Что такое морозостойкость строительных материалов
Морозостойкость строительных материалов
Морозостойкость строительных материалов –способность материала, насыщенного водой, выдерживать многочисленное попеременное замораживание, а также оттаивание без значительного уменьшения прочности и без визуальных обнаруживаемых признаков разрушения. Степень морозостойкости определяется количеством циклов заморозки/оттаивания, которые проводят в лабораторных условиях.
От морозостойкости в основном зависит долговечность материалов, применяемых в наружных зонах конструкций различных зданий и сооружений. Разрушение материала при таких циклических воздействиях связано с появлением в нем напряжений, вызванных как односторонним давлением растущих кристаллов льда в порах материала, так и всесторонним гидростатическим давлением воды, вызванным увеличением объема при образовании льда примерно на 9% (плотность воды равна 1, а льда —0,917). При этом давление на стенки пор может достигать при некоторых условиях сотен МПа. Очевидно, что при полном заполнении всех пор и капилляров пористого материала водой разрушение может наступить даже при однократном замораживании. Однако у многих пористых материалов вода не может заполнить весь объем доступных пор, поэтому образующийся при замерзании воды лед имеет свободное пространство для расширения.
Материал считают выдержавшим испытание, если после заданного количества циклов замораживания и оттаивания потеря массы образцов в результате выкрашивания и расслаивания не превышает 5 %, а прочность снижается не более чем на 15 % (для некоторых материалов на 25 %).
Для определения морозостойкости иногда используют ускоренный метод, например, с помощью сернокислого натрия. Кристаллизация этой соли из насыщенных паров при ее высыхании в порах образцов воспроизводит механическое действие замерзающей воды, но в более сильной степени, так как образующиеся кристаллы крупнее (значительное увеличение объема). Один цикл таких испытаний приравнивается 5-10 и даже 20 циклам прямых испытаний замораживанием. О морозостойкости материала можно косвенно судить по величине коэффициента размягчения. Большое понижение прочности вследствие размягчения материала (больше 10 %) указывает, что в материале есть глинистые или другие размокающие частицы, что отрицательно сказывается и на морозостойкости материала.
От морозостойкости зависит долговечность строительных материалов в конструкциях, подвергающихся действию атмосферных факторов и воды.
Что такое морозостойкость материала?
Морозостойкость — способность насыщенного водой материала выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения и значительного снижения прочности. Систематические наблюдения показали, что многие материалы в условиях попеременного насыщения водой и замораживания постепенно разрушаются.
Морозостойкость материала зависит от плотности и степени насыщения водой их пор. Плотные материалы морозостойки. Из пористых материалов морозостойкостью обладают только такие, у которых имеются в основном закрытые поры или вода занимает менее 90 % объема пор.
Материал считают морозостойким, если после установленного числа циклов замораживания и оттаивания в насыщенном водой состоянии прочность его снизилась не более чем на 15 %, а потери в массе в результате выкрашивания не превышали 5 %. Если образцы после замораживания не имеют следов разрушения, то степень морозостойкости устанавливают по коэффициенту морозостойкости (Kf).
Для морозостойких материалов Kf не должен быть менее 0,75. По числу выдерживаемых циклов попеременного замораживания и оттаивания (степени морозостойкости) материалы имеют марки F10, 15, 25, 35, 50, 100, 150, 200 и более. В лабораторных условиях замораживание образцов производят в холодильных камерах.
Один-два цикла замораживания в камере дают эффект, близкий к трех– пятилетнему действию атмосферы. Существует также ускоренный метод испытания, по которому образцы погружают в насыщенный раствор сернокислого натрия и затем высушивают при температуре 100–110 °C.
Образующиеся при этом в порах камня кристаллы десятиводного сульфата натрия (со значительным увеличением объема) давят на стенки пор еще сильнее, чем вода при замерзании. Такое испытание является особо жестким. Один цикл испытания в растворе сернокислого натрия приравнивается к 5—10 и даже 20 циклам прямых испытаний замораживанием.
Морозостойкость строительных материалов
Морозостойкость строительных материалов – называют способность материала, насыщенного водой, выдерживать многочисленное попеременное замораживание, а также оттаивание без значительного уменьшения прочности и без визуальных обнаруживаемых признаков разрушения. Степень морозостойкости определяется количеством циклов заморозки/оттаивания, которые проводят в условиях лаборатории.
[ГОСТ 10060-75, ГОСТ 12852.4-77, ГОСТ 7025-78]
Морозостойкость – способность строительных материалов в увлажненном состоянии сопротивляться разрушающему воздействию попеременного замораживания и оттаивания.
Полезное
Смотреть что такое «Морозостойкость строительных материалов» в других словарях:
Морозостойкость — Морозостойкость способность материала в насыщенном водой состоянии выдерживать многократное попеременное замораживание и оттаивание без видимых признаков разрушения и без значительного понижения прочности. Основная причина разрушения… … Википедия
Морозостойкость бетона — – способность сохранять физико механические свойства при многократном переменном замораживании и оттаивании. Морозостойкость бетона характеризуют соответствующей маркой по морозостойкости F. [ГОСТ 10060.0 95] Морозостойкость бетона… … Энциклопедия терминов, определений и пояснений строительных материалов
Морозостойкость раствора — – способность затвердевшего строительного раствора в увлажненном состоянии сопротивляться разрушающему воздействию попеременного замораживания и оттаивания. [ГОСТ 4.233 86] Морозостойкость раствора – способность растворов выдерживать… … Энциклопедия терминов, определений и пояснений строительных материалов
Морозостойкость — – свойство материала выдерживать требуемое число циклов по переменного замораживания и оттаивания в водонасыщенном состоянии при допустимом снижении прочности и потере в массе. [Полякова, Т.Ю. Автодорожные мосты: учебный англо русский и… … Энциклопедия терминов, определений и пояснений строительных материалов
Морозостойкость горной породы — – параметр, определяющий степень влияния числа циклов замораживания и оттаивания на прочность горной породы. [ГОСТ Р 50544 93] Рубрика термина: Свойства горной породы Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги … Энциклопедия терминов, определений и пояснений строительных материалов
Морозостойкость керамической плитки — способность плитки выдерживать при определенных условиях определенное число циклов замораживания и оттаивания без последующего появления дефектов на глазурованной поверхности и (или) разрушения черепка. [СТ СЭВ 3979 83] Рубрика термина: Свойства… … Энциклопедия терминов, определений и пояснений строительных материалов
Морозостойкость контактной зоны — – способность затвердевшего раствора (бетона) сохранять прочность сцепления (адгезию) с основанием при многократном переменном замораживании и оттаивании. [ГОСТ 31357 2007] Рубрика термина: Свойства бетона Рубрики энциклопедии: Абразивное… … Энциклопедия терминов, определений и пояснений строительных материалов
Морозостойкость цемента — – способность цементного камня противостоять многократному попеременному замораживанию и оттаиванию. [ГОСТ 30515 2013] Рубрика термина: Свойства цемента Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги … Энциклопедия терминов, определений и пояснений строительных материалов
Морозостойкость — строительных материалов, способность стройматериалов в увлажнённом состоянии выдерживать без разрушения многократное замораживание, чередующееся с оттаиванием. Основная причина разрушения материала под действием низких температур… … Большая советская энциклопедия
МОРОЗОСТОЙКОСТЬ — строительных материалов способность строит. материалов выдерживать многократное поперем. замораживание и оттаивание в насыщ. водой состоянии без видимых признаков разрушения и допустимого понижения прочности. Зависит гл. обр. от пористости и… … Большой энциклопедический политехнический словарь
Что такое морозостойкость строительных материалов
Время работы: пн-пт с 9:00 до 17:00 сб-вс с 10:00 до 15:00
Морозостойкость строительных материалов – это возможность материала сохранить свою структуру и качества во время непрерывного изменения воздействующих на материал температур. Таким образом, морозостойкость является определяющим физическим свойством строительных материалов, важность которого трудно переоценить.
Пористость материалов.
По ходу эксплуатации, строительные материалы подвергаются процессу старения, а также имеют свойство разрушаться. Тут имеет важное значение степень пористости материалов, а основная природа их разрушения связана с попаданием воды в поры, которые в свою очередь расширяются при заморозках, от чего увеличивается их объем. В то время как материал оттаивает, его объем постепенно становится меньше.
Когда материал находится в непрерывном процессе оттаивания-замерзания для него это равносильно многоразовой нагрузке, приводящей к износу и разрушению материала. Наиболее важным качеством, является морозостойкость строительных материалов таких как:
По ходу разрушения, материал видоизменяется, также изменяется его прочность и масса. Исследовав эти черты, мы можем сделать вывод о степени морозостойкости того, или иного материала. Чтобы проанализировать свойства строительных материалов на прочность к повреждениям и на способность сохранения массы, нам следует отобрать минимум 5 образцов. На испытание прочности выбирается около 20 образцов, затем 10 из которых берутся в качестве контрольных. После чего контрольные образцы помещаются в водную ванную с гидравлическим затвором.
Марки и циклы, измеряющие степень морозостойкости.
Морозостойкость строительных материалов оценивается количеством перенесенных циклов и соответствующей маркой. Для определения марки, материалы испытывают циклами поочередного замораживания и оттаивания. Материал должен выдержать нагрузку без уменьшения прочности на сжатие, от 15 % и выше, после проведенных испытаний образцы должны оставаться без заметных повреждений, а также потеря массы образца не должна превышать 5%.
Выбор марки по морозостойкости определяется с учетом типа конструкции, условиями эксплуатации и внешними климатическими условиями. В основном виды легкого бетона и кирпича имеют 15, 25 и 35 марку. Виды тяжелых бетонов имеют марку 50,100,200, а самый прочный гидротехнический бетон, обозначается 500 маркой.
Испытание морозостойкости.
Морозостойкость
Морозостойкость плотных и пористых материалов
В строительном материаловедении понятие «морозостойкость» связывают с воздействием на материал двух основных факторов:
Таким образом, для плотных материалов морозостойкость — способность материала сохранять эксплуатационные свойства при низких температурах. К таким материалам предъявляются требования в зависимости от их назначения с учетом условий эксплуатации. В большинстве случаев основным требованием является сохранение целостности структуры.
Механизм разрушения структуры материала при перепадах температуры связан с явлением расширения — сжатия и изменением упругих свойств материала. При низких температурах материал становится более хрупким, ломким; резко снижается его ударная прочность.
Это в большей степени относится к полимерным материалам и металлам.
Морозостойкость природных и искусственных каменных материалов — способность материала выдерживать многократное попеременное замораживание и оттаивание в насыщенном водой состоянии (без видимых признаков разрушения и допустимого понижения прочности).
Разрушительное воздействие мороза на ограждающую конструкцию можно условно разделить на три основных периода: водонасыщение, промерзание и, собственно, разрушение.
В наиболее влажный период года происходит водонасыщение поверхностного слоя ограждающей конструкции
Рис. 6.1. Распределеление температуры в наружной стене здания (а) и заполнение пор водой (б) вблизи наружной поверхности:
При понижении температуры окружающей среды наружные слои конструкции постепенно охлаждаются, фронт низких температур распространяется внутрь конструкции. Водяной пар, находящийся в противоположной зоне конструкции, перемещается от тепла к холоду, поскольку давление влажного воздуха при отрицательной температуре ниже, чем при положительной. Попадая в зону низких температур, водяной пар конденсируется в порах, вблизи наружной поверхности ограждающей конструкции (рис. 6.1.).
При наступлении даже небольших морозов (-5..-8оС) вода, находящаяся в крупных порах, замерзая и превращаясь в лед, создает напряженное состояние в материале.
Механизм разрушения структуры пористых тел при замораживании
Существует несколько гипотез, объясняющих причины разрушения структуры материала при замораживании:
— вода, находящаяся в крупных порах материала при температуре ниже 0,01оС, превращается в лед с увеличением в объеме около 9%. Если при этом коэффициент насыщения приближается к 1, то в стенках пор могут возникнуть растягивающие напряжения, являющиеся основной причиной разрушения структуры;
— давление расширения воды при замерзании заставляет мигрировать еще не замерзшую воду, создавая большое гидростатическое давление, которое усиливает напряжения на стенки сообщающихся пор;
— перемещение незамерзшей воды в направлении поверхности из тонких пор в крупные в момент образования в них льда и понижение при этом давления пара (эффект вспучивания грунта при замерзании).
Анализируя вышеперечисленные гипотезы, отметим, что, несмотря на некоторые противоречия (например, между двумя последними причинами в плане направления миграции воды), главным фактором разрушения следует признать изменение фазового состояния воды при изменении температуры или давления.
С точки зрения термодинамики, процесс замораживания сопоставим с процессом сушки пористых материалов по двум основным положениям:
— изменение агрегатного состояния воды или установление равновесного состояния «вода —лед» при замораживании и «вода — пар» при сушке (рис. 4.31);
‘
— возникновение массообменных процессов внутри материала в результате высоких градиентов давлений над водой при замораживании и высоких градиентов влажности при сушке.
Известно, что процесс диффузии влаги внутри материала при сушке зависит от характеристики структуры материала и свойств воды, а также градиентов температуры, влажности и давления.
Проводя аналогию между процессами диффузии влаги при сушке и замораживании материалов, отметим следующие основные моменты:
— если при сушке основной движущей силой влагопроводности является градиент влажности, который во многом зависит от интенсивности испарения воды, то при замораживании — градиент давления, который зависит от изменения температур и скорости кристаллизации воды;
— направление движения влаги в обоих случаях одинаковое — в сторону расположения критической точки превращения воды: в первом случае — в пар, во втором — в лед, т. е. к поверхности;
— роль воздуха в пористой структуре материала в двух этих процессах неодинаковая, но положительная: при сушке, особенно во время интенсивного нагрева, влага в порах испаряется и за счет избыточного давления пара увеличивает диффузию, а при замораживании наличие свободного воздушного пространства уменьшает гидростатическое давление и снижает напряжение в материале.
Факторы, влияющие на морозостойкость
Анализ механизма при замораживании показывает, что морозостойкость пористых строительных материалов связана в основном с двумя характеристиками структуры: водопоглощением и способностью сопротивляться растягивающим напряжениям.
Водопогющение — косвенная характеристика пористости, которая показывает способность материалов впитывать и удерживать влагу в период эксплуатации. Водопоглощение характеризуется коэффициентом насыщения пор водой, который определяется по формуле:
где: Кн — коэффициент насыщения, ед.;
П — общая пористость материала, %.
Коэффициент насыщения может изменяться от 0 (все поры в материале замкнутые) до 1 (все поры открытые), и тогда W = П. Уменьшение коэффициента насыщения при неизменной пористости свидетельствует о сокращении открытой пористости, что значительно повышает морозостойкость структуры.
Предел прочности при растяжении зависит от природы химических связей и наступает при нарушении равновесия между силами притяжения и отталкивания с последующим нарушением связности структуры. Эта характеристика является константой для каждого материала.
Однако следует заметить, что в условиях замораживания в локальных участках пористой структуры имеет место не классическое осевое растяжение, а гидростатическое давление расширения, которое меняет характер и механизм разрушения структуры.
Главной проблемой повышения морозостойкости пористых материалов является снижение растягивающих напряжений при замораживании, которое может быть достигнуто:
— при уменьшении водопоглощения за счет создания микропористой структуры с преимущественно замкнутыми порами;
— путем воздухововлечения, когда в материале образуются воздушные резервуары, гасящие избыточное давление мигрирующей воды;
— посредством введения в структуру материала высокодисперсного армирующего компонента, увеличивающего пластическую составляющую в целом упругой деформации.
Количественно морозостойкость материала оценивается циклами замораживания и оттаивания. Количество циклов определяется по потере прочности материала, которая не должна превышать 25%, или по потере массы, которая не должна превышать 5%.
Показатель морозостойкости (марка) обозначается символами:
F15; F25; F50.. F500, где цифры показывают количество циклов замораживания и оттаивания материала при испытании.
Условия испытания, установленные российскими и международными стандартами, являются значительно более суровыми, чем реальные условия эксплуатации материала, особенно в части интенсивности замораживания и оттаивания, что в значительной мере связано со сроками проведения этих испытаний. В табл. 6.2 представлены показатели морозостойкости некоторых строительных ма териалов.
Таблица 6.2. Морозостойкость строительных материалов в зависимости от водопоглощения и предела прочности при разрыве