Евклидова геометрия — это геометрическая теория, основанная на системе аксиом, которая была впервые изложена в третьем веке до нашей эры великим древнегреческим математиком Евклидом в грандиозном научном труде «Начала».
Система аксиом Евклида базируется на основных геометрические понятиях таких, как точка, прямая, плоскость, движение, а также на следующие отношения: «точка лежит на прямой на плоскости», «точка лежит между двумя другими».
В «Началах» Евклид представил следующую аксиоматику:
Тщательное изучение аксиоматики Евклида во второй половине XIX века показало её неполноту. В 1899 году Д. Гилберт предложил первую строгую аксиоматику евклидовой геометрии. Впоследствии еще не раз ученые предпринимали попытки усовершенствовать аксиоматику евклидовой геометрии. Кроме аксиоматики Гилберта, известными считаются: аксиоматики Тарского и аксиоматики Биргофа, которая состоит всего лишь из 4 аксиом.
В современной трактовке система аксиом Евклида может быть разделена на пять групп:
Евклидова геометрия стала результатом систематизации и обобщения наглядных представлений человека об окружающем мире. Углубленное проникновение в суть геометрии привело к более абстрактному пониманию науки. Более поздние достижения и открытие показали, что наши представления о пространстве являются априорными, то есть чисто умозрительные. Таким образом было поставлено под сомнение существование единственной геометрии. бурное развитие физики и астрономии, доказало, что евклидова геометрия описывает структуру окружающего пространства, но вовсе не способна описать свойства пространства, связанные с перемещениями тел со скоростями, близкими к световой. Русский математик Н. И. Лобачевский разработал новую неевклидову геометрию, которая приблизилась к реальному описанию физического пространства.
Постулаты и аксиомы – свойства, принимаемые без доказательства. Все остальные предложения должны быть логически выводимы из определений, постулатов и аксиом. Различные авторы выдвигали различные требования к постулатам и аксиомам: так, Аристотель считал характерным свойством аксиом общепризнанность, Декарт – очевидность, Паскаль – недоказуемость.
Вот список постулатов Евклида.
1.
От всякой точки до всякой точки можно провести прямую.
2.
Ограниченную прямую можно непрерывно продолжать по прямой.
3.
Из всякого центра и всяким раствором может быть описан круг.
4.
Все прямые углы равны между собой.
5.
Если прямая, падающая на две прямые, образует внутренние односторонние углы, в сумме меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы в сумме меньше двух прямых.
Постулаты 1–3 определяют возможность построений линейкой (без делений) и циркулем. Полезно уточнить, что под «прямой» Евклид понимает «ограниченную» прямую, то есть, в современной терминологии, отрезок.
Математики многократно обращались к системе постулатов и аксиом Евклида, пытаясь улучшить ее. Так, в XVIII в. было осознано, что постулат 4 является лишним, поскольку вытекает из других постулатов и аксиом.
Подобные исследования длительное время велись и в отношении 5-го постулата, тем более, что он, из-за сложности формулировки, казался гораздо менее очевидным, чем остальные постулаты и аксиомы. Его пытались доказать, исходя из остальных постулатов и аксиом. При этом выяснилось только, что 5-й постулат логически эквивалентен некоторым другим утверждениям (то есть они могут быть выведены из него, а с другой стороны, он сам может быть выведен из любого из них, если считать их уже установленными), но ни он, ни эти утверждения не могут быть доказаны на основе других постулатов и аксиом Евклида. Мыслима геометрия, в которой 5-й постулат не выполняется, а остальные постулаты и аксиомы выполняются (геометрия Лобачевского). Обычно в современных изложениях геометрии 5-й постулат заменяется на эквивалентную ему аксиому параллельных (встречается уже у Прокла в V в. н. э.): через точку, не лежащую на данной прямой, можно провести только одну прямую, не пересекающуюся с данной. (Слово «прямая» здесь, как обычно в современной математике, обозначает бесконечную прямую).
Списки аксиом Евклида в разных сохранившихся старинных копиях «Начал» отличаются друг от друга – возможно, не все приводимые там аксиомы (да и постулаты) принадлежат самому Евклиду. Самым распространенным является следующий список аксиом.
1.
Равные одному и тому же равны и между собой.
2.
И если к равным прибавляются равные, то и целые будут равны.
3.
И если от равных отнимаются равные, то остатки будут равны.
4.
И если к неравным прибавляются равные, то и целые не будут равны.
5.
И удвоенные одного и того же равны между собой.
6.
И половины одного и того же равны между собой.
7.
И совмещающиеся друг с другом равны между собой.
8.
И целое больше части.
9.
И две прямые не содержат пространства.
Естественный вопрос, который возникает при знакомстве с постулатами и аксиомами Евклида, – чем постулаты отличаются от аксиом. В целом представляется, что аксиомы, в отличие от постулатов, касаются очень общих свойств величин самой разной природы, в т. ч., например, чисел, а не только геометрических объектов. Тем не менее, аксиома 9 противоречит такой интерпретации. Смысл этой аксиомы – в том, что два отрезка не могут сходиться в двух различных точках – то есть ограничивать некоторую фигуру конечной площади.
Мы бы сейчас сформулировали эту аксиому так: «Через две точки проходит не более одной прямой». Попробуйте понять, в чем отличие данной аксиомы от постулата 1?
Постулат 1 утверждает существование по крайней мере одного отрезка с концами в двух данных точках, а аксиома 9 – то, что таких отрезков не более одного.
Важную роль играет аксиома 7. Фактически, речь в ней идет о том, что если наложить одну фигуру на другую так, что они совпадут, то эти фигуры будут равны. Евклид всегда употребляет слово «равны» в смысле равновеликости, т. е. равенства площадей (длин, объемов, величин углов). В современном смысле слово «равны» в применении к геометрическим фигурам означает именно «совпадение при наложении»: равные фигуры отличаются только местоположением (вернее, равенство означает, что существует движение, переводящее одну фигуру в другую; под движением понимается преобразование, сохраняющее расстояние, как если бы фигура была твердой и мы могли бы ее двигать). Уже математики XVII в. понимали равенство именно в этом смысле; Г. В. Лейбниц для такого равенства ввел специальный термин – конгруэнтность. Так что аксиома 7, в современных терминах, означает, что равные (конгруэнтные) фигуры равновелики. (При этом, разумеется, равновеликие фигуры не обязаны быть равными).
С помощью «совмещения» Евклид доказывает то, что сейчас называется признаками равенства треугольников, но в дальнейшем он избегает совмещений, ссылаясь при доказательстве равенства тех или иных фигур на уже доказанные признаки равенства треугольников.
В целом, выбор постулатов и аксиом у Евклида удачен, но его система не является полной: в ней отсутствуют многие важные аксиомы (например, стереометрические). Впрочем, еще Аристотель полагал, что иногда изложения той или иной науки обходят молчанием некоторые свойства и положения вследствие их очевидности. Вполне возможно, что Евклид не ставил себе целью дать полный список утверждений, необходимых для дальнейших доказательств. Эту задачу он оставил последующим математикам.
Аксио́ма паралле́льности Евкли́да, или пя́тый постула́т — одна из аксиом, лежащих в основании классической планиметрии. Впервые приведена в «Началах» Евклида [1] :
И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные неограниченно эти прямые встретятся с той стороны, где углы меньше двух прямых.
Καὶ ἐὰν εἰς δύο εὐθείας εὐθεῖα ἐμπίπτουσα τὰς ἐντὸς καὶ ἐπὶ τὰ αὐτὰ μέρη γωνίας δύο ὀρθῶν ἐλάσσονας ποιῇ, ἐκβαλλομένας τὰς δύο εὐθείας ἐπ’ ἄπειρον συμπίπτειν, ἐφ’ ἃ μέρη εἰσὶν αἱ τῶν δύο ὀρθῶν ἐλάσσονες.
Евклид различает понятия постулат и аксиома, не объясняя их различия; в разных манускриптах «Начал» Евклида разбиение утверждений на аксиомы и постулаты различно, равно как не совпадает и их порядок. В классическом издании «Начал» Гейберга сформулированное утверждение является пятым постулатом.
На современном языке текст Евклида можно переформулировать так:
Содержание
Эквивалентные формулировки
В школьных учебниках обычно приводится другая формулировка, эквивалентная (равносильная) V постулату и принадлежащая Проклу [2] :
В плоскости через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной.
Вообще у V постулата имеется огромное количество эквивалентных формулировок, многие из которых кажутся довольно очевидными. Вот некоторые из них [3] :
Эквивалентность их означает, что все они могут быть доказаны, если принять V постулат, и наоборот, заменив V постулат на любое из этих утверждений, мы сможем доказать исходный V постулат как теорему.
Если из списка аксиом исключить V постулат, то полученная система аксиом будет описывать так называемую абсолютную геометрию.
Если вместо V постулата допустить, что для пары точка—прямая V постулат неверен, то полученная система аксиом будет описывать геометрию Лобачевского. Понятно, что в геометрии Лобачевского все вышеперечисленные эквивалентные утверждения неверны.
Система аксиом сферической геометрии требует изменения также и других аксиом Евклида.
Попытки доказательства
Пятый постулат резко выделяется среди других, вполне очевидных (см. Начала Евклида). Он больше похож на сложную, неочевидную теорему. Евклид, вероятно, сознавал это, и поэтому первые 28 предложений в «Началах» доказываются без его помощи.
Математики с давних времён пытались «улучшить Евклида» — либо исключить пятый постулат из числа исходных утверждений, то есть доказать его, опираясь на остальные постулаты и аксиомы, либо заменить его другим, столь же очевидным, как другие постулаты. Надежду на достижимость этого результата поддерживало то, что IV постулат Евклида (все прямые углы равны) действительно оказался лишним — он был строго доказан как теорема и исключён из перечня аксиом.
За два тысячелетия было предложено много доказательств пятого постулата, но в каждом из них рано или поздно обнаруживался порочный круг: оказывалось, что среди явных или неявных посылок содержится утверждение, которое не удаётся доказать без использования того же пятого постулата.
Прокл (V век н. э.) в «Комментарии к I книге Начал Евклида» сообщает, что такое доказательство предложил Клавдий Птолемей, критикует его доказательство и предлагает своё собственное, опираясь на допущение, что расстояние между двумя непересекающимися прямыми есть ограниченная величина. Впоследствии выяснилось, что это допущение равносильно V постулату.
Аналогичную ошибку сделал ибн ал-Хайсам, но он впервые рассмотрел фигуру, позже получившую название «четырёхугольник Ламберта» — четырёхугольник, у которого три внутренних угла — прямые. Он сформулировал три возможных варианта для четвёртого угла: острый, прямой, тупой. Обсуждение этих трёх гипотез, в разных вариантах, многократно возникало в позднейших исследованиях.
Ал-Абхари предложил доказательство, сходное с доказательством ал-Джаухари. (Это доказательство приводит в своей книге ас-Самарканди, и ряд исследователей считал его доказательством ас-Самарканди.) Он исходит из верного в абсолютной геометрии утверждения о том, что для всякой прямой, пересекающей стороны данного угла, может быть построена ещё одна прямая, пересекающая стороны этого же угла и отстоящая от его вершины дальше, чем первая. Но из этого утверждения он делает логически необоснованный вывод о том, что через всякую точку внутри данного угла можно провести прямую, пересекающую обе стороны этого угла, — и основывает на этом последнем утверждении, эквивалентном V постулату, всё дальнейшее доказательство.
В целом можно сказать, что все перечисленные попытки принесли немалую пользу: была установлена связь между V постулатом и другими утверждениями, были отчётливо сформулированы две альтернативы V постулату — гипотезы острого и тупого угла.
Первые наброски неевклидовой геометрии
Видимо, Саккери чувствовал необоснованность этого «доказательства», потому что исследование продолжается. Он рассматривает эквидистанту — геометрическое место точек плоскости, равноотстоящих от прямой; в отличие от своих предшественников, Саккери знает, что в рассматриваемом случае это вовсе не прямая. Однако, вычисляя длину её дуги, Саккери допускает ошибку и приходит к реальному противоречию, после чего заканчивает исследование и с облегчением заявляет, что он «вырвал эту зловредную гипотезу с корнем».
Во второй половине XVIII века было опубликовано более 50 работ по теории параллельных. В обзоре тех лет (Г. С. Клюгель) исследуется более 30 попыток доказать V постулат и доказывается их ошибочность. Известный немецкий математик и физик И. Г. Ламберт, с которым Клюгель переписывался, тоже заинтересовался проблемой; его «Теория параллельных линий» была издана посмертно в 1786 году.
Ламберт первым обнаружил, что «геометрия тупого угла» реализуется на сфере, если под прямыми понимать большие круги. Он, как и Саккери, вывел из «гипотезы острого угла» множество следствий, причём продвинулся гораздо дальше Саккери; в частности, он обнаружил, что дополнение суммы углов треугольника до 180° пропорционально площади треугольника.
В своей книге Ламберт проницательно отметил [14] :
Мне кажется очень замечательным, что вторая гипотеза [тупого угла] оправдывается, если вместо плоских треугольников взять сферические. Я из этого почти должен был бы сделать вывод — заключение, что третья гипотеза имеет место на какой-то мнимой сфере. Во всяком случае, должна же существовать причина, почему она на плоскости далеко не так легко поддаётся опровержению, как это могло быть сделано в отношении второй гипотезы.
Ламберт не нашёл противоречия в гипотезе острого угла и пришёл к заключению, что все попытки доказать V постулат безнадёжны. Однако в ложности «геометрии острого угла» он не сомневался.
Открытие неевклидовой геометрии
Первым был Гаусс. Он не публиковал никаких работ на эту тему, но его черновые заметки и несколько писем однозначно подтверждают его понимание неевклидовой геометрии. В 1818 году в письме к австрийскому астроному Герлингу он писал [16] :
Я радуюсь, что вы имеете мужество высказаться так, как если бы Вы признавали ложность нашей теории параллельных, а вместе с тем и всей нашей геометрии. Но осы, гнездо которых Вы потревожите, полетят Вам на голову.
Ознакомившись с работой Лобачевского «Геометрические исследования по теории параллельных», Гаусс энергично ходатайствует об избрании русского математика иностранным членом-корреспондентом Гёттингенского королевского общества (что и произошло в 1842 году).
Доказать непротиворечивость новой геометрии ни Лобачевский, ни Бойяи не сумели — тогда математика ещё не располагала необходимыми для этого средствами. Только спустя 40 лет появились модель Клейна и другие модели, реализующие аксиоматику геометрии Лобачевского на базе евклидовой геометрии. Эти модели убедительно доказывают, что отрицание V постулата не противоречит остальным аксиомам геометрии; отсюда вытекает, что V постулат независим от остальных аксиом и доказать его невозможно.
Основная идея доказательства заключается в том, что угол между любыми отрезками, взятыми на прямой, всегда равен нулю или 180 градусам, что то же самое в данном случае.
Если данное утверждение справедливо, то верен и 5-й постулат Евклида.
Это доказывается с помощью окружности и прямой проведенной через центр данной окружности.
Т.е. доказательство ведется через рассмотрение свойств прямой линии.
Подробнее
Если провести прямую линию через центр окружности, то эта прямая разделит окружность на две равные части.
Такое утверждение представляется вполне очевидным.
Действительно, если бы какая-нибудь из разделённых частей окружности была больше по площади или по длине дуги, то мы были бы вынуждены предоставить аргументацию того, чем вызвано наше предпочтение той или иной из частей.
Будь то искривление пространства или еще какая-нибудь другая идея – все они выходят за рамки логической геометрии.
Так и в «Началах» Евклида есть определение под номером 17.
В переводе Д. Д. Мордухай-Болтовского оно звучит так: «Диаметр же круга есть какая угодно прямая, проведенная через центр и ограничиваемая с обеих сторон окружностью круга, она же рассекает круг пополам»
Ни у одного из критиков Евклида данное определение не вызвало сомнений, т.к. оно представляется довольно очевидным. Иначе, мы должны были бы определить предпочитаемую сторону, лежащую по ту ли иную сторону от этой прямой.
Рис.1
Возьмем окружность с центром в точке О и с произвольным радиусом R1 (Рис.1) Проведем через центр окружности прямую ab. По определению прямая ab разделит окружность на две равные части. Точки пересечения окружности и прямой будут точки A и B. Длина дуг окружности по одну и другую сторону от секущей прямой будет равна друг другу и равна π радиусов окружности.
Построим еще одну окружность, но с радиусом R2 больше чем у первой окружности R1.
Точки пересечения прямой ab со второй окружностью C и D, также разделят эту окружность на две равные части, и длина двух дуг будет равна друг другу, и равна π радиусов.
Теперь, можно заметить, что угол между лучом AC (проходящим через точки A и C) и лучом BD (проходящим через точки B и D) равен π радиан.
Если же считать отрезки между точками на прямой ab ненаправленными, то угол между ними будет равен, или π, или ноль радиан.
Так как можно построить окружность любого радиуса, из любой точки, лежащей на произвольной прямой, то отсюда следует вывод, что в любых точках прямой, угол между любыми отрезками, лежащими на этой прямой, будет равен π или 0, что в данном случае равнозначно.
Следовательно, строя прямоугольник, мы всегда придем к выводу, что сумма углов в прямоугольнике равна 360 градусов. И соответственно, на основании второй теоремы Лежандра, сумма углов в любом треугольнике будет равна 180 градусов.
Рис.2
Действительно, на любой стороне прямоугольника (Рис.2) мы можем взять точку и построить окружность с центром в данной точке. Далее, мы можем построить еще одну окружность с центром в этом же точке. Таким образом, мы можем видеть, что угол между отрезками, отсеченными этими окружностями, будет равен нулю градусов. Такие же построения мы можем сделать и на других сторонах. Из этого следует, что угол между любыми отрезками, взятыми на одной стороне прямоугольника, будет равен нулю градусов. Суммируя прямые углы при вершинах прямоугольника, мы, естественно придем к результату в 360 градусов. Разделив прямоугольник любой из диагоналей на два треугольника, мы получим треугольник с суммой углов в 180.
По второй теореме Лежандра, если существует хотя бы один треугольник, в котором сумма внутренних углов равна двум прямым, то из этого надлежит заключить, что во всяком треугольнике сумма внутренних углов также равна двум прямым.
Многословие
В данной части, на правах автора, позволю себе высказать некоторые мысли напрямую или косвенно связанные с проблемой 5-го постулата Евклида. Этот раздел, возможно, будет спорным, но доказательство, приведенное выше, не зависит от идей приведенных ниже.
Определение прямой линии, как причина проблемы с доказательством 5-го постулата Евклида.
Казалось бы такое простое доказательство, данное выше.
Так в чем же причина того, что 5-й постулат остается спорным до сих пор?
Мне представляется, что проблема, как не странно, кроется в Определении прямой линии.
До сих пор не найдено красивого, лаконичного, очевидного и, что крайне важно, применимого для доказательства Определения прямой линии. Такого Определения, которое запрещало бы «кривизну» прямой линии.
Для прямой линии нет определения, подобного тому, как дано для окружности: «Окружность – это геометрическое место точек, равноудаленных от данной».
Определение прямой линии вида: «Через две точки можно провести только одну прямую» трудно назвать определением. Это скорее описание одного из свойств прямой линии.
Из этого свойства вытекает, что двумя точками можно задать положение прямой линии в пространстве, но к определению прямой это не имеет отношения. Прямая линия может быть как угодно «искривлена», и если у нас нет аргументов считать это абсурдным, то у нас и нет доказательной базы для объявления это абсурдом. Всегда можно будет апеллировать к тому, что «прямота» прямой линии – это наше бытовое представление о ней. Что, например мы не видим «кривизну» в силу ограниченности наблюдаемого нами пространства и если неограниченно продолжить эту прямую линию тогда мы могли бы увидеть ее «кривизну».
Определение через ось тела вращения – это скорее умозрительное описание предмета, не дающее работоспособных правил к применению. Это не более чем бытовое представление о прямой линии, по сути равнозначное определению прямой двумя точками. Этим определением мы ничего не сможем ни доказать, ни опровергнуть.
Определение типа «Прямая – это геометрическое место точек равноудаленных от двух данных», довольно строго описывает прямую, но крайне тяжело применимо для целей доказательства в случаях, где требуется опровергнуть возможную «кривизну» прямой.
Евклид дал такое определение прямой линии (в переводе Д. Д. Мордухай-Болтовского):
«Прямая линия есть та, которая равно расположена по отношению к точкам на ней».
В силу своей неясности, зачастую, вместе с переводом данного определения, оно приводиться в оригинальном виде. Возможно в надежде, что читатели сами смогут понять его витиеватость.
Об этом говорит обширность комментариев даваемых к этому Определению. Но в любом случае оно также неприменимо для целей доказательства или опровержения чего либо. Это просто бытовое представление о прямой линии, тем более не совсем ясное.
Лежандр признает: «Не подлежит сомнению, что безуспешность всех попыток вывести эту теорему (о сумме углов треугольника) из одних только наших сведений об условиях равенства треугольников, содержащихся в I книге Евклида, имеет свой источник в несовершенстве нашей повседневной речи и в трудности дать хорошее определение прямой линии».
Лобачевский не соглашается с этим заявлением. Ни сколько не умаляя ни труда, ни заслуг Лобачевского в поисках истины о 5-м Постулате Евклида, автору представляется, что именно эта причина, замеченная Лежандром, и есть суть проблемы.
Искривление пространства и прочие физические сущности
При рассуждениях о 5-м постулате Евклида, некоторые популяризаторы уходят в рассуждения об искривлении пространства, об многомерности пространства невидимой бытовому наблюдателю и прочих головокружительных сущностях.
Так вот, что касается геометрии, как предмета рассматриваемого Евклидом, как и его великими последователями включая и Лежандра и Лобачевского, ни о каком физическом пространстве речи у них не идет.
Геометрия Евклида – это чисто логическая абстракция, где пространство не обладает какими либо физическими параметрами. Соответственно и привлечение, каких либо физических идей в геометрии Евклида неуместно.
Логика и законы сохранения окружающего нас мира. Бесконечность
Наша логика строится на принципах законов сохранения. Эти законы, например закон сохранения энергии, или закон сохранения импульса, окружают человека во всем наблюдаемом человеком пространстве.
В соответствии с этими законами и строиться логические цепи во всех рассуждениях человека. В том числе все науки базируются на этих логических принципах.
Попробую пояснить. Если мы положим в некий «черный ящик» два предмета, мы вполне будем уверены, что открыв этот «черный ящик», мы должны обнаружить эти же два предмета, если за время нахождения там этих предметов ничего не произошло. Иначе мы должны найти причину того, что произошло, что повлияло на количество предметов в «черном ящике». Это закон сохранения. Так перенося этот закон на язык математики, мы уверены, что 1+1 будет 2.
Хочу заметить, что наша логика родилась именно из этих законов сохранения окружающего нас мира. Если бы законы окружающего нас мира были другими, то и наша логика (и математика, и геометрия) была бы другой. Например, если бы отсутствовали законы сохранения, то никакой бы причины считать 1+1 равно 2 не было бы. Вполне обыденным были бы «чудеса» появления предметов из ниоткуда и такое же их исчезновение в никуда.
И здесь мы подходим к понятию бесконечности.
Человек никогда в своей истории не сталкивался с бесконечностью. Соответственно, какие-либо попытки применить логику, действующую в окружающем нас мире, к понятию бесконечности, представляются бессмысленными. Невозможно ответить на вопрос, сколько будет «бесконечность плюс бесконечность». Понятие бесконечности лежит за рамками законов сохранения.
Соответственно «бесконечно удаленной точки» не существует, как и не существует «окружности бесконечного радиуса». Т.е. в логике нашего мира не существует Орицикла (т.е. окружности бесконечного радиуса) предложенного Лобачевским. Это нисколько не умаляет идеи Лобачевского об Орицикле. Просто, автор, хотел бы определить некоторые пределы, где доказательства, базирующиеся на логике нашего мира, имеют смысл.
Отсюда следует, что находясь в логике нашего мира, мы можем построить окружность с любым радиусом, сколь угодно большим, но не бесконечным. Соответственно доказательство приведенное автором распространяется на любую окружность, доступную в логике нашего мира.