Что такое неоднородное дифференциальное уравнение
Линейные однородные дифференциальные уравнения и линейные неоднородные дифференциальные уравнения 2-го порядка
Линейные однородные дифференциальные уравнения (ЛОДУ) и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка .
Частным случаем дифференциальных уравнений (ДУ) такого типа называют линейные однородные дифференциальные уравнения и линейные неоднородные дифференциальные уравнения с постоянными коэффициентами.
Общее решение линейного однородного дифференциального уравнения на отрезке [a;b] представляет собой линейную комбинацию 2х линейно независимых частных решений y1 и y2 нашего уравнения, т.е.:
.
Самое сложное заключается в определении линейно независимых частных решений ДУ такого типа. Зачастую, частные решения выбирают из таких систем линейно независимых функций:
Но достаточно редко частные решения представляются именно так.
Примером линейного однородного дифференциального уравнения можно назвать .
Общее решение линейного неоднородного дифференциального уравнения определяется как ,
где y0 является общим решением соответствующего линейного однородного дифференциального уравнения,
а является частным решением исходного ДУ. Метод определения y0 мы сейчас обсудили, а вычисляют, используя метод вариации произвольных постоянных.
Как пример линейного неоднородного дифференциального уравнения приводим .
Познакомиться ближе с теорией и просмотреть примеры решений можете здесь: Линейные дифференциальные уравнения второго порядка.
Что такое неоднородное дифференциальное уравнение
Пусть общее решение однородного дифференциального уравнения второго порядка имеет вид: \[
Неизвестные функции \(
Подчеркнем, что данный метод работает лишь для ограниченного класса функций в правой части, таких как
\(f\left( x \right) = \left[ <
В обоих случаях выбор частного решения должен соответствовать структуре правой части неоднородного дифференциального уравнения.
В случае \(1,\) если число \(\alpha\) в экспоненциальной функции совпадает с корнем характеристического уравнения, то частное решение будет содержать дополнительный множитель \(
В случае \(2,\) если число \(\alpha + \beta i\) совпадает с корнем характеристического уравнения, то выражение для частного решения будет содержать дополнительный множитель \(x.\)
Неизвестные коэффициенты можно определить подстановкой найденного выражения для частного решения в исходное неоднородное дифференциальное уравнение.
Если правая часть неоднородного уравнения представляет собой сумму нескольких функций вида \[ <
Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами
Данная статья раскрывает вопрос о решении линейных неоднородных дифференциальных уравнений второго порядка с постоянными коэффициентами. Будет рассмотрена теория вместе с примерами приведенных задач. Для расшифровки непонятных терминов необходимо обращаться к теме об основных определениях и понятиях теории дифференциальных уравнений.
Перейдем к формулировке теоремы общего решения ЛНДУ.
Теорема общего решения ЛДНУ
, где исходным неоднородным уравнением является y = y 0 + y
Отсюда видно, что решение такого уравнения второго порядка имеет вид y = y 0 + y
. Алгоритм нахождения y 0 рассмотрен в статье о линейных однородных дифференциальных уравнениях второго порядка с постоянными коэффициентами. После чего следует переходить к определению y
является частным решением y
Решение
Общим решением линейного неоднородного уравнения является сумма общего решения, которое соответствует уравнению y 0 или частному решению неоднородного уравнения y
Для начала найдем общее решение для ЛНДУ, а после чего – частное.
Получили, что корни различные и действительные. Поэтому запишем
. Видно, что правая часть заданного уравнения является многочленом второй степени, тогда один из корней равняется нулю. Отсюда получим, что частным решением для y
Найдем их из равенства вида y
Эта запись называется общим решением исходного линейного неоднородного дифференциального уравнения второго порядка с постоянными коэффициентами.
Применив теорему Коши, имеем, что
Коэффициенты, принадлежащие Q n ( x ) находятся по равенству y
Решение
Уравнение общего вида y = y 0 + y
‘ = e x · A x 2 + B x + C ‘ = e x · A x 2 + B x + C + e x · 2 A x + B = = e x · A x 2 + x 2 A + B + B + C y
‘ ‘ = e x · A x 2 + x 2 A + B + B + C ‘ = = e x · A x 2 + x 2 A + B + B + C + e x · 2 A x + 2 A + B = = e x · A x 2 + x 4 A + B + 2 A + 2 B + C
Ответ: видно, что y
Решение
Имеем пару комплексно сопряженных корней. Преобразуем и получим:
y 0 = e 0 · ( C 1 cos ( 2 x ) + C 2 sin ( 2 x ) ) = C 1 cos 2 x + C 2 sin ( 2 x )
будет производиться из y
Необходимо приравнять коэффициенты синусов и косинусов. Получаем систему вида:
Ответ: общим решением исходного ЛНДУ второго порядка с постоянными коэффициентами считается
Решение
По условию видно, что
= e α x · ( L m ( x ) sin ( β x ) + N m ( x ) cos ( β x ) · x γ = = e 3 x · ( ( A x + B ) cos ( 5 x ) + ( C x + D ) sin ( 5 x ) ) · x 0 = = e 3 x · ( ( A x + B ) cos ( 5 x ) + ( C x + D ) sin ( 5 x ) )
Нахождение производной и подобных слагаемых дает
После приравнивания коэффициентов получаем систему вида
Из всего следует, что
= e 3 x · ( ( A x + B ) cos ( 5 x ) + ( C x + D ) sin ( 5 x ) ) = = e 3 x · ( ( x + 1 ) cos ( 5 x ) + ( x + 1 ) sin ( 5 x ) )
Ответ: теперь получено общее решение заданного линейного уравнения:
= = C 1 e x + C 2 e 2 x + e 3 x · ( ( x + 1 ) cos ( 5 x ) + ( x + 1 ) sin ( 5 x ) )
Алгоритм решения ЛДНУ
Любой другой вид функции f ( x ) для решения предусматривает соблюдение алгоритма решения:
Решение
Необходимо произвести решение относительно C 1 ‘ ( x ) и C 2 ‘ ( x ) при помощи любого способа. Тогда запишем:
Отсюда следует, что общее решение будет иметь вид:
Ответ: y = y 0 + y
Неоднородное дифференциальное уравнение
Неоднородное дифференциальное уравнение — дифференциальное уравнение (обыкновенное или в частных производных), которое содержит не равный тождественно нулю свободный член — слагаемое, не зависящее от неизвестных функций.
Обычно имеет те же свойства, что и соответствующее однородное уравнение — уравнение с отброшенным свободным членом.
В физике часто называют свободный член «неоднородностью» или «возмущением», а соответствующее решение — «возмущённым». Если уравнение представляет собой закон колебаний, то в случае неоднородных уравнений говорят о вынужденных колебаниях.
Алгоритм решения
Решение задачи анализа в системе, поведение которой описывается неоднородным дифференциальным уравнением n-го порядка с постоянными коэффициентами:
См. также
Полезное
Смотреть что такое «Неоднородное дифференциальное уравнение» в других словарях:
Дифференциальное уравнение — Дифференциальное уравнение уравнение, связывающее значение некоторой неизвестной функции в некоторой точке и значение её производных различных порядков в той же точке. Дифференциальное уравнение содержит в своей записи неизвестную функцию,… … Википедия
Дифференциальное уравнение Бернулли — У этого термина существуют и другие значения, см. Уравнение Бернулли. Обыкновенное дифференциальное уравнение вида: называется уравнением Бернулли (при или получаем неоднородное или однородное линейное уравнение). При является частным случаем… … Википедия
Линейное дифференциальное уравнение с постоянными коэффициентами — Линейное дифференциальное уравнение с постоянными коэффициентами обыкновенное дифференциальное уравнение вида: где искомая функция, её тая производная, фиксированные числа … Википедия
ЛИНЕЙНОЕ ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ — обыкновенное уравнение вида где x(t) искомая функция, заданные действительные числа, f(t) заданная действительная функция. Соответствующее (1) однородное уравнение интегрируется следующим образом. Пусть все различные корни характеристич.… … Математическая энциклопедия
Уравнение Коши — Эйлера — В математике ( дифференциальных уравнениях), уравнение Коши Эйлера (Эйлера Коши) является частным случаем линейного дифференциального уравнения (см. линейное дифференциальное уравнение), приводимым к линейному дифференциальному уравнению с… … Википедия
Уравнение Лапласа — Уравнение Лапласа дифференциальное уравнение в частных производных. В трёхмерном пространстве уравнение Лапласа записывается так: и является частным случаем уравнения Гельмгольца. Уравнение рассматривают также в двумерном и одномерном… … Википедия
Уравнение Коши — В математике (дифференциальных уравнениях), уравнение Коши Эйлера (Эйлера Коши) является частным случаем линейного дифференциального уравнения (см. линейное дифференциальное уравнение), приводимым к линейному дифференциальному… … Википедия
Уравнение колебаний струны — Волновое уравнение в математике линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах (акустика,… … Википедия
Линейные неоднородные дифференциальные уравнения первого порядка
На тот случай, если применяемые при разборе темы термины и понятия окажутся незнакомыми для вас, мы рекомендуем заглядывать в раздел «Основные термины и определения теории дифференциальных уравнений».
Метод вариации произвольной постоянной для решения ЛНДУ первого порядка
Для краткости будет обозначать линейное неоднородное дифференциальное уравнение аббревиатурой ЛНДУ, а линейное однородное дифференциальное уравнение (ЛОДУ).
Теперь обратимся к правилу дифференцирования произведения. Получаем:
Теперь вспомним свойства неопределенного интеграла. Получаем:
Теперь выполним переход:
Подведем итог
Метод вариации произвольной постоянной при решении ЛНДУ предполагает проведение трех этапов:
Теперь применим этот алгоритм к решению задачи.
Еще один метод решения ЛНДУ первого порядка
Мы можем подставить эту функцию в ЛНДУ первого порядка. Имеем:
y ‘ + P ( x ) · y = Q ( x ) ( u · v ) ‘ + P ( x ) · u · v = Q ( x ) u ‘ · v + u · v ‘ + P ( x ) · u · v = Q ( x ) u ‘ · v + u · ( v ‘ + P ( x ) · v ) = Q ( x )
Рассмотрим этот алгоритм решения на предыдущем примере. Это позволит нам сосредоточиться на главном, не отвлекаясь на второстепенные детали.
Следовательно, общее решение исходного линейного неоднородного дифференциального уравнения есть y = u · v = ( x + C ) · ( x 2 + 1 )
Ответы в обоих случаях совпадают. Это значит, что оба метода решения, которые мы привели в статье, равнозначны. Выбирать, какой из них применить для решения задачи, вам.