Что такое низкий уровень сигнала
Понятие о сигналах
Аналоговые электрические сигналы — сигналы, изменяющиеся во времени непрерывно и способные принимать любое значение в некотором диапазоне напряжений, тока, частоты или иных характеристик (метрик). Аналоговая природа естественна для многих физических процессов и сигналов — звука, перемещения, изменения температуры и т.п. Поэтому метрики данных физических процессов/сигналов удобно (и естественно) переводить в аналоговые электрические сигналы с целью дальнейшей их преобразования электронными схемами. Например, температура 25.256 градусов Цельсия может быть закодирована как напряжение 2.5256 В. Самыми большими проблемами использования аналоговых сигналов являются:
— их чувствительность к помехам, приводящая к искажению значений (например, в вышеприведенном примере помеха 0.1В приведет к ошибке температуры на 1 градус Цельсия);
— высокие погрешности обработки каскадами электронных схем (усиления, интегрирования и т.п.), связанные с сложностью/невозможностью изготовления электронных компонентов (резисторов, конденсаторов, транзисторов. микросхем) с параметрами (сопротивления, емкости, коэффициентами передачи и т.п.) высокой и сверхвысокой точности (до тысячных процента) и стабильности в диапазоне температур, давлений и т.д.
Дискретные электрические сигналы — сигналы, для которых допускаются лишь значения из заранее определенного ограниченного множества. Значения указываются с допустимой погрешностью. Например, дискретный электрический сигнал имеет три допустимых значения напряжений: 0В, 5В и 10В, с допуском ±1В. Дискретными могут быть физические процессы и сигналы. Например, состояние управляющей клавиши (вкл/выкл — 2 значения) или датчика установленной передачи в коробке передач автомобиля (количество дискретных значений равно числу передач) или импульсы в детекторе элементарных частиц (есть/нет). Использование дискретных сигналов имеет важное преимущество — допустимость установки значения с некоторой значительной погрешностью, что резко повышает помехоустойчивость и снижает требования к точности параметров электронных каскадов.
Различают элементы с различными спо¬собами электрического кодирования двоичной информации;
• потенциальные,
• импульсные,
• импульсно-потенциальные.
При потенциальном способе кодирования при положитель¬ной логике за единицу («1») принимается высокий потенциал, за нуль («О») — низкий потенциал. Сигнал сохраняется неизмен¬ным на время не менее одного периода следования сигналов синхронизации (рис. 1, а).
При импульсном кодировании двоичной информации чаще всего «1» соответствует импульс, синфазный с сигналом син¬хронизации, а «О» — отсутствие импульса; значение сигнала в паузе между сигналами синхронизации не рассматривается (рис. 1, б).
Одной из разновидностей импульсного способа является ди¬намическое кодирование сигналов, когда единице соответствует последовательность импульсов между двумя импульсами син¬хронизации, а их отсутствие соответствует нулю (рис. 1, в).
Все эти свойства позволили положить цифровые сигналы в основу современных вычислительных устройств, в частности, микропроцессоров, и в основу систем хранения и передачи данных.
ЛОГИЧЕСКИЕ СОСТОЯНИЯ
Для кодирования значений логических переменных или двоичных разрядов (битов) обычно используется напряжение. Ток, частота и другие характеристики сигнала тоже применяются, но только в специальных случаях — в основном при передаче данных или как удобный вариант сопряжения электрических каскадов.
Допустимые уровни напряжения соответственно их значениям условно называют ВЫСОКИМ (HIGH) и НИЗКИМ (LOW). Как говорилось выше, уровень соответствует не одному, а диапазону значений напряжений: например, 2,5.5В — ВЫСОКИЙ уровень, 0.1 В — НИЗКИЙ уровень, но для удобства указывают только «номинальный» (обычно крайний по значению) уровень, например, 5В и 0В. Следует понимать, что НИЗКИМ уровнем понимают именно низкое значение напряжения, а не полное отсутствие сигнала, так как такой вариант может возникнуть при обрыве на линии.
Двум указанным уровням напряжения можно сопоставить пару логических значений (логических состояний, двоичных цифр).
Если ВЫСОКИЙ уровень напряжения цифрового сигнала соответствует значению «1» или «ИСТИНА», а НИЗКИЙ уровень напряжения соответствует значению «0» или «ЛОЖЬ», то такой способ кодирования логической переменной называется ПОЗИТИВНОЙ (ПОЛОЖИТЕЛЬНОЙ) ЛОГИКОЙ.
ЕСЛИ ВЫСОКИЙ уровень напряжения цифрового сигнала соответствует значению «0» или «ЛОЖЬ», а НИЗКИЙ уровень напряжения соответствует значению «1» или «ИСТИНА», то такой способ кодирования логической переменной называется НЕГАТИВНОЙ (ОТРИЦАТЕЛЬНОЙ) ЛОГИКОЙ.
Тип логики (ПОЗИТИВНАЯ или НЕГАТИВНАЯ) является не только характеристикой собственно цифрового сигнала, но также и характеристикой цифрового элемента (блока, схемы), который обрабатывает данный сигнал исходя именно из такого способа его кодирования. Например, элемент популярной логической микросхемы SN7408 в документации полностью именуется «двухвходовой элемент «И» с позитивным кодированием сигналов». Если же использовать негативное кодирование, то функция данного элемента изменится на «ИЛИ».
Современная элементная база и схемотехника в целом ориентирована на позитивную (положительную) логику. Однако в некоторых случаях негативная (отрицательныя) логика может оказаться более удобным способом кодирования цифровых или логических значений. Например, схема определения нажатия кнопки на клавиатуре часто построена таким образом, что ВЫСОКИЙ уровень вырабатывается, если кнопка не нажата, и НИЗКИЙ — при нажатии кнопки. То есть, если кодировать факт нажатия кнопки как «ИСТИНА» и при этом вырабатывается НИЗКИЙ уровень сигнала, то получаем негативное (отрицательное) кодирование. Часто удобство негативной логики для сигналов цифровых элементов определяется особенностями внутренней схемотехники этих элементов.
Чтобы не путаться с тем, какие элементы в схеме используют позитивное кодирование, а какие негативное, принято соглашение всеми элементами в схеме используется один тип кодирования сигналов (например, позитивное), а если на входе или выходе какого-нибудь элемента должен формироваться сигнал с негативным кодированием, то он преобразуется из/в позитивный путем инвертирования. Такие инвертированные сигналы обозначаются на схемах чертой над названием сигнала (знак булевой операции «отрицание»), а вход или выход элемента, на котором выполняется инверсия сигнала (зачастую это мнимое инвертирование — схема использует внутри себя непосредственно негативно закодированный сигнал), обозначается кружочком.
Примечания:
1) В силу большей естественной воспринимаемости (принцип «большему соответствует большее») и распространенности положительной логики на схемотехническом сленге часто называют ВЫСОКИЙ уровень напряжения — «1», а НИЗКИЙ уровень напряжения — «0». Таким образом, в случае использования отрицательной логики может возникнуть путаница: говоря о «единице на сигнальной линии», подразумевают ВЫСОКИЙ уровень напряжения, который на самом деле соответствует логическому значению «0».
2) Термины «позитивная» логика и «положительная» логика, а также «негативная» и «отрицательная» логика эквивалентны и в различных комбинациях встречаются в литературе. Первоисточник — английские слова «positive» и «negative». Так же встречается вариант «прямая»-«инверсная» логика (подразумевается. что сигнал с негативной логикой («инверсный») может быть получен путем инверсии сигнала с позитивной логикой («прямого»).
ПАРАМЕТРЫ ЦИФРОВЫХ СИГНАЛОВ
Параметрами реальных цифровых сигналов, наиболее важными для схемотехнического проектирования, являются:
— Диапазон напряжений для логических «0» и «1», для выходов логических элементов/схем и для входов цифровых элементов/схем;
— Нагрузочная способность (коэффициент разветвления по выходу) выходов цифровой схемы — fanout;
— Длительность переключения состояния — время измерения состояния сигнала с НИЗКОГО уровня на ВЫСОКИЙ и наоборот (перехода из логического «0» в «1» и наоборот) — transition time;
— Временная задержка цифрового сигнала при «прохождении» через логический элемент/схему — propagation delay.
Диапазоны напряжений для логических «0» и «1».
Так как именно напряжение используется для кодирования значений «0» и «1», то диапазон напряжений для логических «0» и «1» являются основным параметром цифровых схем. При этом каждому из логических уровней «0» и «1» соответствуют не фиксированные значения напряжения, например, 0В или 5В, а некоторый диапазон напряжений. Например, для микросхем семейства ТТЛ логическому «0» будет соответствовать напряжение, попадающее в диапазон от 0В до +0.8В, а логической «1» будет соответствовать напряжение в диапазоне от +2В до +5В. Кодирование логических уровней диапазонами сделано потому что:
1) Позволяет использовать цифровые элементы/схемы с достаточно значительными, допусками параметров входных и выходных каскадов, что сильно удешевляет их производство.
2) Допускает колебание параметров элементов/схем и соответствующих цифровых сигналов за счет изменения температур, электрической нагрузки и напряжения питания схем и т.п.
3) Позволяет игнорировать влияние шумов — паразитных напряжений, которые добавляются/вычитаются из рабочего напряжения при «прохождении» его через схему. Шумы возникают за счет емкостных и индуктивных связей между сигналами в схеме, помех приходящих по подключенным внешним цепям и цепям питания, за счет электромагнитных наводок.
Диапазоны напряжений цифровых сигналов, генерируемые выходами цифровых схем и воспринимаемые входами схем, делают разными. Диапазон, воспринимаемый входами более широкий по сравнению с диапазоном выходных сигналов, и диапазон выходов целиком перекрывается диапазоном входов, оставляя запас по границе минимального и максимального напряжений. Это гарантирует, что выходной сигнал вырабатываемый одной цифровой схемой и подаваемый на вход другой будет правильно восприниматься даже в условиях помех. Например, выход вырабатывает ВЫСОКИЙ уровень в диапазоне 4.5В — 5В, а вход будет воспринимать ВЫСОКИЙ уровень в диапазоне 3.5В-5.5В. Поэтому, если к выходному напряжению ВЫСОКОГО уровня равному 4.5В добавится помеха 1В, то суммарное напряжение будет 5.5В и будет воспринято входом верно — как ВЫСОКИЙ уровень.
Между диапазонами ВЫСОКОГО уровня и НИЗКОГО уровня располагается так называемая «мертвая зона». В пределах мертвой зоны производитель не гарантирует корректное восприятие уровня сигнала. Около середины мертвой зоны (но не точно) располагается пороговый уровень Шх.п (Vin.t, threshold voltage), ниже которого уровень сигнала на входе воспринимается как НИЗКИЙ, а выше — как ВЫСОКИЙ. Номинальное значение Цп определяется документацией на электронный компонент (микросхему), но реальное значение может смещаться в рамках мертвой зоны в зависимости от особенностей конкретного образца (микросхемы), от температуры, от старения компонента, от напряжения питания и других параметров.
Итого: среди основных параметров цифровых схем должны быть заданы следующие напряжения цифровых сигналов:
— Для цифровых входов:
— ивх.О.мин. (VIL.min) — минимальное напряжение, воспринимаемое как «0»;
— Uвх.0.макс.(VIL.max) — максимальное напряжение, воспринимаемое как «0»;
— ивхЛ.мин.(Ущ.тт) — минимальное напряжение, воспринимаемое как «1»;
— ивхЛ.макс.(Ущ.тах) — максимальное напряжение, воспринимаемое как «1»;
— ивх.п (VIT) — напряжение переключения (threshold voltage), значения выше которого воспринимаются как «1», а ниже — как «0».
— Для цифровых выходов:
— ивых.0 (VoL.typ) — типовое напряжение, которое устанавливается при выводе «0»;
— ивых.О.мин.(Усх.тт) — минимальное напряжение, которое может быть установлено при выводе «0»;
— ивых.0.макс.(\^Л.тах) — максимальное напряжение, которое может быть установлено при выводе «0»;
— ивыхЛ(УоШур) — типовое напряжение, которое устанавливается при выводе «1»;
— ивыхЛ.мин.(УОН.тт) — минимальное напряжение, которое может быть установлено при выводе «1»;
— ивых.1.макс. (VOH.max) — максимальное напряжение, которое может быть установлено при выводе «1».
Указанные напряжения зависят от схемотехники и параметров выходных и входных электрических каскадов цифровых схем.
Еще одна особенность/проблема — это использование цифровых микросхем с различными напряжениями питания. Дело в том, что при изменении напряжения питания микросхем, изменяются и уровни напряжения высокого и низкого уровня (см. рисунок ниже). На нынешний момент в цифровой технике наиболее распространенными являются напряжения питания 5В, 3.3В, 2.5В, 1.8В. Необходимость снижения напряжения питания вызвана многими причинами, основными из которых являются снижение потребляемой и выделяемой мощности, повышение быстродействия схем, уменьшение физических размеров транзисторов на кристалле интегральных микросхем.
Видно, что уровни схем с различным питанием не совместимы между собой. При этом их часто приходится использовать совместно в одной схеме. Например, электропитание микропроцессора может быть 5В, а питание подключенных к нему микросхем — 3.3В. И аналогов с иным питанием не производится! В таком случае добавляют специальные каскады/микросхемы преобразования уровней напряжения цифровых сигналов. Иногда эти каскады встроены в микропроцессоры. Иногда удается добиться частичной совместимости уровней, например, микросхема с питанием 3.3В допускает подключение к ней входных сигналов с напряжением до 5В с корректным распознаванием ВЫСОКОГО и НИЗКОГО уровней. Обратного подключения может не допускаться, например выходов «3.3В» ко входам «5В».
Нужно отметить, что так как любое совместное использование схем с различными уровнями напряжений это потенциальный источник ошибок и часто причина усложнения схемы, то, без особой необходимости, стараются не делать смешанных схем.
Нагрузочная способность (коэффициент разветвления по выходу)
Нагрузочная способность выхода цифровой схемы показывает, какое количество входов цифровых схем может быть подключено к данному выходу без перегрузки выходных каскадов и без искажения уровней цифрового сигнала для входов. Нагрузочная способность зависит и устанавливается для пары типов «выход-вход». Например, для выхода типа X устанавливается количество подключаемых входов типа У и количество подключаемых входов типа Z и т.п. Нагрузочная способность может различаться для уровней ВЫСОКИЙ и НИЗКИЙ, но обычно указывается только одно — меньшее значение.
Типовая нагрузочная способность — 20 входов того же типа, что и выход. Если к выходу одного типа подключены входы другого типа, то соотношение изменяется.
Ниже перечислены отрицательные последствия перегрузки выходов:
— Выходное напряжение НИЗКОГО уровня может превысить Ивх.О.макс. и НИЗКИЙ уровень будет определен как ВЫСОКИЙ;
— Выходное напряжение ВЫСОКОГО уровня может быть ниже ИвхЛ.мин. и ВЫСОКИЙ уровень будет определен как НИЗКИЙ;
— Время изменения уровня с НИЗКОГО на ВЫСОКИЙ и обратно превышает значение, допустимое спецификацией данной схемы;
— Задержка распространения сигнала через схему превышает значение, допустимое спецификацией данной схемы;
— Перегрев элементов схемы из-за повышенного тепловыделения, возникающего из-за перегрузки. В результате может возникнуть изменение параметров схемы (уровней напряжения, нагрузочных способностей, параметров быстродействия) или физическая порча перегретых элементов.
Длительность переключения состояния
В идеальном случае ВСЕ выходы цифровой схемы или ее элемента изменяют свое состояние мгновенно и одновременно. Однако реальные выходы не могут моментально переключиться с ВЫСОКОГО на НИЗКИЙ уровень и наоборот: необходимо время на перезаряд паразитных емкостей элементов цифровой схемы или емкостей и индуктивностей проводников на плате. В итоге на рисунке идеальный сигнал (a) приобретает реальную форму (с). Условное изображение на временных диаграммах «постепенного перехода» выхода цифровой схемы из состояния в состояние показано на (b).
Время перехода с НИЗКОГО уровня в ВЫСОКИЙ (Tr) называют «длительностью положительного фронта», иногда просто «длительность фронта», или rise time. Время перехода с ВЫСОКОГО уровня в НИЗКИЙ (Tf) называют «длительностью отрицательного фронта», или «длительностью спада», или fall time. Эти времена обычно близкие по значению, но немного различаются у выходов цифровых схем. Для различных типов выходов (ТТЛ, КМОП и других) эти времена могут различаться в разы. Длительности переходов возрастают при подключении большего числа входов к выходу. Это объясняется, в основном, ростом значения емкости, подключенной к выходу за счет входных емкостей входов. Для наиболее распространенных на сегодня типа КМОП длительности переходов находятся в пределах 5-10 ns для типового числа подключенных входов. Для быстродействующих каскадов «внутри» СБИС процессоров, памяти и т.п. это время уменьшается до десятых — сотых наносекунды.
Задержка перехода является отрицательным фактором функционирования цифровых схем и, наряду с задержкой распространения сигнала, значительно усложняет их разработку. Основные причины этого:
— нахождение выхода в неопределенном состоянии приводит к возможности некорректного срабатывания входа, причем многократного;
— рассинхронизация в работе элелементов/частей цифровых схем;
— повышенное энергопотребление во время нахождения в неопределенном состоянии.
Задержка распространения сигналов.
Задержкой распространения сигнала через элемент (propagation delay, tp) называют время между фронтом (перепадом) цифрового сигнала на входе элемента и вызванным им (входным фронтом) перепадом сигнала на выходе элемента. Задержка распространения вызвана временем срабатывания транзисторных ключей внутри элемента. Она будет больше, чем больше количество таких ключей по пути распространения сигнала внутри элемента, т.е. количество последовательных каскадов. Задержка распространения может быть разной для перепада на выходе с НИЗКОГО на ВЫСОКИЙ уровень (tpLH) и для перепада с ВЫСОКОГО в НИЗКИЙ уровень (tpHL).
Какой уровень сигнала 4G модема считается нормальным
Опубликовал Игорь | Июн 22, 2021 | Интернет | 0 |
При оценке работы мобильного интернета нужно ориентироваться не относительными понятиями («слабый-сильный»), а вполне определенными, конкретными цифрами. Для анализа качества приема модемом сотового телефона или другим устройством радиотехниками и специалистами в области связи (информатики) разработан целый набор параметров, которые обозначаются латинскими аббревиатурами.
Рассмотрим, как эти обозначения переводятся на понятный язык, что за ними скрывается, и что они обозначают. Каким образом определить качество 4G сигнала в определенном месте, какие значения должны фиксироваться в оптимальном случае, а какие являются критичными для устойчивой работы устройства. Это поможет выявить причину плохого соединения и малой скорости передачи: неудачный выбор телефона или качество приема в этом месте.
RSSI, RSPR, RSRQ, SINR: оценка сигнала и нормируемые показатели
При проверке уровня сигнала от источника 4G-связи специалисты используют целый ряд параметров, обозначаемых труднопроизносимым сочетанием латинских букв. Рассмотрим, что это за значения, как они переводятся, и что обозначают. А также уточним, какими должны быть цифры в зоне стабильного приема, а при каких значениях Интернет-соединение просто не может быть устойчивым и надежным.
Существуют и другие параметры, которые характеризуют сигнал, например, CQI – Индикатор Качества Канала (Channel Quality Indicator) и прочие.
Что означает уровень сигнала dBm ASU?
Одно из обозначений отношения уровня передаваемой информации к шуму в пилотном канале обозначается как ASU. Пилотный сигнал – это излучение, которое непрерывно (фоном) передается Базовой Станцией. Уровень мощности остается постоянным, он всегда на 4-5 дБ выше, чем в информационных каналах.
Параметр ASU отображается не в децибелах, а в баллах. Таблица перевода баллов в дБ выглядит так:
Что за единица измерения дБм?
Для измерения качества приема используется внесистемная единица dBm (децибел милливатт), которая представляет собой отношение получаемого сигнала к стандартной величине. Она показывает, на сколько децибел параметры сигнала, идущего от базовой станции, меньше (или, при положительных значениях, больше) величины в 1 мВт.
Какой dBm лучше?
Почему dBm отрицательный?
Программы для измерения уровня сигнала модемного устройства
Сегодня, чтобы скачать программы и узнать уровень сигнала, достаточно зайти на Play Market и выбрать понравившуюся или рекомендованную программу определения основных параметров.
Наиболее простой вариант – использовать приложение Mobile Data Monitoring Application. Чтобы программа работала максимально точно, после скачивания и перед началом измерения следует закрыть все приложения, которые относятся к управлению модемом.
После открытия меню следует войти в подраздел «RSSI». Появятся данные об уровне принимаемого сигнала. Использование программы позволяет:
Но сегодня разработаны и другие программы, оценивающие параметры 3G или 4G сетей. Скачать приложения можно с официальных сайтов компаний-производителей или из проверенных источников.
Как проверить стабильность сети на мобильном устройстве
Современные смартфоны и планшеты располагают программным обеспечением, которое позволяет определить уровень сигнала, его надежность и устойчивость. Лучше всего такая возможность реализована на ОС Андроид. Для определения стабильности рекомендуется:
По полученным данным, вы сможете оценить силу и устойчивости сигнала.
Параметры для сетей поколения 3G
Для сетей третьего поколения программы показывают такие данные:
Параметры для сети 4G
Для сетей четвертого поколения будут отображаться уже рассмотренные характеристики:
Для каждого типа сетей выделяется пул частот:
Также программа предложит дополнительные приложения для Андроид, которые можно скачать и использовать.
Как сделать уровень сигнала более качественным
Если анализ состояния показывает слабость сигнала, его можно попытаться усилить «домашними» средствами. Вот некоторые рекомендации:
В некоторых случаях, если сигнал принимается с достаточной силой, ухудшает качество связи само устройство. В таком случае рассматривается возможность заменить модем на новый.
Уровень сигнала и скорость
Многих интересует зависимость уровня сигнала от скорости. Из нашего опыта работы видно, что скорость снижается и пропадает стабильность только при очень низком уровне сигнала. А при среднем и высоком уровне скорость доступа в интернет практически не меняется и напрямую зависит от загрузки базовой станции. Многие фирмы, которые занимаются установкой 3G интернета, «разводят» своих клиентов на деньги, предлагая установить мощную антенну практически рядом с базовой станцией, обещая при этом более высокую скорость и стабильность. На деле это просто обман ради денег. Мы заинтересованы в хорошей репутации и в честности установки. Поэтому никогда Вам не предложим ставить мощную антенну, когда в этом нет необходимости. Попробуем разобраться с разными ситуациями при разном удалении от базовой станции и определимся, какого же уровня сигнала достаточно.
Очень важно знать номер базовой станции (номер соты), к которой Вы присоединились. Одна сота может быть гораздо менее загруженной, чем другая и наоборот. Соответственно, скорости будут тоже разные. Очень часто более удаленная сота оказывается наиболее лучшей по скорости, несмотря на низкий уровень сигнала. Например, 3G модем без внешней направленной антенны подключается к первой попавшейся соте, которая лучшая по уровню сигнала, но не всегда лучшая по скорости. Направленная антенна помогает подсоединиться модему к наилучшей соте по скорости. Также она увеличивает исходящую скорость и повышает стабильность.
Для предварительного замера сигнала у нас есть специальный квадрокоптер, который позволяет быстро и эффективно замерить уровни сигнала без построения мачтовых конструкций и без вызова автовышки (в сложных условиях). Возможен подъем на высоту до 100 метров для оценки уровня сигнала, а также для сбора информации о рельефе и пр. Для этого используется встроенная видео камера. Это позволяет очень точно оценить все работы по построению мачтовых конструкций и выбор подходящей антенны.