Что такое нуклид в химии
Нуклид
Нукли́д (лат. nucleus — «ядро» и др.-греч. είδος — «вид, сорт») — вид атомов, характеризующийся определённым массовым числом, атомным номером и энергетическим состоянием ядер и имеющий время жизни, достаточное для наблюдения. [1]
Содержание
Общее описание
Из определения следует, что нуклид — это каждый отдельный вид атомов какого-либо химического элемента с ядром, состоящим из строго определённого числа протонов ( Z ) и нейтронов ( N ), и которое находится в определённом энергетическом состоянии (основном состоянии или одном из изомерных состояний).
Число протонов Z представляет собой атомный номер элемента, а сумма A = Z + N — массовое число. Нуклиды, имеющие одинаковый атомный номер (обладающие одинаковым числом протонов), называются изотопами, одинаковое массовое число — изобарами, одинаковое число нейтронов — изотонами. Применение термина изотоп в единственном числе вместо термина нуклид хотя и, строго говоря, неверно, однако широко распространено. Относительная атомная масса нуклида округлённо равна его массовому числу, только для углерода-12 она по определению точно равна 12.
Классификация
Нуклиды делятся на стабильные и радиоактивные (радионуклиды, радиоактивные изотопы). Стабильные нуклиды не испытывают спонтанных радиоактивных превращений из основного состояния ядра. Радионуклиды путём радиоактивных превращений переходят в другие нуклиды. В зависимости от типа распада, образуются либо другой нуклид того же самого элемента (при нейтронном или двухнейтронном распаде), либо нуклид другого элемента (распады, изменяющие заряд ядра без вылета нуклонов, т. е. бета-распад, электронный захват, позитронный распад, все виды двойного бета-распада), либо два или несколько новых нуклидов (альфа-распад, протонный распад, кластерный распад, спонтанное деление).
Среди радионуклидов выделяются короткоживущие и долгоживущие. Радионуклиды, существующие на Земле с момента её формирования, часто называют природными долгоживущими, или примордиальными радионуклидами; такие нуклиды имеют период полураспада, превышающий 5·10 8 лет. Для каждого элемента были искусственно получены радионуклиды; для элементов с атомным номером (т. е. числом протонов), близким к одному из «магических чисел», количество известных нуклидов может доходить до нескольких десятков. Наибольшим количеством известных нуклидов — по 34 — обладают платина и осмий (без учёта изомерных состояний). Некоторые элементы имеют лишь один стабильный нуклид (так называемые моноизотопные элементы, например, золото и кобальт), а максимальным числом стабильных нуклидов — 10 — обладает олово. У многих элементов все нуклиды радиоактивны (все элементы, имеющие атомный номер больше, чем у свинца, а также технеций и прометий). Каждому массовому числу соответствует от 0 до 3 стабильных нуклидов, числу нейтронов — от 0 до 7. Общее число всех известных нуклидов превышает 3100 (без учёта изомеров; на сегодня известно около 1000 нуклидов в основных состояниях, для которых существуют одно или несколько метастабильных возбуждённых состояний с периодом полураспада, превышающим 0,1 мкс).
История и этимология
Нуклиды
Нукли́д (лат. nucleus — «ядро») — вид атомов, характеризующийся определёнными массовым числом, атомным номером и энергетическим состоянием их ядер, и имеющий время жизни, достаточное для наблюдения. Официальное рекомендуемое определение термина по IUPAC Compendium of Chemical Terminology, 2nd Edition, 1997 (Краткий справочник терминов ИЮПАК, 2-е издание): A species of atom, characterized by its mass number, atomic number and nuclear energy state, provided that the mean life in that state is long enough to be observable.
Содержание
Общее описание
Из определения нуклида следует, что это совокупность одинаковых атомов с определённым числом протонов (Z) и нейтронов (N), с ядром, находящимся в определённом энергетическом состоянии (основном состоянии или одном из изомерных состояний). Сумма A = Z + N представляет собой массовое число, а число протонов Z — атомный номер. Для обозначения нуклида элемента (E) используют запись вида: , причём индексы Z и N могут опускаться. Распространённым является обозначение E-A (например, углерод-12, уран-238). Для нуклидов, представляющих собой метастабильные возбуждённые состояния (изомеры), используют букву m в верхнем правом индексе, например 180m Ta. Если существует более одного возбуждённого изомерного состояния с данными A и Z, то для них (в порядке возрастания энергии) используют индексы m1, m2 и т. д. либо последовательность букв m, n, p, q,… Некоторые нуклиды имеют традиционные собственные названия (см. список таких названий).
Нуклиды, имеющие одинаковый атомный номер (обладающие одинаковым числом протонов) называются изотопами. Применение термина изотоп в единственном числе вместо термина нуклид хотя и, строго говоря, неверно, однако широко распространено. Относительная атомная масса нуклида округлённо равна его массовому числу, только для углерода-12 она по определению точно равна 12.
Классификация
Нуклиды делятся на стабильные и радиоактивные (радионуклиды). Стабильные нуклиды не испытывают спонтанных радиоактивных превращений из основного состояния ядра. Радионуклиды путём радиоактивных превращений переходят в другие нуклиды. В зависимости от типа распада, образуются либо другой нуклид того же самого элемента (при нейтронном или двухнейтронном распаде), либо нуклид другого элемента (распады, изменяющие заряд ядра без вылета нуклонов, т. е. бета-распад, электронный захват, позитронный распад, все виды двойного бета-распада), либо два или несколько новых нуклидов (альфа-распад, протонный распад, кластерный распад, спонтанное деление).
Среди радионуклидов выделяются короткоживущие и долгоживущие. Радионуклиды, существующие на Земле с момента её формирования, часто называют природными долгоживущими; такие нуклиды имеют период полураспада, превышающий 5·10 8 лет. Для каждого элемента были искусственно получены радионуклиды; для элементов с номером (т. е. числом протонов), близким к одному из «магических чисел», количество известных нуклидов может доходить до нескольких десятков. Наибольшим количеством известных нуклидов — по 34 — обладают платина и осмий (без учёта изомерных состояний). Некоторые элементы имеют лишь один стабильный нуклид (например, золото и кобальт), а максимальным числом стабильных нуклидов — 10 — обладает олово. У многих элементов все нуклиды радиоактивны (все элементы, имеющие атомный номер больше, чем у свинца, а также технеций и прометий). Общее число известных нуклидов всех элементов превышает 3100 (без учёта изомеров; на сегодня известно около 1000 нуклидов в основных состояниях, для которых существуют одно или несколько метастабильных возбуждённых состояний с периодом полураспада, превышающим 0,1 мкс).
НУКЛИД
НУКЛИД, совокупность атомов с определенными значениями заряда ядра Z (числом протонов в ядрах) и массового числа А (суммой чисел протонов Z и нейтронов N в ядрах). Для обозначения нуклида используют назв. элемента, к к-рому через дефис присоединяют значение А (напр., кислород-16, иод-131, уран-235), или символ хим. элемента, рядом с к-рым вверху слева указывают А ( 16 О, 131 I, 235 U). Масса атома нуклида, выраженная в атомных единицах массы (а. е. м.), округленно равна А (только у одного нуклида 12 С значение массы атома в а. е. м. целочисленно и в точности равно 12). Точные значения масс атомов отдельных нуклидов определяют экспериментально методом масс-спектрометрии. В принципе масса атома каждого нуклида равна сумме масс протонов и нейтронов, входящих в состав ядер, минус масса, отвечающая энергии связи протонов и нейтронов в ядре (т. наз. д е ф е к т м а с с ы), плюс масса электронов, образующих электронную оболочку атома, минус масса, отвечающая энергии связи электронов с ядром. Для нуклидов легких элементов массы атомов обычно несколько меньше массовых чисел (напр., масса 16 О 15,99491464 а. е. м.), для нуклидов тяжелых элементов массы атомов м. б. несколько больше массовых чисел (напр., масса 232 Th 232,038053805 а.е.м.).
Н уклиды подразделяют на стабильные и радиоактивные (радионуклиды). У каждого элемента с четным Z (до Z = 82) существует 2 или более стабильных нуклидов, встречающихся в природе, у элементов с нечетными Z м. б. 1 или самое большее 2 стабильных нуклида; у «нечетных» элементов Тс (Z = 43), Pm (Z = 61) и у всех «нечетных» элементов с Z >= 85 стабильных нуклидов нет, все нуклиды радиоактивны. Всего стабильных нуклидов ок. 270; из всех радионуклидов ок. 50 встречаются в природе, остальные радионуклиды (ок. 1700) получены искусственно. В настоящее время радионуклиды известны практически у всех элементов. Мн. стабильные и радиоактивные нуклиды используются как изотопные индикаторы (меченые атомы). В СССР промышленно производится ок. 140 радионуклидов и большое число препаратов, обогащенных определенными стабильными нуклидами.
Для систематики нуклидов предложены разл. графич. формы; наиб. распространение получила таблица нуклидов, разработанная учеными ФРГ и приведенная, в частности, в т. 3 «Физической энциклопедии» (издательство «Советская энциклопедия», М., 1991). Наиб. надежные результаты эксперим. определения характеристик радионуклидов приведены в издании: «Схемы распада радионуклидов. Энергия и интенсивность излучения». Публикация 38-й Международной комиссии по радиац. защите (МКРЗ: В 2 ч., 4 кн., пер. с англ., М., 1987). Точные значения масс отдельных стабильных нуклидов и данные об их распространенности в природе содержатся в публикации ИЮПАК (см. «Pure and Appl. Chem.», 1984, v. 56, № 6, p. 695-768).
Распространенность нуклидов в земной коре зависит от мн. факторов, определяющих устойчивость ядер (энергии связи протонов и нейтронов в них), и от первонач. условий, при к-рых образовывались эти нуклиды. Наиб. распространен в земной коре 16 О, ядра к-рого содержат по 8 протонов и нейтронов и являются «дважды магическими». В прир. смеси изотопов кислорода на 16 О приходится 99,762 ат. %. Наим. распространенным из стабильных нуклидов является 3 Не (в прир. смеси изотопов гелия на долю 3 Не приходится 0,000138 ат. %). В космосе наиб. распространен 1 Н. Нек-рые нуклиды постоянно образуются в результате ядерных реакций и постепенно накапливаются в земной коре (гелий-3, изотопы свинца и др.). Содержание в земной коре прир. долгоживущих радионуклидов ( 40 К, 87 Rb, 235 U и др.) постепенно уменьшается вследствие радиоактивного распада. Существуют и такие прир. радионуклиды, убыль к-рых за счет радиоактивного распада постоянно компенсируется их образованием в результате радиоактивного распада др. радионуклидов, и поэтому их содержание в земной коре практически не меняется. Так, общее содержание At в земной коре (из прир. радионуклидов At наиб. устойчив a-радиоактивный 210 At, период полураспада к-рого Т 1/2 8,1 ч), несмотря на его быстрый распад, остается практически постоянным и равным 70 мг (в толще земной коры на глубине до 1,6 км), так как At постоянно образуется как член радиоактивных рядов урана-238 и урана-235 (см. Радиоактивные ряды).
Нуклид
Слово « нуклид» было придумано Трумэном П. Кохманом в 1947 году. [2] [3] Кохман определил нуклид как «разновидность атома, характеризующаяся строением его ядра», содержащая определенное количество нейтронов и протонов. Таким образом, термин первоначально был сосредоточен на ядре.
Хотя слова нуклид и изотоп часто используются как синонимы, быть изотопами на самом деле является лишь одной связью между нуклидами. В следующей таблице перечислены некоторые другие отношения.
Нуклид и продукт его альфа-распада являются изодиаферами. [4]
но с разными энергетическими состояниями
См. Раздел « Обозначение изотопов» для объяснения обозначений, используемых для различных типов нуклидов или изотопов.
Самым долгоживущим ядерным изомером в неосновном состоянии является нуклид тантал-180m ( 180м 73Та ), период полураспада которого превышает 1000 триллионов лет. Этот нуклид существует изначально и никогда не наблюдался распада до основного состояния. (Напротив, нуклид тантал-180 в основном состоянии не встречается изначально, поскольку он распадается с периодом полураспада всего 8 часов до 180 Hf (86%) или 180 Вт (14%)).
Пример нуклидов, образованных в результате ядерных реакций, космогенных. 14
C
( радиоуглерод ), который образуется при бомбардировке космическими лучами других элементов, и нуклеогенный 239
Пу
который до сих пор создается нейтронной бомбардировкой естественного 238
U
в результате естественного деления урановых руд. Космогенные нуклиды могут быть стабильными или радиоактивными. Если они стабильны, их существование должно быть выведено на фоне стабильных нуклидов, поскольку каждый известный стабильный нуклид присутствует на Земле изначально.
Помимо 339 естественных нуклидов, более 3000 радионуклидов с различным периодом полураспада были искусственно произведены и охарактеризованы.
Четные и нечетные числа нуклонов
Химия. 11 класс
Конспект урока
Урок № 1. Химический элемент. Нуклиды. Изотопы. Законы сохранения массы и энергии в химии
Перечень вопросов, рассматриваемых в теме
Урок посвящён изучению основных понятий химии (химический элемент, изотоп, нуклид) и двум важнейшим законам природы – закону сохранения массы и закону сохранения энергии. Учащиеся узнают о важнейших характеристиках химического элемента, смогут назвать различие между понятиями «химический элемент», «нуклид», «изотоп» и научатся применять закон сохранения массы веществ при составлении уравнений химических реакций.
Атом – это наименьшая частица химического элемента, которая несет все его свойства.
Изотопы – это нуклиды с одинаковым зарядом ядра, но разным массовым числом и числом нейтронов
Нейтрон – это незаряженная элементарная частица.
Нуклиды – это различные виды ядер, которые отличаются зарядом или массовым числом.
Протон – это положительно заряженная элементарная частица.
Элементарная частица – это объект, который нельзя разделить на более мелкие составляющие.
Радиоактивный распад – это превращение ядер нуклидов, сопровождающиеся изменением числа протонов или нейтронов в ядре и испусканием элементарных частиц, гамма-квантов или кластеров.
Химический элемент – это вид атомов с определенным зарядом ядра.
Электроны – это отрицательно заряженные элементарные частицы, которые движутся по орбиталям вокруг ядра.
Ядро – это положительно заряженная центральная часть атома.
Основная литература: Рудзитис, Г. Е., Фельдман, Ф. Г. Химия. 10 класс. Базовый уровень; учебник/ Г. Е. Рудзитис, Ф. Г, Фельдман – М.: Просвещение, 2018. – 224 с.
1. Рябов, М.А. Сборник задач, упражнений и тестов по химии. К учебникам Г.Е. Рудзитис, Ф.Г. Фельдман «Химия. 10 класс» и «Химия. 11 класс»: учебное пособие / М.А. Рябов. – М.: Экзамен. – 2013. – 256 с.
2. Рудзитис, Г.Е. Химия. 10 класс : учебное пособие для общеобразовательных организаций. Углублённый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – М. : Просвещение. – 2018. – 352 с.
Открытые электронные ресурсы:
ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ
Одним из основных понятий химии является атом. Атом – это наименьшая частица химического элемента, которая несет все его свойства. Согласно планетарной модели, атом состоит из ядра и электронов. Электроны – это отрицательно заряженные элементарные частицы, которые движутся по орбиталям вокруг ядра. Ядро – это положительно заряженная центральная часть атома. Ядра атомов превращаются друг в друга в ходе ядерных реакций.
Ядро состоит из двух типов элементарных частиц: протонов (Z) и нейтронов (N). Заряд нейтронов равен нулю. Протоны обладают зарядом +1. Общее число нейтронов и протонов в ядре называется массовым числом (А). Оно близко, но не равно по значению к атомной массе элемента, указанной в Периодической таблице. Заряд ядра равен числу протонов и порядковому номеру элемента в Периодической системе.
Вид атомов с определенным зарядом ядра называется химическим элементом. Химический элемент существует в виде простого вещества (металла или неметалла) или соединений с другими элементами. К характеристикам химического элемента относятся: атомный номер, относительная атомная масса, изотопный состав, положение в Периодической системе, строение атома, электроотрицательность, степени окисления, валентность, энергия ионизации, сродство к электрону, распространенность в природе.
Нуклидами называют различные виды ядер, которые отличаются зарядом или массовым числом. Они обозначаются следующим образом: вверху перед символом нуклида пишется массовое число, внизу – порядковый номер элемента. Нуклиды с одинаковым зарядом ядра, но разным массовым числом и числом нейтронов называются изотопами. Изотопы одного элемента обладают одинаковыми химическими свойствами и почти не отличаются по физическим свойствам. Элементы представляют собой совокупность изотопов с разными массовыми числами, поэтому атомные массы многих элементов представлены дробными числами.
Химические реакции подчиняются законам сохранения массы и энергии. Закон сохранения массы веществ впервые сформулировал великий ученый М.В. Ломоносов. Экспериментально его доказал А.Л. Лавуазье. Формулируется закон следующим образом: масса исходных веществ, вступивших в химическую реакцию, равна массе продуктов реакции. В ходе реакции атомы веществ только перегруппировываются.
В двадцатом веке ученые обнаружили, что закон сохранения массы не соблюдается в случае ядерных реакций. После того, как А. Эйнштейн открыл взаимосвязь между массой и энергией, выраженную в его знаменитой формуле E=mc2, стало понятно, что закон сохранения массы лишь частный случай закона сохранения энергии. Закон сохранения энергии гласит: в изолированной системе энергия системы не исчезает и не появляется, а только переходит из одного вида в другой. Для составления ядерных реакций важно помнить, что суммарный заряд ядер и массовое число сохраняются.
ПРИМЕРЫ И РАЗБОР РЕШЕНИЙ ЗАДАЧ ТРЕНИРОВОЧНОГО МОДУЛЯ
1. Решение задачи на работу с Периодической системой.
Условие задачи: Введите формулу простого вещества, при бета-распаде которого образуется висмут.
Решение: Висмут – элемент с порядковым номером 83. При бета распаде один из нейтронов превращается в протон, таким образом заряд ядра атома увеличивается на единицу. Следовательно, химический элемент, образующий исходное вещество, находится на одну клетку левее висмута. Это свинец.
2.Решение задачи на закон сохранения массы или закон сохранения числа атомов.
Условие задачи: Расставьте коэффициенты в реакции и выберите правильное значение их суммы.
Решение: Составим электронный баланс. Каждый атом алюминия присоединил 3 электрона, а каждый атом серы отдал два электрона. Тогда коэффициенты 2Al + 3S = Al2S3
- Что такое нуклеусы для пчел
- Что такое нуклиды простыми словами