Что такое медиана набора чисел
Медиана ряда чисел
Понятие медианы чисел широко используется в математической статистике. И хотя вычисление медианы не составляет большой сложности, мы сделали калькулятор, который поможет рассчитать медианное значение ряда чисел онлайн с подробным решением. Причем количество чисел не важно, он рассчитает медиану 3, 4, 5 чисел так же быстро, как и для 1000 чисел.
Калькулятор медиана чисел
Как найти медиану чисел
Лучше рассмотреть процесс вычисления медианы на примере. Пусть у нас есть ряд чисел: 13 19 24 17 15 11. Для удобства числа будет записывать через пробел. Найдем его медиану. Для начала необходимо расположить числа в порядке возрастания. Эта процедура называется сортировкой. Получим новый ряд: 11 13 15 17 19 24. Так как количество чисел в ряду равно 6, а число 6 четное, то середина ряда будет между числами 15 и 17. Найдем среднее этих двух чисел: (15 + 17) / 2 = 16. Это и будет медианой ряда. Не стоит путать медиану, среднее гармоническое и среднее арифметическое — это принципиально разные понятия.
Рассмотрим другой пример, когда количество чисел в ряду нечетное. Есть такой ряд: 18 46 10 5 38. Найдем медиану набора этих чисел. Отсортируем ряд по возрастанию и получим ряд: 5 10 18 38 48. Так как количество чисел в этом ряду 5, то у него есть середина — это элемент с номером 2. Значит медиана этого ряда равна элементу с номером 2. Получаем ответ 18.
И еще пример — найдем медиану чисел 158 166 134 130 132. Отсортируем и получим ряд 130 132 134 158 166. Количество чисел нечетное и равно 5, значит средний элемент имеет номер 3. Третий элемент нашего отсортированного ряда — число 134. Это и есть медиана.
Золотая середина. Поиск медианного элемента потока входных чисел
В этой статье мы рассмотрим следующую задачу: поиск и поддержание медианы среди целых чисел, которые последовательно попадают на обработку. В этом посте мы поставим задачу, разберём все необходимые вводные, предложим и оценим сложность решения.
Постановка задачи
На вход алгоритму подаётся поток целых чисел, т.е. количество чисел может быть неизвестно, но мы будем считать, что массив задан наперёд и его длина очень большая. Требуется разработать алгоритм, который определяет медиану текущего массива, т.е. считанного из исходного к данному моменту. При этом требуется, чтобы сложность такого алгоритма была
Медиана ряда чисел
Либо можно выбирать элемент под номером , если чётное и если нечетное.
Наивный подход
Давайте обсудим бейзлайновое решение, при котором медиану можно получить за .
Пусть каждое новое число из потока мы будем вставлять в массив так, чтобы массив оставался упорядоченным. Затем будем выбирать элемент из середины и добавлять его в список медиан.
Как упоминалось выше, этот алгоритм будет иметь квадратичную сложность, поскольку для каждого из элементов потока, мы выполняем линейную работу по поиску места и вставке элемента в массив.
Улучшить этот результат нам поможет структура данных — куча.
Куча. Min-heap, max-heap
Рассмотрим кучу на примере min-heap. Min-heap — это бинарное дерево, обладающее двумя следующими свойствами:
Аналогично образом задаётся max-heap, нужно заменить «меньше» на «больше» в первом свойстве.
При решении задачи мы хотим воспользоваться операциями, которые благодаря построению кучи, могут быть выполнены быстрее, чем за линейное время.
Первая из этих операций: взятие минимума (максимума) и удаление
Работая с кучей, операцию взятия минимума можно осуществить за константное время. Поскольку минимум всегда хранится в корне дерева, то узнать его значение не составляет труда. Если же мы хотим удалить минимум и назначить на его место следующий по величине элемент, то нам потребуется вызвать метод extract, чья временная сложность тоже меньше линейной и равна .
Метод extract внутри себя запускает следующий процесс: сначала элемент с самого последнего уровня ставится в корень дерева, затем на корне дерева стартует метод bubble_down, который уровень за уровнем (а таких всего в полном дереве) опускает новый корневой узел.
Код реализации на языке Python смотри ниже.
Вторая операция: добавление элемента
Чтобы добавить произвольный элемент в кучу требуется выставить новый элемент на правильное место, не утратив 2 свойства кучи. Для этого новый элемент добавляется на последний уровень, а затем методом bubble_up поднимается в сторону корня, пока над ним не окажется элемент меньший него или он не станет корнем. Сложность этой операции также равна
Код, в котором мы определим необходимую функциональность с возможностью определения min и max-heap:
Оптимальное решение
Теперь перейдем непосредственно к реализации алгоритма контроля медианы, основанном на использовании кучи. Мы будем использовать две кучи, одну минимальную, другую максимальную. Идея заключается в следующем: давайте разделим поток значений на верхнюю часть, содержащую большие значения и нижнюю, содержащую меньшие значения. Первую реализуем на основе min-heap, чтобы легко получать минимальный элемент, который лежит на разделе, а вторую на основе max-heap.
Всякий раз, когда мы читаем из потока очередное число, будем добавлять его в верхнюю часть, если оно больше наименьшего из этой половины и в нижнюю часть, если верно обратное. Затем, осуществив вставку, будем балансировать две части, чтобы они содержали по половине из введенных значений.
Каждую итерацию внешнего цикла, мы делаем несколько шагов сложностью , посколько операции вставки и получения элемента из кучи ограничены этой сложностью. По этой причине итоговая сложность не превышает .
Заключение
В этой статье на примере задачи мы обсудили преимущества кучи по сравнению со списком. Познакомились с временной сложностью операций над этой структурой данных. Реализовали код этой структуры, необходимый для эффективного выполнения задачи по поиску медианного элемента в потоке чисел.
В преддверии старта курса «Алгоритмы и структуры данных» приглашаем всех желающих на бесплатный двухдневный интенсив по теме: Алгоритм сжатия данных — код Хаффмана.
Медиана в статистике
Центральную тенденцию данных можно рассматривать не только, как значение с нулевым суммарным отклонением (среднее арифметическое) или максимальную частоту (мода), но и как некоторую отметку (значение в совокупности), делящую ранжированные данные (отсортированные по возрастанию или убыванию) на две равные части. Половина исходных данных меньше этой отметки, а половина – больше. Это и есть медиана.
Итак, медиана в статистике – это уровень показателя, который делит набор данных на две равные половины. Значения в одной половине меньше, а в другой больше медианы. В качестве примера обратимся к набору нормально распределенных случайных чисел.
Очевидно, что при симметричном распределении середина, делящая совокупность пополам, будет находиться в самом центре – там же, где средняя арифметическая (и мода). Это, так сказать, идеальная ситуация, когда мода, медиана и средняя арифметическая совпадают и все их свойства приходятся на одну точку – максимальная частота, деление пополам, нулевая сумма отклонений – все в одном месте. Однако, жизнь не так симметрична, как нормальное распределение.
Допустим, мы имеем дело с техническими замерами отклонений от ожидаемой величины чего-нибудь (содержания элементов, расстояния, уровня, массы и т.д. и т.п.). Если все ОК, то отклонения, скорее всего, будут распределены по закону, близкому к нормальному, примерно, как на рисунке выше. Но если в процессе присутствует важный и неконтролируемый фактор, то могут появиться аномальные значения, которые в значительной мере повлияют на среднюю арифметическую, но при этом почти не затронут медиану.
Медиана выборки – это альтернатива средней арифметической, т.к. она устойчива к аномальным отклонениям (выбросам).
Математическим свойством медианы является то, что сумма абсолютных (по модулю) отклонений от медианного значения дает минимально возможное значение, если сравнивать с отклонениями от любой другой величины. Даже меньше, чем от средней арифметической, о как! Данный факт находит свое применение, например, при решении транспортных задач, когда нужно рассчитать место строительства объектов около дороги таким образом, чтобы суммарная длина рейсов до него из разных мест была минимальной (остановки, заправки, склады и т.д. и т.п.).
Формула медианы
Формула медианы в статистике для дискретных данных чем-то напоминает формулу моды. А именно тем, что формулы как таковой нет. Медианное значение выбирают из имеющихся данных и только, если это невозможно, проводят несложный расчет.
Первым делом данные ранжируют (сортируют по убыванию). Далее есть два варианта. Если количество значений нечетно, то медиана будет соответствовать центральному значению ряда, номер которого можно определить по формуле:
№Me – номер значения, соответствующего медиане,
N – количество значений в совокупности данных.
Тогда медиана обозначается, как
Это первый вариант, когда в данных есть одно центральное значение. Второй вариант наступает тогда, когда количество данных четно, то есть вместо одного есть два центральных значения. Выход прост: берется средняя арифметическая из двух центральных значений:
В интервальных данных выбрать конкретное значение не представляется возможным. Медиану рассчитывают по определенному правилу.
Для начала (после ранжирования данных) находят медианный интервал. Это такой интервал, через который проходит искомое медианное значение. Определяется с помощью накопленной доли ранжированных интервалов. Где накопленная доля впервые перевалила через 50% всех значений, там и медианный интервал.
Не знаю, кто придумал формулу медианы, но исходили явно из того предположения, что распределение данных внутри медианного интервала равномерное (т.е. 30% ширины интервала – это 30% значений, 80% ширины – 80% значений и т.д.). Отсюда, зная количество значений от начала медианного интервала до 50% всех значений совокупности (разница между половиной количества всех значений и накопленной частотой предмедианного интервала), можно найти, какую долю они занимают во всем медианном интервале. Вот эта доля аккурат переносится на ширину медианного интервала, указывая на конкретное значение, именуемое впоследствии медианой.
Обратимся к наглядной схеме.
Немного громоздко получилось, но теперь, надеюсь, все наглядно и понятно. Чтобы при расчете каждый раз не рисовать такой график, можно воспользоваться готовой формулой. Формула медианы имеет следующий вид:
где xMe — нижняя граница медианного интервала;
iMe — ширина медианного интервала;
∑f/2 — количество всех значений, деленное на 2 (два);
S(Me-1)— суммарное количество наблюдений, которое было накоплено до начала медианного интервала, т.е. накопленная частота предмедианного интервала;
fMe — число наблюдений в медианном интервале.
Как нетрудно заметить, формула медианы состоит из двух слагаемых: 1 – значение начала медианного интервала и 2 – та самая часть, которая пропорциональна недостающей накопленной доли до 50%.
Для примера рассчитаем медиану по следующим данным.
Требуется найти медианную цену, то есть ту цену, дешевле и дороже которой по половине количества товаров. Для начала произведем вспомогательные расчеты накопленной частоты, накопленной доли, общего количества товаров.
По последней колонке «Накопленная доля» определяем медианный интервал – 300-400 руб (накопленная доля впервые более 50%). Ширина интервала – 100 руб. Теперь остается подставить данные в приведенную выше формулу и рассчитать медиану.
То есть у одной половины товаров цена ниже, чем 350 руб., у другой половины – выше. Все просто. Средняя арифметическая, рассчитанная по этим же данным, равна 355 руб. Отличие не значительное, но оно есть.
Расчет медианы в Excel
Медиану для числовых данных легко найти, используя функцию Excel, которая так и называется — МЕДИАНА. Другое дело интервальные данные. Соответствующей функции в Excel нет. Поэтому нужно задействовать приведенную выше формулу. Что поделаешь? Но это не очень трагично, так как расчет медианы по интервальным данным – редкий случай. Можно и на калькуляторе разок посчитать.
Напоследок предлагаю задачку. Имеется набор данных. 15, 5, 20, 5, 10. Каково среднее значение? Четыре варианта:
Мода, медиана и среднее значение выборки – это разный способ определить центральную тенденцию в выборке.
Ниже видеоролик о том, как рассчитать медиану в Excel.
Что представляет собой медиана в наборе чисел?
Медиана среднее число в отсортированном, по возрастанию или по убыванию, список чисел и может быть более описательным для этого набора данных, чем среднее значение. Медиана иногда используется вместо среднего, когда в последовательности есть выбросы, которые могут исказить среднее значение.
Впоследствии, какова медиана этих чисел?
Тогда каково среднее из 10 чисел?
Расположите все 10 чисел в порядке возрастания или убывания. Поскольку в списке четное число чисел, единого «среднего» числа нет, поэтому медиана будет среднее значение двух чисел в середине (5-е и 6-е, если в порядке). Сложите два средних числа и разделите их сумму на 2. Это медиана.
Кроме того, каковы средние медиана и диапазон моды?
Медиана: среднее число в наборе значений. … Режим: число или значение, которое чаще всего встречается в наборе. Чтобы найти режим, нужно посчитать, сколько раз появляется каждое значение. Диапазон: разница между самым низким и самым высоким значением. Чтобы решить эту проблему, просто вычтите наименьшее значение из наибольшего.
Как найти медиану с четными числами?
Если есть четное количество чисел сложите две середины и разделите на 2. Результатом будет медиана.
Что такое среднее значение 7?
Как вы находите срединный пример?
Чтобы найти медиану,
сначала отсортируйте числа от наименьшего к наибольшему.
Затем найдите среднее число
. Например, средний для этого набора чисел 5, потому что 5 находится прямо посередине: 1, 2, 3, 5, 6, 7, 9.
Какое среднее значение от 1 до 10?
Полный пошаговый ответ:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Если количество членов четное. Следовательно, медиана первых 10 натуральных чисел равна 5.5.
Что такое среднее значение 23?
Поскольку существует четное количество значений, медиана будет средним из двух средних чисел, в данном случае 23 и 23, среднее из которых является 23.
Какова медиана первых 10 четных чисел?
10/2 + (10/2 + 1) th. Тогда 5-е + 6-е / 2 = 10 + 12/2 = 11. Это медиана.
Что такое средняя медиана и режим с примером?
В чем разница между средней медианой и модой?
В чем разница между медианой и средним значением?
Какова медиана первых 10 четных чисел?
Где число членов четное. Следовательно, медиана первых 10 натуральных чисел равна 5.5.
Как найти медиану двух чисел?
Чтобы найти медиану, расположите все числа в порядке возрастания и продвигайтесь к середине, вычеркивая числа на каждом конце. Если данных много, прибавьте 1 к количеству элементов данных, а затем разделите на 2 чтобы найти, какой элемент данных будет медианным.
Что такое среднее значение 25?
Как найти медиану семи чисел?
Что означает мода и медиана?
Как найти медианное значение для класса 7?
Медиана различна для разных типов распределения. Например, медиана 3, 3, 5, 9, 11 равна 5. Если имеется четное количество наблюдений, то единого среднего значения не существует; тогда медиана обычно определяется как среднее из двух средних значений: таким образом, медиана 3, 5, 7, 9 равна (5 + 7) / 2 = 6.
Что такое среднее значение 12345?
Какая формула режима?
Какова медиана первых 9 натуральных чисел?
Следовательно, медиана первых девяти четных натуральных чисел равна 10.
Какое среднее из 6 чисел?
В этом случае среднее значение будет 2 + 4 (сложите два средних числа), что равно 6. Затем вы берете 6 и делите его на 2 (общее количество баллов, которые вы сложили вместе), что равно 3. Итак, для этого примера медиана равна 3.
Какова медиана первых 12 четных чисел?
12 лет 14 : медиана первых 1 четных чисел.
Каково среднее значение первых 50 целых чисел?
Следовательно, медиана первых 50 целых чисел равна 24.5.
Какова медиана первых 50 четного натурального числа?
поэтому медиана первых 50 четных натуральных чисел равна 51.
Чему равна медиана ряда?
Как найти медиану если четное?
Медианой (серединой) набора чисел называется число стоящее посередине упорядоченного по возрастанию ряда чисел. Если количество чисел в ряду чётное, то медианой ряда является полусумма двух стоящих посередине чисел.
Чему равна медиана ряда 1 2 3 4?
Медианой произвольного ряда чисел называется медиана соответствующего упорядоченного ряда. Медиана ряда 4, 1, 2, 3, 3, 1 равна 2.5.
Как найти медиану?
Если у вас четное количество чисел, вычеркните по одному числу с каждой стороны, пока у вас не останется два числа посередине. Сложите их и разделите на два. Это и есть значение медианы.
Как найти медиану чисел пример?
Так как количество чисел в ряду равно 6, а число 6 четное, то середина ряда будет между числами 15 и 17. Найдем среднее этих двух чисел: (15 + 17) / 2 = 16. Это и будет медианой ряда. Не стоит путать медиану, среднее гармоническое и среднее арифметическое — это принципиально разные понятия.
Как найти медиану по выборке?
Для удобства нахождения медианы сначала нужно отсортировать выборку в возрастающем или убывающем порядке <2,5,7,8,10>. Тогда элемент, стоящий ровно посередине, будет медианой.
Как считается медианное значение?
Медиа́на (от лат. mediāna «середина») набора чисел — число, которое находится в середине этого набора, если его упорядочить по возрастанию, то есть такое число, что половина из элементов набора не меньше него, а другая половина не больше.
Как найти медиану в таблице?
Медианой ряда чисел (медианой числового ряда) называется число, стоящее посередине упорядоченного по возрастанию ряда чисел — в случае, если количество чисел нечётное. Если же количество чисел в ряду чётно, то медианой ряда является полусумма двух стоящих посередине чисел упорядоченного по возрастанию ряда.
Что такое мода и медиана в алгебре?
Как найти медиану числового ряда?
Если в ряду нечетное число членов, то число посередине-медиана ряда, если четное, то нужно найти среднее арифметическое двух средних членов ряда и это будет медиана.
Как найти медиану по трем сторонам?
Формула медианы треугольника через три его стороны
Длина медианы, проведенной к стороне треугольника равна половине корня квадратного из удвоенного произведения суммы квадратов двух других сторон минус квадрат этой стороны.
Как определить медиану числового ряда?
Медианой числового ряда называется число, стоящее посередине в упорядоченном по возрастанию ряду этих чисел (если их количество нечетно) или полусумма чисел, стоящих на средних местах в упорядоченном наборе этих чисел (если их количество четно).
Что такое медиана ряда чисел?
Медиана — это число, которое является серединой множества чисел, то есть половина чисел имеют значения большие, чем медиана, а половина чисел имеют значения меньшие, чем медиана. Например, медианой для чисел 2, 3, 3, 5, 7 и 10 будет 4. Мода — это число, наиболее часто встречающееся в данном наборе чисел.
Как найти длину медианы в прямоугольном треугольнике?
Медиана, проведенная к гипотенузе прямоугольного треугольника, равняется половине квадратного корня из суммы квадратов катетов.