Что такое мультипликативная группа
Аддитивные и мультипликативные группы остатков
В этой лекции мы будем изучать сложение и умножение остатков с позиций теории групп.
Заметьте, в согласии с теоремой Лагранжа порядок каждого элемента является делителем числа 10, которое задает порядок группы .
В общем случае порядок выражается через наименьшее общее кратное (НОК) и наибольший общий делитель (НОД).
Утверждение. Порядок элемента k в аддитивной группе задается формулами:
Далее мы рассмотрим мультипликативную структуру . Понятно, что не является группой по отношению к операции умножения, хотя бы потому что 0 не имеет обратного элемента, но и другие остатки могут быть необратимы.
Очевидно, что множество мультипликативно обратимых остатков образует группу, поскольку произведение обратимых остатков обратимо:
Доказательство этого факта, также как и общий метод вычисления обратных элементов, основано на алгоритме вычисления наибольшего общего делителя, восходящего еще к Эвклиду Давайте обсудим алгоритм Эвклида.
Один из способов вычисления НОД(m, k) состоит в разложении чисел m и k на простые множители. Например, для вычисления НОД(96, 60) мы можем оба числа представить как произведение простых чисел:
Применим утверждение к выше приведенному примеру:
МУЛЬТИПЛИКАТИВНАЯ ГРУППА
Смотреть что такое «МУЛЬТИПЛИКАТИВНАЯ ГРУППА» в других словарях:
Мультипликативная группа поля — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У … Википедия
Мультипликативная группа кольца вычетов — Приведённая система вычетов по модулю m множество всех чисел полной системы вычетов по модулю m, взаимно простых с m. Приведённая система вычетов по модулю m состоит из φ(m) чисел, где φ(·) функция Эйлера. В качестве приведённой системы вычетов… … Википедия
Группа (математика) — Теория групп … Википедия
Группа (алгебра) — Группа в абстрактной алгебре непустое множество с определённой на нём бинарной операцией, удовлетворяющей указанным ниже аксиомам. Ветвь математики, занимающаяся группами, называется теорией групп. Всем знакомые вещественные числа наделены… … Википедия
КЛАССИЧЕСКАЯ ГРУППА — группа автоморфизмов нек рой полуторалинейной формы f на правом K модуле Е, где К кольцо; при этом f и Е(а иногда и К)удовлетворяют дополнительным условиям. Точного определения К. г. нет. Предполагается, что f либо нулевая, либо невырожденная… … Математическая энциклопедия
ПОЛНАЯ ЛИНЕЙНАЯ ГРУППА — группа всех обратимых матриц степени пнад ассоциативным кольцом K с единицей; общепринятое обозначение: GLn(K).или GL(n, К). П. л. г. GL(n, K) может быть также определена как группа автоморфизмов АutK(V) свободного правого K модуля Vс… … Математическая энциклопедия
Конечно определенная группа — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У … Википедия
Конечно определённая группа — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У … Википедия
Конечнопорожденная группа — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У … Википедия
Конечнопорождённая группа — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У … Википедия
МУЛЬТИПЛИКАТИВНАЯ ГРУППА
Смотреть что такое «МУЛЬТИПЛИКАТИВНАЯ ГРУППА» в других словарях:
Мультипликативная группа поля — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У … Википедия
Мультипликативная группа кольца вычетов — Приведённая система вычетов по модулю m множество всех чисел полной системы вычетов по модулю m, взаимно простых с m. Приведённая система вычетов по модулю m состоит из φ(m) чисел, где φ(·) функция Эйлера. В качестве приведённой системы вычетов… … Википедия
Группа (математика) — Теория групп … Википедия
Группа (алгебра) — Группа в абстрактной алгебре непустое множество с определённой на нём бинарной операцией, удовлетворяющей указанным ниже аксиомам. Ветвь математики, занимающаяся группами, называется теорией групп. Всем знакомые вещественные числа наделены… … Википедия
КЛАССИЧЕСКАЯ ГРУППА — группа автоморфизмов нек рой полуторалинейной формы f на правом K модуле Е, где К кольцо; при этом f и Е(а иногда и К)удовлетворяют дополнительным условиям. Точного определения К. г. нет. Предполагается, что f либо нулевая, либо невырожденная… … Математическая энциклопедия
ПОЛНАЯ ЛИНЕЙНАЯ ГРУППА — группа всех обратимых матриц степени пнад ассоциативным кольцом K с единицей; общепринятое обозначение: GLn(K).или GL(n, К). П. л. г. GL(n, K) может быть также определена как группа автоморфизмов АutK(V) свободного правого K модуля Vс… … Математическая энциклопедия
Конечно определенная группа — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У … Википедия
Конечно определённая группа — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У … Википедия
Конечнопорожденная группа — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У … Википедия
Конечнопорождённая группа — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У … Википедия
мультипликативная группа
Смотреть что такое «мультипликативная группа» в других словарях:
МУЛЬТИПЛИКАТИВНАЯ ГРУППА — тела группа, элементами к рой являются все ненулевые элементы данного тела, а операция совпадает с операцией умножения в теле. М. г. поля абелева группа. О. А. Иванова … Математическая энциклопедия
Мультипликативная группа поля — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У … Википедия
Мультипликативная группа кольца вычетов — Приведённая система вычетов по модулю m множество всех чисел полной системы вычетов по модулю m, взаимно простых с m. Приведённая система вычетов по модулю m состоит из φ(m) чисел, где φ(·) функция Эйлера. В качестве приведённой системы вычетов… … Википедия
Группа (математика) — Теория групп … Википедия
Группа (алгебра) — Группа в абстрактной алгебре непустое множество с определённой на нём бинарной операцией, удовлетворяющей указанным ниже аксиомам. Ветвь математики, занимающаяся группами, называется теорией групп. Всем знакомые вещественные числа наделены… … Википедия
КЛАССИЧЕСКАЯ ГРУППА — группа автоморфизмов нек рой полуторалинейной формы f на правом K модуле Е, где К кольцо; при этом f и Е(а иногда и К)удовлетворяют дополнительным условиям. Точного определения К. г. нет. Предполагается, что f либо нулевая, либо невырожденная… … Математическая энциклопедия
ПОЛНАЯ ЛИНЕЙНАЯ ГРУППА — группа всех обратимых матриц степени пнад ассоциативным кольцом K с единицей; общепринятое обозначение: GLn(K).или GL(n, К). П. л. г. GL(n, K) может быть также определена как группа автоморфизмов АutK(V) свободного правого K модуля Vс… … Математическая энциклопедия
Конечно определенная группа — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У … Википедия
Конечно определённая группа — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У … Википедия
Конечнопорожденная группа — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У … Википедия
Конечнопорождённая группа — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У … Википедия
Мультипликативная группа поля
Для общего описания теории групп см. Группа (математика) и Теория групп.
Курсив обозначает ссылку на этот словарь.
p-группа — группа, все элементы в которой имеют порядок, равный некоторой степени простого числа p (не обязательно одинаковой у всех элементов). Также говорят о примарной группе. Более подробно см. в статье конечная p-группа.
Аддитивная группа кольца ― группа, элементами которой являются все элементы данного кольца, а операция совпадает с операцией сложения в кольце.
Антигомоморфизм групп — отображение групп f : (G,*) → (H,×) такое, что
для произвольных a и b в G (сравните с гомоморфизмом).
Гомоморфизм групп — отображение групп такое, что
для произвольных a и b в G.
Группа Шмидта — это ненильпотентная группа, все собственные подгруппы которой нильпотентны.
Группа Миллера — Морено — это неабелева группа, все собственные подгруппы которой абелевы.
Групповая алгебра группы G над полем K — это векторное пространство над K, образующими которого являются элементы G, а умножение образующих соответсвует умножению элементов G.
Длина ряда подгрупп — число n в определении ряда подгрупп.
Изоморфизм групп — биективный гомоморфизм.
Изоморфные группы — группы, между которыми существует хотя бы один изоморфизм.
Индекс подгруппы H в группе G — число смежных классов в каждом (правом или левом) из разложений группы G по этой подгруппе H.
Индексы ряда подгрупп — индексы | Gi + 1:Gi | в определении субнормального ряда подгрупп.
Класс смежности/смежный класс (левый или правый) подгруппы H в G. Левый класс смежности элемента по подгруппе H в G есть множество
Аналогично определяется правый класс смежности:
Класс сопряжённости элемента есть множество
Коммутант группы есть подгруппа, порождённая всеми коммутаторами группы, обычно обозначается [G,G] или .
Коммутативная группа. Группа G является коммутативной, или абелевой, если её операция * коммутативна, то есть g*h=h*g .
Коммутатор подгрупп — множество всевозможных произведений .
Композиционный ряд группы G — ряд подгрупп, в котором все факторы Gi + 1 / Gi — простые группы.
Конечная группа — группа с конечным числом элементов.
Конечно определённая группа — группа, обладающая конечным числом образующих и задаваемая в этих образующих конечным числом соотношений.
Конечнопорождённая группа — группа, обладающая конечной системой образующих.
Кручение, TorG, коммутативной или нильпотентной группы G есть подгруппа всех элементов конечного порядка.
Локальная теорема. Говорят, что для некоторого свойства P групп справедлива локальная теорема, если всякая группа, локально обладающая этим свойством, сама обладает им.
Например: локально абелева группа является абелевой, но локально конечная группа может быть бесконечной.
Метабелева группа ― группа, второй коммутант которой тривиален (разрешимая ступени 2).
Метациклическая группа ― группа, обладающая циклической нормальной подгруппой, факторгруппа по которой также циклическая. Всякая конечная группа, порядок которой свободен от квадратов (то есть не делится на квадрат какого-либо числа), является метациклической.
Мультипликативная группа тела ― группа, элементами которой являются все ненулевые элементы данного тела, а операция совпадает с операцией умножения в теле.
Нильпотентная группа — группа, обладающая центральным рядом подгрупп. Минимальная из длин таких рядов называется её классом нильпотентности.
Норма группы — совокупность элементов группы, перестановочных со всеми подгруппами, то есть пересечение нормализаторов всех её подгрупп.
Нормализатор подгруппы H в G — это максимальная подгруппа G, в которой H нормальна. Иначе говоря, нормализатор есть стабилизатор H при действии G на множестве своих подгрупп сопряжениями, то есть
Нормальная подгруппа (инвариантная подгруппа, нормальный делитель). H есть нормальная подгруппа G, если для любого элемента g в G gH = Hg, то есть правые и левые классы смежности H в G совпадают. Иначе говоря, если .
Период группы ― наименьшее общее кратное порядков элементов данной группы.
Периодическая группа ― группа, каждый элемент которой имеет конечный порядок.
Подгруппа — подмножество H группы G, которое является группой относительно операции, определённой в G.
Подгруппа кручения см. кручение.
Для произвольного подмножества S в G, обозначает наименьшую подгруппу G, содержащую S.
Полупрямое произведение групп G и H над гомоморфизмом (обозначается по разному, в том числе G ⋊φ H) — множество G × H, наделенное операцией *, для которой (g1,h1) * (g2,h2) = (g1φ(h1)(g2),h1h2) для любых , .
Порядок группы (G,*) — мощность G (то есть число её элементов).
Порядок элемента g группы G — минимальное натуральное число m такое, что g m = e. В случае, если такого m не существует, считается, что g имеет бесконечный порядок.
Простая группа — группа, в которой нет нормальных подгрупп, кроме тривиальной <e> и всей группы.
Примарная группа — группа, все элементы в которой имеют порядок, равный некоторой степени простого числа p (не обязательно одинаковой у всех элементов). Также говорят о p-группе.
Расширение группы — группа, содержащая данную группу в качестве нормальной подгруппы.
Разрешимая группа — группа, обладающая нормальным рядом подгрупп с абелевыми факторами. Наименьшая из длин таких рядов называется её ступенью разрешимости.
Ряд подгрупп — конечная последовательность подгрупп G0,G1. Gn называется рядом подгрупп, если , для всех . Такой ряд записывают в виде
Сверхразрешимая группа — группа, обладающая нормальным рядом подгрупп с циклическими факторами.
Свободная группа, порождённая множеством A — это группа, порождённая элементами этого множества и не имеющая никаких соотношений, кроме соотношений, определяющих группу. Все свободные группы, порождённые равномощными множествами, изоморфны.
Соотношение — тождество, которому удовлетворяют образующие группы (при задании группы образующими и соотношениями).
Факторгруппа группы G по нормальной подгруппе H есть множество классов смежности подгруппы H с умножением, определяемым следующим образом:
Факторы субнормального ряда — фактор-группы Gi + 1 / Gi в определении субнормального ряда подгрупп.
Холлова подгруппа — подгруппа, порядок которой взаимно прост с её индексом во всей группе.
Центр группы G, обычно обозначается Z(G), определяется как
Z(G) = <| gh = hg для любого >,
иначе говоря, это максимальная подгруппа элементов, коммутирующих с каждым элементом G.
Централизатор элемента есть максимальная подгруппа, коммутирующая с этим элементом.
Центральный ряд подгрупп — нормальный ряд подгрупп, в котором , для всех членов ряда.
Циклическая группа — группа, состоящая из порождающего элемента и всех его целых степеней. Конечна в случае, если порядок порождающего элемента конечен.
Ядро гомоморфизма — прообраз нейтрального элемента при гомоморфизме. Ядро всегда есть нормальная подгруппа, более того, любая нормальная подгруппа есть ядро некоторого гомоморфизма.
Литература
Полезное
Смотреть что такое «Мультипликативная группа поля» в других словарях:
МУЛЬТИПЛИКАТИВНАЯ ГРУППА — тела группа, элементами к рой являются все ненулевые элементы данного тела, а операция совпадает с операцией умножения в теле. М. г. поля абелева группа. О. А. Иванова … Математическая энциклопедия
Поля Галуа — Конечное поле или поле Галуа поле, состоящее из конечного числа элементов. Конечное поле обычно обозначается или GF(q), где q число элементов поля. Простейшим примером конечного поля является кольцо вычетов по модулю простого числа. Содержание … Википедия
Группа (алгебра) — Группа в абстрактной алгебре непустое множество с определённой на нём бинарной операцией, удовлетворяющей указанным ниже аксиомам. Ветвь математики, занимающаяся группами, называется теорией групп. Всем знакомые вещественные числа наделены… … Википедия
КЛАССИЧЕСКАЯ ГРУППА — группа автоморфизмов нек рой полуторалинейной формы f на правом K модуле Е, где К кольцо; при этом f и Е(а иногда и К)удовлетворяют дополнительным условиям. Точного определения К. г. нет. Предполагается, что f либо нулевая, либо невырожденная… … Математическая энциклопедия
Циклическая группа — В теории групп группа называется циклической, если она может быть порождена одним элементом a, то есть все её элементы являются степенями a (или, если использовать аддитивную терминологию, представимы в виде na, где n целое число).… … Википедия
Таблица обозначений абстрактной алгебры — В абстрактной алгебре повсеместно используются символы для упрощения и сокращения текста, а также стандартные обозначения для некоторых групп. Ниже приведён список наиболее часто встречающихся алгебраических обозначений, соответствующие команды в … Википедия
КОГОМОЛОГИИ АЛГЕБР — группы (см. ФункторExt), где D ассоциативная алгебра над коммутативным кольцом Кс фиксированным гомоморфизмом K алгебр позволяющим рассматривать кольцо Ккак Л модуль, a А есть R модуль. Это определение охватывает наиболее распространенные теории… … Математическая энциклопедия
АДЕЛЬ — элемент группы аделей, т. е. топологич. прямого произведения групп с отмеченными открытыми подгруппами Здесь линейная алгебраическая группа, определенная над глобальным полем множество всех неэквивалентных нормировании поля пополнение… … Математическая энциклопедия
КУММЕРА РАСШИРЕНИЕ — расширение поля kхарактеристики вида где п некоторое натуральное число, причем предполагается, что поле kсодержит первообразный корень из 1 степени п(в частности, пвзаимно просто с рпри ). К. р. названы по имени Э. Куммера (Е. Kummer), впервые… … Математическая энциклопедия
ГИЛЬБЕРТА ТЕОРИЯ — 1) Г. т. о базисе: если А коммутативное нётерово кольцо и кольцо многочленов от с коэффициентами в А, то и нётерово кольцо. В частности, в кольце многочленов от конечного числа переменных над полем или над кольцом целых чисел любой идеал… … Математическая энциклопедия