Что такое объем выборки
Определение объема выборки
На практике решение вопроса об объеме выборки является компромиссным между предположением о точности результатов обследования и возможностями их практической реализации (т.е. исходя из затрат на проведение опроса).
На практике используется несколько подходов к определению объема выборки. Обратим внимание на самые простые из них. Первый из них называется произвольным подходом и основан он на применении «правила большого пальца».
Например, бездоказательно принимается, что для получения точных результатов выборка должна составлять 5 % от совокупности. Данный подход простой и доступный в исполнении, не позволяет получать точные результаты. Его достоинством является относительная дешевизна затрат. В соответствии со вторым подходом объем выборки может быть установлен исходя из заранее оговоренных условий. Заказчик маркетингового исследования, например, знает, что при изучении общественного мнения выборка обычно составляет 1000 – 1200 человек, поэтому он рекомендует исследователю придерживаться данной цифры.
Третий подход означает, что в некоторых случаях главным аргументом при определении объема выборки может быть стоимость проведения опроса. Хотя при этом ценность и достоверность получаемой информации не принимается в расчет.
В случае четвертого подхода объем выборки определяется на основе статистического анализа. Данный подход предполагает определение минимального объема выборки с учетом требований к надежности и достоверности получаемых результатов.
Пятый подход считается наиболее теоретически обоснованным и правильным подходом в определении объема выборки. Он основан на расчете доверительного интервала.
Доверительный интервал – это диапазон, крайние точки которого характеризуют процент определенных ответов на какой-то вопрос. Данное понятие тесто связано с понятием «среднее квадратичное отклонение получаемого признака в генеральной совокупности». Чем оно больше, тем шире должен быть доверительный интервал, чтобы включить в свой состав, например 9,5 % ответов.
Из свойств нормальной кривой распределения вытекает, что конечные точки доверительного интервала, равного к примеру 9,5 % определяются как произведение: 1,96 (нормированное отклонение) и среднего квадратичного отклонения.
Числа 1,96 и 2,58 (для 99 % доверительного интервала) обозначаются как z.
Существуют таблицы «Значение интеграла вероятности», которые дают возможность определить величины z для различных доверительных интервалов. Доверительный интервал равный 95% или 99% является стандартным при проведении маркетинговых исследований.
Например, проведено исследование числа визитов автовладельцев в сервисные мастерские за год. Доверительный интервал для среднего числа визитов был рассчитан равным 5 – 7 визитам при 99 % уровне доверительности. Это означает, что если появится возможность, провести независимо 100 раз выборочные исследования, то для 99 выборочных исследований среднее значение числа визитов попадут в диапазон от 5 до 7 визитов, Если сказать иначе, то 99 % автовладельцев попадут в доверительный интервал.
Допустим, было проведено исследование до 50 независимых выборок. Средние оценки для этих выборок образовали нормальную кривую распределения, которое называется выборочным распределением.
Средняя оценка для совокупности в целом равна средней оценке кривой распределения. Понятие «выборочное распределение» рассматривается также в качестве одного из базовых понятий теоретической концепции, лежащее в основе определения V выборки.
Естественно ни одна компания не в состоянии сформировать 10, 20, 50 независимых выборок. Обычно используется только одна выборка.
Математическая статистика позволяет получить некую информацию о выборочном распределении, владея точными данными о вариации единственной выборки.
Индикатором степени отличия оценки, истинной для совокупности в целом, которая ожидается для типичной выборки, является средне квадратическая ошибка. К примеру, исследуется мнение потребителей о новом товаре и заказчик данного исследования указал, что его устроит точность полученных результатов, равная плюс минус 5%.
Предположим, что 30 % членов выборки высказались за новый продукт. Это означает, что диапазон возможных оценок для всей совокупности составляет 25 – 35 %. Причем, чем больше объем выборки, тем меньше ошибка. Высокое значение вариации обусловливает высокое значение ошибки и наоборот.
Определим объем выборки на основе расчета доверительного интервала. Исходной информацией, необходимой для реализации данного подхода, является:
Когда на заданный вопрос существует только два варианта ответов, выраженных в процентах (используется процентная мера), объем выборки определяется по следующей формуле:
где n – объем выборки;
z – нормированное отклонение, определяемое исходя из выбранного уровня доверительности (табл. 7);
р – найденная вариация для выборки;
е – допустимая ошибка.
Значение нормированного отклонения оценки z от среднего значения
в зависимости от доверительной вероятности (а) полученного результата
Что такое объем выборки
О возможности судить о целом по части миру рассказал российский математик П.Л. Чебышев. «Закон больших чисел» простым языком можно сформулировать так: количественные закономерности массовых явлений проявляются только при достаточном числе наблюдений. Чем больше выборка, тем лучше случайные отклонения компенсируют друг друга и проявляется общая тенденция.
А.М. Ляпунов чуть позже сформулировал центральную предельную теорему. Она стала фундаментом для создания формул, которые позволяют рассчитать вероятность ошибки (при оценке среднего по выборке) и размер выборки, необходимый для достижения заданной точности.
Строгие формулировки:
С увеличением числа случайных величин их среднее арифметическое стремится к среднему арифметическому математических ожиданий и перестает быть случайным. Общий смысл закона больших чисел — совместное действие большого числа случайных факторов приводит к результату, почти не зависящему от случая.
Таким образом з.б.ч. гарантирует устойчивость для средних значений некоторых случайных событий при достаточно длинной серии экспериментов.
Распределение случайной величины, которая получена в результате сложения большого числа независимых случайных величин (ни одно из которых не доминирует, не вносит в сумму определяющего вклада и имеет дисперсию значительно меньшею по сравнению с дисперсией суммы) имеет распределение, близкое к нормальному.
Из ц.п.т. следует, что ошибки выборки также подчиняется нормальному распределению.
Репрезентативность — это степень соответствия характеристик выборки характеристикам генеральной совокупности. Только данные по репрезентативным выборкам можно экстраполировать на всю популяцию.
Репрезентативность достигается за счет случайного отбора. Случайный отбор — хорошо. Детерминированный отбор — плохо. Он искажает структуру выборки и как следствие результат измерений. Нельзя судить о среднем росте россиян по росту ста баскетболистов, которые тренируются во дворе вашего дома, просто потому что вам так удобно.
Существует методология, которая позволяет сократить детерминированность при формировании выборки и приблизиться к случайному отбору.
Стратифицированная выборка. Выделяются объективно существующие страты и из каждой страты отбираются единицы пропорционально их доле в генеральной совокупности. Например для опроса россиян страты могут быть определены пропорцией населения в регионах. После чего респонденты внутри каждого региона отбираются случайным образом.
Механический отбор. Все объекты сортируются по порядковым номерам, после чего осуществляется отбор с шагом n. Например, можно отсортировать телефонные номера потенциальных участников исследования и звонить каждому 100-му.
Серийная выборка (гнездовая, кластерная). Объективно существующие группы отбираются случайным образом. Объекты внутри групп обследуются полностью. Например вскрывается один контейнер продукции и каждый товар проверяется на брак.
Метод снежного кома. У каждого респондента запрашиваются контакты его знакомых, которые подходят под условия отбора. Условия случайности отбора грубо нарушается, но это один из способов провести исследование среди труднодостижимых групп. Как быть иначе, если ваша цель — опросить любителей стальных гоночных велосипедов выпущенных не позже 1987 года.
Стихийная выборка (выборка по удобству). Применяется, когда низкая цена получения данных — это главный приоритет. Для повышения качества стихийной выборки на неё накладываются квоты. Заранее рассчитываются пропорции признаков в выборке так, чтобы они соответствовали структуре генеральной совокупности. В социологии такими признаками служат пол, возраст, профессия, семейный статус, регион проживания.
Объем выборки: понятие и способы расчета
Объем выборки – это количество единиц попавших в выборочную совокупность.
При определении объема выборки нужно прежде решить задачу требуемого исследователю уровня точности результата (Д), гарантируемого с некоторой заранее заданной доверительной вероятностью (Р).Существуют три стратегии расчета объема выборки.1. Стратегия предварительного расчета(до проведения исследования). Это лишь первоначальный ориентир, так как, не принимается во внимание из-за неопределенности разброс мнений; а поэтому исходят из соотношения 50:50% (половина ответов «да», половина «нет»).2. Стратегия последовательного расчета выборки.Используется, когда каждое интервью очень дорогостоящее или слишком длительное. Тогда объем выборки не рассчитывается заранее, а ставится в зависимость от результатов, полученных входе исследования. Например, сначала опрашивается 100 чело век, на основе полученных данных о разбросе оценки вычисляют требуемый объем. Если оказывается, что этого количества
опрошенных достаточно, то исследование прекращается. В противном случае добирают необходимое количество респондентов.3. Стратегия комбинированного расчета.Рассчитывая выборку по предварительной стратегии, получаем верхние пределы допустимых объемов выборки, то есть ту величину выборки, при достижении которой прекращается опрос по последовательной стратегии.На практике существуют удобные способы определения объемов выборки с помощью таблицы больших чисел и с помощью номограммы для определения объема выборки.На величину объема выборки также влияет типичный объем выборок, используемых в аналогичных исследованиях.
Для проведения социологического исследования недостаточно просто определить объект исследования. Нерационально опрашивать всех людей, составляющих объект исследования (иногда это могут быть тысячи людей). Обычно СИ имеют не сплошной, а выборочный характер. То есть по определенным и строгим правилам исследователь отбирает небольшое (относительно всего объема выборки) число людей, которые по своим социально-демографическим признакам и другим каким-то характеристикам полностью соответствуют структуре изучаемого объекта.
Что такое объем выборки
1. Задачи математической статистики.
4. Статистическое распределение выборки.
5. Эмпирическая функция распределения.
6. Полигон и гистограмма.
7. Числовые характеристики вариационного ряда.
8. Статистические оценки параметров распределения.
9. Интервальные оценки параметров распределения.
1. Задачи и методы математической статистики
Пусть требуется изучить совокупность однородных объектов относительно некоторого качественного или количественного признака, характеризующего эти объекты. Например, если имеется партия деталей, то качественным признаком может служить стандартность детали, а количественным- контролируемый размер детали.
Иногда проводят сплошное исследование, т.е. обследуют каждый объект относительно нужного признака. На практике сплошное обследование применяется редко. Например, если совокупность содержит очень большое число объектов, то провести сплошное обследование физически невозможно. Если обследование объекта связано с его уничтожением или требует больших материальных затрат, то проводить сплошное обследование не имеет смысла. В таких случаях случайно отбирают из всей совокупности ограниченное число объектов (выборочную совокупность) и подвергают их изучению.
Основная задача математической статистики заключается в исследовании всей совокупности по выборочным данным в зависимости от поставленной цели, т.е. изучение вероятностных свойств совокупности: закона распределения, числовых характеристик и т.д. для принятия управленческих решений в условиях неопределенности.
Генеральная совокупность – это совокупность объектов, из которой производится выборка.
Выборочная совокупность (выборка) – это совокупность случайно отобранных объектов.
Если из 1000 деталей отобрано для обследования 100 деталей, то объем генеральной совокупности N = 1000, а объем выборки n = 100.
При составлении выборки можно поступить двумя способами: после того, как объект отобран и над ним произведено наблюдение, он может быть возвращен либо не возвращен в генеральную совокупность. Т.о. выборки делятся на повторные и бесповторные.
Повторной называют выборку, при которой отобранный объект (перед отбором следующего) возвращается в генеральную совокупность.
Бесповторной называют выборку, при которой отобранный объект в генеральную совокупность не возвращается.
На практике обычно пользуются бесповторным случайным отбором.
Для того, чтобы по данным выборки можно было достаточно уверенно судить об интересующем признаке генеральной совокупности, необходимо, чтобы объекты выборки правильно его представляли. Выборка должна правильно представлять пропорции генеральной совокупности. Выборка должна быть репрезентативной (представительной).
В силу закона больших чисел можно утверждать, что выборка будет репрезентативной, если ее осуществлять случайно.
Если объем генеральной совокупности достаточно велик, а выборка составляет лишь незначительную часть этой совокупности, то различие между повторной и бесповторной выборками стирается; в предельном случае, когда рассматривается бесконечная генеральная совокупность, а выборка имеет конечный объем, это различие исчезает.
В американском журнале «Литературное обозрение» с помощью статистических методов было проведено исследование прогнозов относительно исхода предстоящих выборов президента США в 1936 году. Претендентами на этот пост были Ф.Д. Рузвельт и А. М. Ландон. В качестве источника для генеральной совокупности исследуемых американцев были взяты справочники телефонных абонентов. Из них случайным образом были выбраны 4 миллиона адресов., по которым редакция журнала разослала открытки с просьбой высказать свое отношение к кандидатам на пост президента. Обработав результаты опроса, журнал опубликовал социологический прогноз о том, что на предстоящих выборах с большим перевесом победит Ландон. И … ошибся: победу одержал Рузвельт.
Этот пример можно рассматривать, как пример нерепрезентативной выборки. Дело в том, что в США в первой половине двадцатого века телефоны имела лишь зажиточная часть населения, которые поддерживали взгляды Ландона.
На практике применяются различные способы отбора, которые можно разделить на 2 вида:
1. Отбор не требует расчленения генеральной совокупности на части (а) простой случайный бесповторный; б) простой случайный повторный).
2. Отбор, при котором генеральная совокупность разбивается на части. (а) типичный отбор; б) механический отбор; в) серийный отбор).
Простым случайным называют такой отбор, при котором объекты извлекаются по одному из всей генеральной совокупности (случайно).
Типичным называют отбор, при котором объекты отбираются не из всей генеральной совокупности, а из каждой ее «типичной» части. Например, если деталь изготавливают на нескольких станках, то отбор производят не из всей совокупности деталей, произведенных всеми станками, а из продукции каждого станка в отдельности. Таким отбором пользуются тогда, когда обследуемый признак заметно колеблется в различных «типичных» частях генеральной совокупности.
Механическим называют отбор, при котором генеральную совокупность «механически» делят на столько групп, сколько объектов должно войти в выборку, а из каждой группы отбирают один объект. Например, если нужно отобрать 20 % изготовленных станком деталей, то отбирают каждую 5-ую деталь; если требуется отобрать 5 % деталей- каждую 20-ую и т.д. Иногда такой отбор может не обеспечивать репрезентативность выборки (если отбирают каждый 20-ый обтачиваемый валик, причем сразу же после отбора производится замена резца, то отобранными окажутся все валики, обточенные затупленными резцами).
Серийным называют отбор, при котором объекты отбирают из генеральной совокупности не по одному, а «сериями», которые подвергают сплошному обследованию. Например, если изделия изготавливаются большой группой станков-автоматов, то подвергают сплошному обследованию продукцию только нескольких станков.
На практике часто применяют комбинированный отбор, при котором сочетаются указанные выше способы.
4. Статистическое распределение выборки
Если количество вариант велико или выборка производится из непрерывной генеральной совокупности, то вариационный ряд составляется не по отдельным точечным значениям, а по интервалам значений генеральной совокупности. Такой вариационный ряд называется интервальным. Длины интервалов при этом должны быть равны.
Статистическим распределением выборки называется перечень вариант и соответствующих им частот или относительных частот.
Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (суммы частот, попавших в этот интервал значений)
Точечный вариационный ряд частот может быть представлен таблицей:
Выборка
Выборка — множество случаев (испытуемых, объектов, событий, образцов), с помощью определённой процедуры выбранных из генеральной совокупности для участия в исследовании.
Содержание
Объём выборки
Объём выборки — число случаев, включённых в выборочную совокупность. Из статистических соображений рекомендуется, чтобы число случаев составляло не менее 30—35.
Зависимые и независимые выборки
При сравнении двух (и более) выборок важным параметром является их зависимость. Если можно установить гомоморфную пару (то есть, когда одному случаю из выборки X сооветствует один и только один случай из выборки Y и наоборот) для каждого случая в двух выборках (и это основание взаимосвязи является важным для измеряемого на выборках признака), такие выборки называются зависимыми. Примеры зависимых выборок:
В случае, если такая взаимосвязь между выборками отсутствует, то эти выборки считаются независимыми, например:
Соответственно, зависимые выборки всегда имеют одинаковый объём, а объём независимых может отличаться.
Сравнение выборок производится с помощью различных статистических критериев :
Репрезентативность
Выборка может рассматриваться в качестве репрезентативной или нерепрезентативной.
Пример нерепрезентативной выборки
На действительных же выборах, как известно, победил Рузвельт, набрав более 60 % голосов. Ошибка «Литрери Дайджест» заключалась в следующем: желая увеличить репрезентативность выборки, — так как им было известно, что большинство их подписчиков считают себя республиканцами, — они расширили выборку за счёт людей, выбранных из телефонных книг и регистрационных списков. Однако они не учли современных им реалий и в действительности набрали ещё больше республиканцев: во время Великой депрессии обладать телефонами и автомобилями могли себе позволить в основном представители среднего и верхнего класса (то есть большинство республиканцев, а не демократов).
Виды плана построения групп из выборок
Выделяют несколько основных видов плана построения групп [2] :
Стратегии построения групп
Рандомизация
Попарный отбор
Стратометрический отбор
Приближённое моделирование
Источники
Рекомендуемая литература
Наследов А. Д. Математические методы психологического исследования. СПб.: Речь, 2004.
См. также
В некоторых типах исследований выборка разделяется на:
is:Úrtak lt:Imtis nl:Steekproef pl:Próba losowa sv:Stickprov