованием твердых растворов — феррита и аустенита. Кроме этого, он создает с железом химическое соединение — цементит (Fe3C), и может быть представлен в высокоуглеродистых сталях в виде графита.
В зависимости от содержания углерода стали классифицируются на:
Содержание углерода оказывает влияние на структуру стали, количество и соотношение фаз, поэтому определяет показатели твердости и пластичности металла. При повышении содержания углерода происходит снижение ударной вязкости, и повышается порог хладноломкости. Увеличение концентрации C приводит к изменению и электрических свойств: растет сопротивление и коэрцитивная сила, уменьшается магнитная проницаемость и плотность магнитной индукции.
С ростом углерода происходит ухудшение литейных свойств, обрабатываемость давлением, резанием и свариваемость. Обработка резанием низкоуглеродистых сталей также затрудняется.
Сера в стали
Сера — вредная примесь, основными источниками которой служат передельный чугун и руда, используемые при выплавке стали. Она способна растворяться в жидком железе, а в процессе кристаллизации образует FeS. Сульфид железа образует с железом эвтектику с низкой температурой плавления, которая располагается по границам зерен. При технологическом нагреве до температуры обработки металла давлением она оплавляется, а при деформировании становится причиной надрывов и трещин. Это явление называется красноломкостью, так как сталь при температуре 900-1000℃ становится ярко-красного цвета.
Повышение содержания серы нелинейно влияет на порог хладноломкости: сначала происходит его повышение, а при повышении содержания MnS он понижается. Негативное влияние сера оказывает на свариваемость и коррозионную стойкость.
Фосфор в стали
Фосфор относится к вредным примесям стали, источником которой служат шихтовые материалы, в основном — чугун. Он способен в значительных количествах растворяться в феррите, что приводит к искажению кристаллической решетки. Одновременно с этим происходит увеличение временного сопротивления и предела текучести, уменьшение пластичности и вязкости. Увеличение содержания фосфора становится причиной повышения порога хладноломкости и уменьшения работы развития трещины.
Фосфор в значительной мере подвержен ликвации, что приводит к резкому снижению вязкости в центральной части слитка. В настоящее время технологии глубокой очистки стали от фосфора не существует.
Углеродистые стали являются основными. Их свойства определяются количеством углерода и содержанием примесей, которые взаимодействуют с железом и углеродом.
Влияние углерода на свойства сталей показано на рис. 1.8.
Рис.1.8. Влияние углерода на свойства сталей
С ростом содержания углерода в структуре стали увеличивается количество цементита, при одновременном снижении доли феррита. Изменение соотношения между составляющими приводит к уменьшению пластичности, а также к повышению прочности и твердости. Прочность повышается до содержания углерода около 1%,
а затем она уменьшается, так как образуется грубая сетка цементита вторичного.
Углерод влияет на вязкие свойства. Увеличение содержания углерода повышает порог хладоломкости и снижает ударную вязкость.
Повышаются электросопротивление и коэрцитивная сила, снижаются магнитная проницаемость и плотность магнитной индукции.
Углерод оказывает влияние и на технологические свойства. Повышение содержания углерода ухудшает литейные свойства стали (используются стали с содержанием углерода до 0,4 %), обрабатываемость давлением и резанием, свариваемость. Следует учитывать, что стали с низким содержанием углерода также плохо обрабатываются резанием.
В сталях всегда присутствуют примеси, которые делятся на четыре группы:
1. Постоянные примеси: кремний, марганец, сера, фосфор.
Марганец и кремний вводятся в процессе выплавки стали для раскисления, они являются технологическими примесями.
Содержание марганца не превышает 0,5…0,8%.
Марганец повышает прочность, не снижая пластичности, и резко снижает красноломкость стали, вызванную влиянием серы. Он способствует уменьшению содержания сульфида железа
FeS
, так как образует с серой соединение сульфид марганца
MnS
. Частицы сульфида марганца располагаются в виде отдельных включений, которые деформируются и оказываются вытянутыми вдоль направления прокатки.
Содержание кремния не превышает 0,35…0,4%.
Кремний, дегазируя металл, повышает плотность слитка. Кремний растворяется в феррите и повышает прочность стали, особенно повышается предел текучести, σ0.2. Но наблюдается некоторое снижение пластичности, что снижает способность стали к вытяжке.
Содержание фосфора в стали 0,025…0,045%.
Фосфор, растворяясь в феррите, искажает кристаллическую решетку и увеличивает предел прочности и предел текучести, но снижает пластичность и вязкость. Располагаясь вблизи зерен, увеличивает температуру перехода в хрупкое состояние, вызывает хладоломкость, уменьшает работу распространения трещин, Повышение содержания фосфора на каждую
0,01%
повышает порог хладоломкости на
20…25oС.
Фосфор обладает склонностью к ликвации, поэтому в центре слитка отдельные участки имеют резко пониженную вязкость. Для некоторых сталей возможно увеличение содержания фосфора до
0,10…0,15 %,
для улучшения обрабатываемости резанием.
Присутствие серы ведет к уменьшению пластичности, свариваемости и коррозионной стойкости. Содержание серы в сталях составляет 0,025…0,06 %.
Сера – вредная примесь, попадает в сталь из чугуна. При взаимодействии с железом образует химическое соединение – сульфид серы
FeS
, которое, в свою очередь, образует с железом легкоплавкую эвтектику с температурой плавления
988oС.
При нагреве под прокатку или ковку эвтектика плавится, нарушаются связи между зернами. При деформации в местах расположения эвтектики возникают надрывы и трещины, заготовка разрушается – явление
красноломкости
.
Красноломкость –
повышение хрупкости при высоких температурах.
Сера снижает механические свойства, особенно ударную вязкость и пластичность, а так же предел выносливости. Она ухудшают свариваемость и коррозионную стойкость.
2. Скрытые примеси— газы (азот, кислород, водород) – попадают в сталь при выплавке.
Азот и кислород находятся в стали в виде хрупких неметаллических включений: окислов (FeO, SiO2, Al2O3
) нитридов (
Fe2N
), в виде твердого раствора или в свободном состоянии, располагаясь в дефектах (раковинах, трещинах).
Примеси внедрения (азот N
, кислород
О
) повышают порог хладоломкости и снижают сопротивление хрупкому разрушению. Неметаллические включения (окислы, нитриды), являясь концентраторами напряжений, могут значительно понизить предел выносливости и вязкость.
Очень вредным является растворенный в стали водород, который значительно охрупчивает сталь. Он приводит к образованию в катанных заготовках и поковках флокенов.
Флокены – тонкие трещины овальной или округлой формы, имеющие в изломе вид пятен – хлопьев серебристого цвета.
Металл с флокенами нельзя использовать в промышленности, при сварке образуются холодные трещины в наплавленном и основном металле.
Если водород находится в поверхностном слое, то он удаляется в результате нагрева при 150…180оС
10
—2…10—3 мм рт. ст.
Для удаления скрытых примесей используют вакуумирование.
3. Специальные примеси – специально вводятся в сталь для получения заданных свойств. Примеси называются легирующими элементами, а стали — легированные сталями.
Оптико-эмиссионный спектральный анализ C, S, P.
Оптико-эмиссионные спектрометры — универсальные приборы, которые способны решать широкий круг аналитических задач. В основу их работы лежат принципы атомно-эмиссионного спектрального анализа элементного состава вещества:
Эмиссионные спектральные приборы находят широкое применение в металлургии, что обусловлено следующими преимуществами метода:
Для анализа углерода, серы и фосфора с использованием эмиссионных спектрометров должны быть созданы в приборе определенные условия, а именно: бескислородная атмосфера. В противном случае определить элементы, длина волны которых короче 185 нм, не представляется возможным. В настоящее время удаление кислорода в приборе осуществляется двумя способами:
Каждая из систем декислородизации имеет определенные особенности эксплуатации и обслуживания, поэтому при выборе прибора для анализа углерода, серы и фосфора следует учитывать их преимущества и недостатки. Это позволит подобрать спектрометр, который оптимально соответствует аналитической задаче, требованиям к точности результатов исследований и имеет удовлетворительные экономические показатели.
Оптико-эмиссионные приборы, предусматривающие прокачку инертным газом
В спектральных приборах для декислородизации используют чаще всего аргон. Для удаления кислорода предусматривается одна из следующих систем:
Приборы с открытой системой декислородизации отличаются простотой конструкции и меньшей стоимостью. Однако в этом случае степень очистки находится на низком уровне, а аргон расходуется безвозвратно. Применение подобных спектрометров целесообразно при пониженных требованиях к аналитическим характеристикам, как со стороны потребителя, так и со стороны производителя.
Конструкция приборов с замкнутой системой декислодизации усложняется, так как для обеспечения функциональности необходимы дополнительные компоненты и их обслуживание:
Каждый из этих компонентов прибора требует обслуживания, а расходные материалы — замены, что связано с дополнительными расходами. Кроме этого, в результате непрофессиональных действий обслуживающего персонала возникает риск завоздушить систему при замене фильтра. Ликвидация последствий этого требует не только с дополнительных материальных затрат, но и времени.
Оптико-эмиссионные приборы с системой вакуумирования
Система вакуумирования позволяет получить низкую остаточную концентрацию кислорода, которая во много раз ниже, чем в открытой системе декислородизации, и сопоставима с лучшими результатами, полученными в замкнутых. Следует отметить, что при этом нет необходимости использования инертного газа.
Такая система удаления кислорода применяется в наиболее совершенных спектральных приборах. В них установлен масляный насос, который дополняется специальными ловушками для масла. Кроме этого, предусмотрен клапан, который при аварийном отключении электропитания, не допускает повреждения спектрометра маслом в результате его проникновения в вакуумную магистраль.
Двухступенчатые масляные форвакуумные насосы — наиболее предпочтительное оборудование по сравнению безмасляными мембранными моделями. Они имеют сопоставимую стоимость, но при этом в десятки раз превосходят последние по степени удаления кислорода, а также обладают значительным ресурсом и намного проще в обслуживании.
Универсальные настольные и стационарные спектрометры Искролайн 100/300 — отличные образцы приборов, в которых для удаление кислорода реализована система вакуумирования. Они способны определять более 70 элементов, в число которых входят углерод, сера и фосфор, с пределом детектирования до 0,0001% Приборы позволяют быстро и точно проводить спектральный анализ сталей, и отличаются высоким спектральным разрешением, высокой сходимостью результатов измерений и высоким качеством изготовления.
13) Примеси в сталях. Влияние примесей на свойства сталей.
Св-ва углеродистых сталей определятся количеством углерода и содержанием примесей, которые взаимодействуют с железом и углеродрм. В сыросном содержании углерода в стали увеличивается процентное содержание цементита при снижении доли феррита, это приводит уменьшению пластичности и повышению твердости (прочности). Прочность повышается при процентном содержании около 1%, затем она уменьшается, потому что образуется грубая сетка Ц2. Увеличение содержания углерода снижает ударную вязкость,и повышается порог хладоломкости. Повышение содержания углерода ухудшает литейное свойство стали(до 0.4% сод. углерода), обрабатываемость давлением и резанием, свариваемость.
Влияние примесей:в сталях всегда присутствуют примеси, которые делятся на четыре группы:
постоянные: кремний, марганец, фосфор,сера. Марганец и кремний вводятся в процессе выплавки стали для раскисления, они называются технологическими примесями. Содержание марганца 0.5-0.8%, он повышает прочность не снижая пластичности. Содержание кремния 0.35-0.4%, он повышает плотность слитка, но снижает пластичность. Содержание фосфора 0.025-0.045%, он увеличивает прочность и предел текучести, и увеличивает температуру перехода в хрупкое состояние, увеличивает хладоемкость. Содержание серы 0.025-0.06%, она уменьшает пластичность, свариваемость и коррозионную стойкость(вредная примесь).
Скрытые примеси: газы: азот, кислород, водород подают в стали при выплавке, они находятся в стали в виде крупных неметаллических включений:окисловFeO и тд., и нитридов Fe2N и располагаются в дефектах, раковинах и трещинах(Al2O3, SiO2)
Очень вредным является растворенный в стали водород, он охрупчивает сталь и приводит к образованию в поковках флокены- тонкие трещины овальной или округлой формы в виде пятен серебристого цвета.
Специальные примеси вводятся в сталь для получения заданных свойств, и называются легирующими элементами, а стали – лигированные.
Классификация и маркировка сталей: 1) по химическому составу: углеродистые и легированные. 2) по содержанию углерода: низкоуглеродистые(до 0.25%), среднеуглеродистые (до 0.3-0.6%), высокоуглеродистые (больше 0.8%). 3) по равновесной структуре: доэфтектоидные, эфтектоидные(0.8%), заэфтектоидные. 4) по качеству : в зависимости от содаржания вредных примесей(S,P): обычного качества, качественные, высококачественные(S,P меньше 0.03%). 5) по способу выплавки: мартеновские печи, кислородно-корверторные печи, электропечи(электродуговые). 6) по назначению: конструкционные( изготовление деталей машин и др. деталей); инструментальные; специальные(с особыми свойствами).
Маркировка сталей:( принято буквенно-цифровое обозначение) 1) углеродистые стали обыкновенного качества ГОСТ 380. Ст2кп, БСт3кп, ВСт3пс.Ст- индекс стали; кп,пс,сп- степени раскисленности стали(кп- кипящая, пс- полуспокойная, сп- спокойная).С увеличением номера марки увеличивается прочность, и снижается пластичность группы: А,Б,В- свойства сталей.Качественно углеродистые стали маркируются двухзначным числом указывая среднее содержание углерода. Сталь 08 кп, сталь 10 пс.Инструментальные стали маркируются группой У и число указывающее содержание углерода в прцентах. У8-0,8%; У13-1.3%.
Сталь и всё о стали
Из того факта, что углерод смещает С-образные линии и по сравнению с эвтектоидной сталью делает остальные стали менее устойчивыми при закалке, следует, что углерод соотвественно должен влиять и на изменение критической скорости закалки.
Измерения последней, произведенные рядом авторов, привели к кривой, подтверждающей, что минимальная критическая скорость закалки (порядка около 4007сек., по данным Эссера) наблюдается в сталях, близких к эвтектоидной по содержанию углерода.
Уменьшение содержания углерода ниже 0,4% приводит к резкому повышению критической скорости, и при некотором ничтожном содержании углерода закалка на мартенсит вообще становится практически невозможной.
Что же касается увеличения углерода в заэвтектоидной области, то повышение критической скорости в заэвтектоидных сталях объясняется присутствием в них зародышей цементита, облегчающих распадение аустенита. Следовательно, ход кривой относится к неполной закалке заэвтектоидных сталей, когда в стали имеется нерастворенный избыточный цементит.
При полной же закалке (после достаточной выдержки выше Аст) повышение углерода непрерывно снижает критическую скорость и изменение критической скорости идет согласно пунктирной кривой при 1,4% С критическая скорость закалки достигает порядка 2007сек.
На критические скорости закалки: — низкие температуры нагрева; — высокие температуры нагрева (выше Асст)- Влияние других факторов. Кроме углерода, на критическую скорость закалки оказывают сильное влияние и специальные легирующие примеси, о чем будет сказано ниже (гл. VII).
При одном и том же составе на изменение критической скорости закалки могут влиять и иные факторы, которые так или иначе изменяют число центров кристаллизации или скорость кристаллизации, управляющих процессом распадения переохлажденного аустенита в дисперсную смесь и определяющих его устойчивость. Таким фактором, например, может быть величина зерна аустенита: чем крупнее зерна, тем меньше центров кристаллизации перлита (возникающих на границах зерен, аустенита) и тем труднее будет происходить распадение аустенита.
Следовательно, крупное действительное зерно будет увеличивать стойкость аустенита и тем уменьшать критическую скорость закалки. Крупное наследственное зерно в стали, облегчая получение крупного действительного зерна, должно благоприятствовать уменьшению критической скорости закалки.
В проведенных несколько ранее весьма обстоятельных исследованиях Френча и Клопша, а также Вефера была дана меньшая цифра vKp — 1507сек. Такое расхождение объясняется разной методикой исследования и, главное, крупными размерами образцов у Френча. Общий же ход изменения критической скорости в связи с содержанием углерода у разных авторов аналогичен.
Присутствие включений в аустените, могущих служить центрами кристаллизации, облегчает распадение аустенита, уменьшает его устойчивость и, следовательно, должно повышать критическую скорость закалки.
Особенно сильно в этом отношении действуют карбидные включения, как выше уже было замечено для заэвтектоидных сталей. К числу факторов, повышающих устойчивость аустенита (понижающих критическую скорость закалки), нужно отнести высокую температуру нагрева аустенита перед охлаждением; для эвтектоидной стали, например, минимальная устойчивость переохлажденного аустенита (на перегибе С-образной кривой) увеличивается почти вдвое при повышении температуры нагрева исходного аустенита от 850 до 1100°. Здесь, по-видимому, сказывается существенное влияние того же фактора — увеличения зерна.
Как влияет содержание углерода на свойства сталей
Изменение структуры при добавлении углерода
Показатели прочности и пластичности зависят от структуры и ее изменений при увеличении содержания углерода.
При доле до 0,2% образуется феррит и третичный цементит, дальнейшее увеличение приводит к образованию эвтектоидного феррита и цементита (перлита). Значение показателя перлита постепенно повышается и при углероде 0,8% содержится только перлит. Если содержание более 0,8% появляются иглы вторичного цементита и перлит.
Образование цементита происходит до 2% углерода, при этом снижается прочность из-за хрупкости цементитной сетки по границам перлитных зерен. При превышении этого значения формируется эвтектическая смесь.
Воздействие углерода на качество стали
Такой химический элемент, как углерод, оказывает определяющее воздействие на качество, свойства стали. Это связано с процессом изготовления сплава – после отжига структура включает в себя цементит и феррит. При этом цементит является хрупкой, твердой структурой, а феррит – пластичной, но малопрочной. Чтобы изменить свойства и сделать сплав более прочным, твердым, снизить его вязкость, количество углерода повышается. Изменению подвергаются технологические характеристики. Сталь становится свариваемой, улучшается подверженность резке, обработке при помощи давления. Повышение или понижение уровня С необходимо строго контролировать, чтобы получить металл со строго заданными свойствами:
Углеродистые стали, в отличие от других, обладают высоким уровнем пластичности, они хорошо подвергаются обработке. Для производства используются стандарты ГОСТа 380-71, 1050-74, что зависит от способа производства. По типу сплавов различают стали обыкновенные и качественные. По содержанию элемента – на низко-, средне- и высокоуглеродистые.
Новые свойства и преимущества сплава
Углерод в составе стали дает ей дополнительные преимущества, прежде всего это:
С увеличением доли углерода возрастает твердость, прочность и уменьшается пластичность, следовательно, чем его больше, тем труднее процесс обработки резанием, хуже показатели деформации и сваривания. Исходя из этого выделяют следующие виды стали:
Помимо основных механических свойств, увеличение содержания углерода дает повышение порога хладноломкости.
Как расшифровать маркировку сталей
Марку углеродистой стали и группу ее качества можно определить по типу маркировки. Каждая цифра и буква имеет свое значение и показывает требования к качеству, степень раскисления, наличие легирующих элементов.
Например, для сплава обычного качества:
Углеродистые стали повышенного качества маркируются цифрами (содержание углерода в сотых долях) и буквами (легирующий элемент). Например:
Расшифровка высокоуглеродистых марок имеет букву, указывающую тип материала, его применение и цифру — процент углерода в десятых долях. Инструментальные сплавы имеют обозначение У. Например:
Химический состав более точно можно определить по таблице в справочнике металлурга.
Прокат на торце маркируется цветной полосой:
Для каждого типа стали имеется своя маркировка. Легированные могут содержать до 3 цветных полос.
Маркировка стали для ножа, расшифровка марки стали для ножа, свойства легированной стали для ножа
Применение углеродистой стали
Сферы применения зависят от механических свойств, и, следовательно, от того, сколько углерода в стали. С показателем 0,7-1,3% углеродистую сталь используют для изготовления режущих и ударных инструментов. Маркируют их буквой «У», последующая цифра характеризует долю, например, У13. Чем выше показатель, тем больше влияние углерода на механические свойства стали.
Низкоуглеродистые стали разделяют на подгруппы в зависимости от назначения:
Что дает углевод который содержится в стали
Количество цементита будет увеличиваться, как только рост содержания углерода в стали пойдет вверх. При этом доля феррита будет одновременно снижаться. Если между составляющими будет изменено соотношение, то пластичность уменьшится, а прочность и твердость повысится. Прочность будет повышаться до тех пор, пока содержание углерода будет в 1%, но после этого она обязательно уменьшится, потому что будет образовываться цементитная грубая сетка.
Если говорить простым русским языком, то углерод имеет прямое влияние на свойства вязкости. Если в сплаве увеличить количество углерода, то изделие не будет поддаваться резкой ломкости, а ударная вязкость снизится.
Кроме того, есть и другие процессы, которые может вызвать увеличение состава углерода:
Кроме того, нужно помнить и о том, что углерод может повлиять и на технологические процессы. Кроме всех положительных моментов, описанных выше, литейные свойства стали будут значительно ухудшены как только в составе повысится содержание углерода. Более того, свариваемость будет значительно хуже и резать и обрабатывать давлением такие стали будет значительно труднее. Но, это не значит, что если в стали не будет содержаться углерод, то с ней не будет возникать никаких проблем. Стали, в которых будет маленькое содержание углерода, также будут плохо резаться.
Но, кроме углерода в стали могут содержаться и другие примеси, о которых также нужно обязательно помнить. Делятся такие примеси на три постоянные группы:
1. Стандартные. Сюда относятся кремний, сера, фосфор, марганец. При этом первый и последний считаются примесями технологического типа. Эти примеси вводят в самом процессе выплавки стали, чтобы она раскислилась.
2. Скрытые. Сюда относятся газы такие, как кислород, водород, азот. Они будут попадать в сталь непосредственно уже при выплавке. Благодаря им будет снижено сопротивление хрупкому разрушению.
Влияние других примесей
Как и углерод, иные химические элементы в составе стали влияют на ее механические свойства:
Механические свойства стали полностью зависят от ее состава и наличия тех или иных примесей. Именно эти характеристики необходимо учитывать при применении стали в промышленном производстве. Некоторое негативное влияние содержания элементов можно снизить дополнительными методами улучшения – термическим упрочением поверхности (цементация) или добавлением антикоррозийной защиты, проще говоря – гальваника, покрытие которой увеличивает срок службы изделия.
Виды углеродистой стали по степени раскисления
У углеродистой стали разная степень раскисления. Бывают спокойные, кипящие и полуспокойные сплавы. Названия связаны с содержанием вредных примесей — оксидом железа. Чем меньше кислорода в сплаве, тем стабильнее и долговечнее стали. После разливки сталь выделяет газы и затвердевает.
В спокойных сталях кислород удален почти полностью, поэтому у них однородная структура и равномерное распределение состава. Полуспокойные чаще содержат 0,15-0,3 % углерода. Таким сталям свойственна неравномерная структура из-за частичного раскисления сплава. Больше всего кислорода у кипящих сталей. Такое раскисление приводит к разному химическому составу. В кипящих сталях много примесей: углерода, азота, серы и фосфора.
Сущность процесса улучшения стали
После закалки стали в ней преобладают структуры мартенсита. Высокий отпуск стали заключается в нагреве, как минимум, на 20-40°C ниже точки Ac1 (см. Диаграмму железо-углерод), но не ниже 500°C, выдержке и контролируемом охлаждении детали.
Улучшение сталей на диаграмме железо-углерод
На втором этапе улучшения сталей – процессе высокого отпуска стали – происходит диффузионный распад мартенсита до образования сорбита отпуска (см. Элементы теории термической обработки). Сорбит отпуска имеет однородную и дисперсную структуру.
Хромомарганцевые стали
Совместное легирование сталей хромом (0,9…1,2 %) и марганцем (0,9…1,2 %) позволяет получить достаточно высокую прочность и прокаливаемость (например, 40ХГ), однако они имеют пониженную вязкость, пониженный порог хладноломкости (от 20 0С до минус 60 0С). Введение титана снижает склонность к перегреву, а добавление бора увеличивает прокаливаемость.
Таблица 10 — Механические свойства некоторых легированных улучшаемых сталей
Марка стали | Прокаливается диаметр, мм | sigmaв, МПа | sigma0,2, МПа | d, % | y, % | KCU, МДж/м2 |
30X 40X 40XФА 40ХГТР 30ХГС 40ХН 30ХН3А 40ХН2МА 36Х2Н2МФА 38ХН3МФА | 25-35 25-35 25-35 50-75 50-75 50-75 75-100 75-100 более 100 более100 | 900 1000 900 1000 1100 1000 1000 1100 1200 1200 | 700 800 750 800 850 800 800 950 1100 1100 | 12 10 10 11 10 11 10 12 12 12 | 45 45 50 45 45 45 50 50 50 50 | 0,7 0,6 0,9 0,8 0,4 0,7 0,8 0,8 0,8 0,8 |
Хромоникелемолибденованадиевые стали
Кроме молибдена, добавляют ванадий, который способствует получению мелкозернистой структуры. Стали марок 38ХН3МФ и 36Х2Н2МФА применяют для деталей больших сечений (1000…1500 мм и более). В сердцевине после закалки образуется бейнит, а после отпуска — сорбит. Стали обладают высокой прочностью, пластичностью и вязкостью, низким порогом хладноломкости. Молибден, присутствующий в стали, повышает ее теплостойкость. Эти стали можно использовать при температурах 400…450 0С при изготовлении наиболее ответственных деталей турбин, компрессоров, для которых требуется материал особой прочности в крупных сечениях (поковки валов и цельнокованных роторов турбин, валы высоконапряженных турбовоздуходувных машин, детали редукторов и т.д.).
Классификация сталей
Стали классифицируют по назначению для дальнейшего использования, химическому составу, качеству, структуре.
По назначению стали принято делить на конструкционные, коррозионно стойкие (нержавеющие), инструментальные, жаропрочные, криогенные.