на чем основана генная инженерия

Генная инженерия от A до Z

Приветствую уважаемое сообщество!

Итак, это мой первый пост на хабре 🙂
Посвящен он будет серьезной теме, в которой, волею судеб, я неплохо разбираюсь. А именно, генной инженерии.

Помнится, тут пробегал пост в котором говорилось о геннотехнологической лаборатории “на коленке”. Оказалось, что тема интересна аудитории, поэтому я решил заняться ее развитием с просветительскими целями.

Я буду давать наглядные и понятные обычным людям примеры для описания сложных процессов. Если кто-то посчитает нужным меня поправить – не стесняйтесь. Я буду сознательно упускать многие вещи, но если вам кажется, что без них страдает логика изложения – так же поправляйте.

Итак, начнем. Допустим, мы хотим создать трансгенную новогоднюю елку светящуюся синим светом. Допустим, британские ученые как раз недавно открыли ген синего свечения. Вот и посмотрим на этот процесс по стадиям.

Будем вести эксперимент, как настоящие ученые. Они слышат что открыт новый ген, что же им делать дальше, если хочется создать елку?
Настоящий ученый обычно лезет в ncbi.nih.gov и по нескольким ключевым словам ищет научные публикации на эту тему. Например “синее свечение ген светится”. Типична ситуация, когда по одной из ссылок он действительно находит статью “британских ученых”, которая оказывается статьей группы китайских авторов, ни один из которых не отзывается на e-mail.
С другой стороны, в статье можно выяснить название этого гена. Пусть он будет называться ButiBl1 (названия генов принято давать буквенными обозначениями + индекс, а впереди может идти несколько первых букв названия организма из которого он выделен, их можно отбрасывать). ButiBl1, например, может быть расшифровано как Butiavka marina blue light 1 gene. Но правила здесь не строгие.

По названию гена в базе данных нуклеотидов ищут последовательность гена.Вот что примерно видит ученый на экране.

Кстати, мы можем воспользоваться инструментом BLAST и введя последовательность ДНК, получить, к каким генам она может относиться. Это тоже очень важный рутинный инструмент для генных инженеров.

Итак, мы получили последовательность гена. Очень хорошо, что дальше? Нужно ведь получить сам ген. Для этого вернемся к вопросу о том, что такое ДНК.

ДНК – это длинная молекула (очень длинная), является полимером из четырех вариантов маленьких молекул – азотистых оснований, попросту “букв”.

Я надеюсь, все это помнят, но если нужно освежить память, пожалуйста, в wiki 🙂

Итак, запомните главное:

1. ДНК – это молекула.
2. Так как это молекула, то ее не видно в микроскоп, не подцепить пинцетом и т.д. и т.п.
3. В клетке считаное количество молекул ДНК, причем если их много, то они разнородные и «собрать их пучком» чтобы подцепить пинцетом (пункт 2) тоже не получится.

Как же генные инженеры работают с молекулой ДНК если она одна и с ней невозможно провести никаких прямых манипуляций? Дело в том, что во всех процедурах происходит работа не с одной, а с множеством молекул ДНК, с тысячами и миллионами ее копий.
Тысячи таких одинаковых молекул плавают в водном растворе и этот раствор называется “препаратом ДНК”. Все манипуляции с молекулами проводятся типичными химическими методами.

То есть ученые работают не с одной молекулой, а с огромным их количеством в растворе с применением химических методов.

Как же нам получить ген bl1? Есть два способа. Первый – прямой химический синтез. Однако им не получить достаточно длинные молекулы из-за ошибок синтеза. Поясню, почему.
ДНК – это полимер. Его можно синтезировать наращивая по кирпичику, причем есть четыре кирпича разных цветов. На каждой стадии наращивания эффективность составляет порядка 99%. То есть из ста молекул одна получается неправильной. Теперь представьте, что нам нужно сделать молекулу длиной в 1000 букв? Тогда применяя банальную арифметику окажется, что доля верных молекул составит 0,99^1000=0,00004
Учитывая, что разделить верные и неверные молекулы почти невозможно, наша затея тут потерпит фиаско, и в реальных задачах синтез более 100-150 букв уже представляется малореалистичным.

Остается второй способ.

Мы выбиваем из шефа командировку на побережье Мальдивских островов, где только и водится пресловутая бутявка морская (Butiavka marina).

Ловим ее, толчем в порошок, заливаем последовательно разными химическими гадостями чтобы из всей массы тканей в растворе остались только молекулы ДНК. Конечный итог этого – препарат ДНК бутявки. Так как выделение производится из относительно большого образца, то там не одна молекула ДНК, а много – от каждой клетки по паре штук. Эта ДНК содержит не только ген bl1, но и все остальные бутявочные гены.

Этот этап называется выделением ДНК. Ее можно выделить не только в виде раствора, а переосадить и получить сухой препарат, то есть чистые молекулы ДНК.

Итак, командировка окончена, поэтому мы метнемся обратно в лабораторию где нас поджидает чудная процедура амплификации.

Смотрите, в препарате ДНК бутявки куча всяких разных генов, а не только нужный нам. Мы же можем работать только с однородными препаратами, нам нужно довести содержание молекул ДНК гена bl1 хотя бы процентов до 90.
И тут мы применяем поистине чудесный прием, являющийся краеугольным камнем современной биоинженерии, называемым полимеразной цепной реакцией или ПЦР (polymerase chain reaction, PCR). За открытие этого метода присудили нобелевскую премию, хотя до сих пор ходят споры о приоритете, поэтому фамилий не называю, кому интересно – почитайте.

Принцип полимеразной цепной реакции довольно сложен, объяснение дам очень грубое и только для того чтобы было хоть какое-то представление, за подробным – добро пожаловать по ссылке выше.

Итак, нам нужно размножить (амплифицировать) молекулы ДНК определенного гена. Для этого мы открываем страничку с последовательностью нашего гена и находим его концы. Берем 20-30 букв с конца и столько же с начала и синтезируем короткие молекулы ДНК химическим синтезом (обычно это делают специальные фирмы)

То есть мы имеем две новые пробирки. В одной из них плавает много коротких 30-буквенных последовательности ДНК, гомологичных началу гена, а во второй – то же самое, но для конца гена. Эти новые молекулы называются праймерами.

Теперь мы запускаем реакцию ПЦР, причем умножаться у нас будет участок между двумя праймерами (между начальным и концевым). Реакция ПЦР – это биохимическая циклическая реакция, требующая смены температуры. В свое время ее делали на водяных банях, теперь же используют специальные приборы – амплификаторы (они же ПЦР-машины). Их строение очень простое, там стоят элементы Пельтье, есть место для пробирок и ко всему этому присобачены электронные мозги и управляющая панель.

на чем основана генная инженерия. Смотреть фото на чем основана генная инженерия. Смотреть картинку на чем основана генная инженерия. Картинка про на чем основана генная инженерия. Фото на чем основана генная инженерия

То есть вернулись мы в лабораторию с ДНК бутявки. Заказали два праймера — к началу и к концу гена. Потом взяли чистую пробирку, капнули туда чуть-чуть ДНК, чуть чуть каждого праймера, полимеразу (фермент, который строит ДНК), нуклеотидов для строительства ДНК, и немного солей для правильной работы фермента, поставили в амплификатор на пару часов. В амплификаторе смесь то нагревалась, то остужалась и на выходе мы получили пробирку в которой плавает очень много копий ДНК нужного нам гена.

Однако пробирка прозрачная, как увидеть что там есть какая-то ДНК, да еще нужная?

на чем основана генная инженерия. Смотреть фото на чем основана генная инженерия. Смотреть картинку на чем основана генная инженерия. Картинка про на чем основана генная инженерия. Фото на чем основана генная инженерия

Существует много способов увидеть ДНК, я же опишу классический, называемый гель-электрофорезом.

В лаборатории имеется небольшая ванночка с электродами, называямая форезной камерой.
В эту ванночку заливается расплав электрофорезного геля, который по сути очень похож на мармелад. Но вместо сахара там находятся добавки солей и флуоресцентный краситель – бромистый этидий. Это вещество интересно тем, что встраивается в молекулу ДНК и в этом случае начинает светиться в ультрафиолете.

После того как гель застынет мы наносим в лунку на нем препарат ДНК где предположительно уже должно быть много копий гена bl1 и включаем электрический ток. В другую лунку наносим “маркер веса” – специальный препарат молекул ДНК, состоящий в равных долях из молекул длины 100, 200, 300 и т.д. нуклеотидов.
Молекулы ДНК полярны и движутся в электрическом поле, при этом чем они длиннее, тем сильнее цепляются за структуру геля и тем медленнее в нем движутся. Через некоторое время мы выключаем электричество и несем гель под ультрафиолетовую лампу.
На той дорожке где мы нанесли маркер веса мы видим кучу полосок. Самая дальняя от места нанесения пробы соответствует самой короткой ДНК, самая ближняя – самой длинной.
В соседних лунках ДНК бежит с одинаковой скоростью, поэтому мы сравниваем их расположение на соседних дорожках и можем определить, относительный размер.

Итак, мы обнаружили на дорожке где нанесли пробу одну светящуюся полоску и размер ее судя по соседнему маркеру веса является таким, каким мы ожидали.

на чем основана генная инженерия. Смотреть фото на чем основана генная инженерия. Смотреть картинку на чем основана генная инженерия. Картинка про на чем основана генная инженерия. Фото на чем основана генная инженерия

Мы аккуратнентко вырезаем лезвием из геля этот светящийся кусочек – он содержит много ДНК гена bl1 запутавшейся в геле и с помощью специальных манипуляций высвобождаем из него молекулы.

Можно себя поздравить, мы выделили ген bl1 из бутявки!

Я рассказал только о первой стадии этого сложного и длинного процесса. Продолжать ли дальше? Решать вам 🙂

Источник

Что такое генная инженерия и зачем вмешиваться в природу организмов

на чем основана генная инженерия. Смотреть фото на чем основана генная инженерия. Смотреть картинку на чем основана генная инженерия. Картинка про на чем основана генная инженерия. Фото на чем основана генная инженерия

Содержание:

Генная инженерия — это современное направление биотехнологии, объединяющее знания, приемы и методики из целого блока смежных наук — генетики, биологии, химии, вирусологии и так далее — чтобы получить новые наследственные свойства организмов.

Перестройка генотипов происходит путем внесения изменений в ДНК (макромолекулу, обеспечивающую хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов) и РНК (одну из трех основных макромолекул, содержащихся в клетках всех живых организмов).

Если внести в растение, микроорганизм, организм животного или даже человека новые гены, можно наделить его новой желательной характеристикой, которой до этого он никогда не обладал. С этой целью сегодня генная инженерия используется во многих сферах. Например, на ее основе сформировалась отдельная отрасль фармацевтической промышленности, представляющая собой одну из современных ветвей биотехнологии.

на чем основана генная инженерия. Смотреть фото на чем основана генная инженерия. Смотреть картинку на чем основана генная инженерия. Картинка про на чем основана генная инженерия. Фото на чем основана генная инженерия

История развития

Истоки

Основы классической генетики были заложены в середине XIX века благодаря экспериментам чешского-австрийского биолога Грегора Менделя. Открытые им на примере растений принципы передачи наследственных признаков от родительских организмов к их потомкам в 1865 году, к сожалению, не получили должного внимания у современников, и только в 1900 году Хуго де Фриз и другие европейские ученые независимо друг от друга «переоткрыли» законы наследственности.

Параллельно с этим шел процесс формирования знаний о ДНК. Так, в 1869 году швейцарский биолог Фридрих Мишер открыл факт существования макромолекулы, а в 1910 году американский биолог Томас Хант Морган обнаружил на основе характера наследования мутаций у дрозофил, что гены расположены линейно на хромосомах и образуют группы сцепления. В 1953 году было сделано важнейшее открытие — американец Джон Уотсон и британец Фрэнсис Крик установили молекулярную структуру ДНК.

На подъеме

К концу 1960-х годов генетика активно развивалась, а ее важными объектами стали вирусы и плазмиды. Были разработаны методы выделения высокоочищенных препаратов неповрежденных молекул ДНК, плазмид и вирусов, а в 1970-х годах был открыт ряд ферментов, катализирующих реакции превращения ДНК.

Генная инженерия как отдельное направление исследовательской работы зародилась в США в 1972 году, когда в Стэнфордском университете ученые Пол Берг, Стэнли Норман Коэн, Герберт Бойер и их научная группа внедрили новый ген в бактерию кишечной палочки (E. coli), то есть создали первую рекомбинантную ДНК.

Техника ПЦР была впервые разработана в 1980-х годах американским биохимиком Кэри Маллисом. Будущий лауреат Нобелевской премии по химии (1993 года), обнаружил в специфический фермент — ДНК-полимеразу, который участвует в репликации ДНК. Этот фермент буквально считывает отрезки цепи нуклеотидов молекулы и использует их в качестве шаблона для последующего копирования генетической информации.

Новая эра

В 1996 году методом пересадки ядра соматической клетки в цитоплазму яйцеклетки на свет появилось первое клонированное млекопитающее — овца Долли. Это событие стало революционным в истории развития генной инженерии, потому что впервые стало возможным серьезно говорить о создании клонов и выращивании живых организмов на основе молекул.

Технологии генной инженерии

Генная инженерия за короткий срок оказала огромное влияние на развитие различных молекулярно-генетических методов и позволила существенно продвинуться на пути познания генетического аппарата.

Так, появилась технология CRISPR — инструмент редактирования генома. В 2014 году MIT Technology Review назвал его «самым большим биотехнологическим открытием века». Он основан на защитной системе бактерий, которые производят специальные ферменты, позволяющие им защищаться от вирусов.

«Каждый раз, когда бактерия убивает вирус, она разрезает остатки его генома, будь то ДНК или РНК, и сохраняет их внутри последовательности CRISPR, как в архив. Как только вирус атакует снова, бактерия использует информацию из «архива» и быстро производит защитные белки Cas9, в которых заключены фрагменты генома вируса. Если вдруг эти фрагменты совпадают с генетическим материалом нынешнего атакующего вируса, Cas9 как ножницами разрезает захватчика, и бактерия снова в безопасности», — поясняет Алевтина Федина, медицинский директор Checkme.

Уникальное открытие состоялось в 2011 году, когда биологи Дженнифер Дудна и Эммануэль Шарпантье обнаружили, что белок Cas9 можно обмануть. Если дать ему искусственную РНК, синтезированную в лаборатории, то он, найдя в «архиве» соответствие, нападет на нее. Таким образом, с помощью этого белка можно резать геном в нужном месте — и не просто резать, а еще и заменять другими генами.

на чем основана генная инженерия. Смотреть фото на чем основана генная инженерия. Смотреть картинку на чем основана генная инженерия. Картинка про на чем основана генная инженерия. Фото на чем основана генная инженерия

Теоретически, технология CRISPR может позволить редактировать любую генетическую мутацию и излечивать заболевание, которое она вызывает. Но практические разработки CRISPR в качестве терапии еще только в начальной стадии, и многое еще непонятно.

Есть и другие методы генной инженерии, например, ZFN и TALEN.

Где и как применяется генная инженерия

Медицина

Уже сейчас активно применяется инсулин человека (хумулин), полученный посредством рекомбинантных ДНК. Клонированные гены человеческого инсулина были введены в бактериальную клетку, где начался синтез гормона, который природные микробные штаммы никогда не синтезировали. С 1982 года компании США, Японии, Великобритании и других стран производят генно-инженерный инсулин.

Кроме того, несколько сотен новых диагностических препаратов уже введены в медицинскую практику. Среди лекарств, находящихся в стадии клинического изучения, препараты, потенциально лечащие артрозы, сердечно-сосудистые заболевания, онкологию и СПИД. Среди нескольких сотен генно-инженерных компаний 60% заняты именно разработкой и производством лекарственных и диагностических средств.

«В медицине среди достижений генной инженерии сегодня можно выделить терапию рака, а также другие фармакологические новинки — исследования стволовых клеток, новые антибиотики, прицельно бьющие по бактериям, лечение сахарного диабета. Правда, пока все это на стадии исследований, но результаты многообещающие», — говорит Алевтина Федина.

Сельское хозяйство

В сельском хозяйстве одна из важнейших задач генной инженерии — получение растений и животных, устойчивых к вирусам. В настоящее время уже есть виды, способные противостоять воздействию более десятка различных вирусных инфекций.

Еще одна задача связана с защитой растений от насекомых-вредителей. Путем генетической модификации растений можно уменьшить интенсивность обработки полей пестицидами. Например, трансгенные растения картофеля и томатов стали устойчивы к колорадскому жуку, растения хлопчатника — к разным насекомым, в том числе и к хлопковой совке.

Использование генной инженерии позволило сократить применение инсектицидов (препаратов для уничтожения насекомых) на 40–60%.

Благодаря генной инженерии зерновые культуры стали более устойчивы к климатическим условиям, кроме того появилась возможность увеличить количество витаминов и полезных веществ в продукте. Например, можно обогатить рис витамином «А» и выращивать его в тех регионах, где люди имеют массовую нехватку этого элемента.

С помощью генной инженерии пытаются решить и экологические проблемы. Так, уже созданы особые сорта растений с функцией очистки почвы. Они поглощают цинк, никель, кобальт и иные опасные вещества из загрязненных промышленными отходами почв.

на чем основана генная инженерия. Смотреть фото на чем основана генная инженерия. Смотреть картинку на чем основана генная инженерия. Картинка про на чем основана генная инженерия. Фото на чем основана генная инженерия

Скотоводство

В Кемеровской области работа генетиков позволила получить устойчивое к вирусу лейкоза племенное поголовье высокопродуктивных животных. Для проведения эксперимента кузбасские ученые отобрали здоровых коров черно-пестрой породы массой до 500 кг. Животным трансплантировали модифицированные эмбрионы, устойчивые к вирусу лейкоза. В середине сентября 2020 года родилось 19 телят с измененными генами.

«В месячном возрасте была проведена оценка, которая показала, что телята отличаются от своих сверстников только устойчивостью к вирусу. Пять особей отобрали для дальнейшей селекционной работы. Это позволит закрепить наследственные признаки устойчивости к вирусу лейкоза у последующих поколений», — пояснила руководитель проекта, доктор биологических наук, профессор кафедры зоотехнии Кузбасской ГСХА Татьяна Зубова.

По словам Зубовой, лейкоз крупного рогатого скота — вирусная хронически неизлечимая болезнь, при которой возникают поражение кроветворной системы и новообразования. Данное заболевание наносит значительный ущерб генофонду пород и мясной промышленности в целом, потому что мясо зараженных животных запрещено употреблять в пищу. Единственным доступным методом борьбы с лейкозом ранее было только уничтожение зараженного скота.

Этот успех позволяет говорить о том, что в дальнейшем будет возможно редактировать гены крупного рогатого скота и от других болезней.

С прицелом на человека

В 2009 году группа ученых под руководством молодого исследователя Джея Нейтца из Вашингтонского университета сумели с помощью генной терапии вернуть обезьянам способность различать оттенки зеленого и красного, которой они были лишены от рождения.

В область сетчатки глаза двух подопытных обезьян был введен безвредный вирус, несущий недостающий ген фоточувствительного рецептора. Вскоре после процедуры обе обезьяны начали различать оттенки красного и зеленого на сером фоне. Два года наблюдения не выявили у них каких-либо нарушений, поэтому ученые не исключают, что данную методику уже вскоре можно будет применять у людей, страдающих дальтонизмом.

Ученые шагнули еще дальше и уже пробуют выращивать в теле животных органы для трансплантации людям. Для минимизации риска отторжения тканей животным вводят специальные гены. Этими опытами занимается научная лаборатория Рослинского института в Великобритании, которая представила миру овцу Долли.

В 2019 году британские ученые вывели кур, яйца которых содержат два вида человеческих белков, способных противодействовать артриту и некоторым видам онкологических заболеваний. В яйцах содержится человеческий белок под названием IFNalpha2a, обладающий мощными противовирусными и противораковыми свойствами, а также человеческий и свиной вариант белка под названием макрофаг-CSF, который планируют использовать для создания препарата, стимулирующего самостоятельное заживление поврежденных тканей.

на чем основана генная инженерия. Смотреть фото на чем основана генная инженерия. Смотреть картинку на чем основана генная инженерия. Картинка про на чем основана генная инженерия. Фото на чем основана генная инженерия

Изменение ДНК человека

Первые клинические испытания методов генной терапии были предприняты 22 мая 1989 года с целью генетического маркирования опухоль-инфильтрующих лимфоцитов в случае прогрессирующей меланомы.

14 сентября 1990 года в Бетесде (США) четырехлетней девочке, страдающей наследственным иммунодефицитом, обусловленным мутацией в гене аденозиндезаминазы (АDA), были пересажены ее собственные лимфоциты.

Работающая копия гена ADA была введена в клетки крови с помощью модифицированного вируса, в результате чего клетки получили возможность самостоятельно производить необходимый белок. Через шесть месяцев количество белых клеток в организме девочки поднялось до нормального уровня.

После этого область генной терапии получила толчок к дальнейшему развитию. С 1990-х годов сотни лабораторий ведут исследования по использованию генной терапии для лечения различных заболеваний. Уже сегодня с помощью генной терапии можно лечить диабет, анемию и некоторые виды онкологии.

Генная терапия

Генная терапия — введение, удаление или изменение генетического материала, в частности ДНК или РНК, в клетке пациента для лечения определенного заболевания.

Существует три основных стратегии использования генной терапии:

Наиболее часто применяемый метод включает вставку «терапевтического» гена для замены «ненормального» или «вызывающего болезнь».

В 2015 году впервые была проведена процедура изменения ДНК человека с целью продления молодости клеток, когда американке Элизабет Пэрриш 44 лет ввели в организм препарат, влияющий на ДНК, а в 2018 году китайский ученый Хэ Цзянькуй заявил, что с его помощью у двух детей-близнецов якобы изменены гены для выработки у них иммунитета к вирусу ВИЧ, носителем которого являлся их отец.

на чем основана генная инженерия. Смотреть фото на чем основана генная инженерия. Смотреть картинку на чем основана генная инженерия. Картинка про на чем основана генная инженерия. Фото на чем основана генная инженерия

Все это, с одной стороны, выглядит грандиозно и обнадеживает, но с другой, — вызывает опасения, ведь генетические манипуляции, теоретически, возможно использовать не только в благих и мирных целях.

После эксперимента с ДНК близнецов в Китае, ЮНЕСКО выступила с инициативой о запрете изменения генов у новорожденных до того момента, пока достоверно не будет доказана безопасность таких манипуляций.

Этическая сторона вопроса

В 1997 году ЮНЕСКО выпустила Всеобщую декларацию о геноме человека и его правах, рекомендовав мораторий на генетическое вмешательство в зародышевую линию человека, а в декабре 2015 года на международном саммите по геномному редактированию человека изменение гаметоцитов и эмбрионов для генерации наследственных изменений у людей было объявлено безответственным.

Российское сообщество генетиков в большинстве своем считает, что такие эксперименты на данный момент преждевременны и требуют более глубокого исследования и обсуждений.

«Вопрос клонирования уже давно стоит на горизонте. Этично ли выращивать клонов, чтобы потом забирать их органы для трансплантации человеку… Большой вопрос. Само собой, это абсолютно нормально, что нет единой точки зрения, ведь смысл подобных дискуссий как раз в том, чтобы найти правильные формулировки и отрегулировать потенциально спасительное, но при этом очень опасное знание», — говорит Алевтина Федина.

Страх неизвестности

Вариантов развития событий в области генной инженерии существует множество, и далеко не все они изучены и, в принципе, известны. Поэтому они должны быть последовательно зафиксированы и регламентированы.

Естественно, больше всего опасений вызывают плохие сценарии развития событий. Как правило, все начинается с помощи людям и изобретения новых лекарств. Но потом человек может прийти к желанию сделать своего ребенка светловолосым и зеленоглазым или создать армию универсальных солдат, не боящихся боли и не ведающих страха.

Олег Долгицкий, социальный философ, отмечает, что современное общество настолько неоднородно в культурном и экономическом плане, что любые методы, способные существенно изменить геном, могут создать условия не только для классового, но и видового расслоения, где представители «первого мира» смогут существенно продлевать свою жизнь и не бояться никаких болезней, в отличие от менее богатых людей. Это является серьезнейшей почвой для конфликтов и столкновений.

Эксперты убеждены, что генная инженерия — это будущее медицины. Возможность избавить младенца от пожизненного гнета заболевания, излечить людей от рака, найти лекарство против ВИЧ — за всем этим будет стоять генная инженерия. При этом желание человека изменить, например, цвет глаз или предотвратить наследственное заболевание, несмотря на все риски, будет только расти. И похоже, что остановить этот процесс уже не представляется возможным.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *