Что такое математическая модель задачи
Что такое математическая модель?
Понятие математической модели.
Например, нам нужно посчитать расходы (Р) на покупки в магазине. Надо купить две булки (Б) и три пачки масла (М). Мы знаем цену булки (ЦБ) и цену масла (ЦМ). Легко можно записать:
Составление (построение) математической модели задачи.
Говоря конкретнее, нужно установить математическую связь между всеми данными задачи.
Но можно выделить три основных момента, на которые нужно обратить внимание.
1. В любой задаче есть текст, как ни странно.) В этом тексте, как правило, имеется явная, открытая информация. Числа, значения и т.п.
3. В любой задаче должно быть дана связь данных между собой. Эта связь может быть дана открытым текстом (что-то равно чему-то), а может быть и скрыта за простыми словами. Но простые и понятные факты частенько упускаются из виду. И модель никак не составляется.
Сразу скажу: чтобы применить эти три момента, задачу приходится читать (и внимательно!) несколько раз. Обычное дело.
Начнём с простой задачки:
Все эти слова нужно превратить в какое-то уравнение. Для этого нужно, повторюсь, установить математическую связь между всеми данными задачи.
С чего начинать? Сначала вытащим из задачи все данные. Начнём по порядочку:
Обращаем внимание на первый момент.
Какая здесь явная математическая информация? 8 рыбин и 20%. Не густо, да нам много и не надо.)
Обращаем внимание на второй момент.
Ищем скрытую информацию. Она здесь есть. Это слова: «20% всех рыбин«. Здесь нужно понимать, что такое проценты и как они считаются. Иначе задача не решается. Это как раз та дополнительная информация, которая должна быть в голове.
Здесь ещё имеется математическая информация, которую совершенно не видно. Это вопрос задачи: «Сколько всего рыбин купил. « Это ведь тоже какое-то число. И без него никакая модель не составится. Поэтому обозначим это число буквой «х». Мы пока не знаем, чему равен икс, но такое обозначение очень нам пригодится. Подробнее, что брать за икс и как с ним обращаться, написано в уроке Как решать задачи по математике? Вот так сразу и запишем:
Возвращаемся к раскрытию информации. Кто не знает, что такое процент, никогда не раскроет, да. А кто знает, тот сразу скажет, что проценты здесь от общего числа рыб даны. А нам это число неизвестно. Ничего не выйдет!
Общее количество рыб (в штуках!) мы не зря буквой «х» обозначили. Посчитать южных рыб в штуках не получится, но записать-то мы сможем? Вот так:
Вот теперь мы скачали всю информацию с задачи. И явную, и скрытую.
Обращаем внимание на третий момент.
Ищем математическую связь между данными задачи. Эта связь настолько проста, что многие её не замечают. Такое часто бывает. Здесь полезно просто записать собранные данные в кучку, да и посмотреть, что к чему.
Вот это уравнение и будет математической моделью нашей задачи.
Прошу заметить, что в этой задаче нас не просят ничего складывать! Это мы сами, из головы, сообразили, что сумма южных и северных рыб даст нам общее количество. Вещь настолько очевидная, что проскакивает мимо внимания. Но без этой очевидности математическую модель не составить. Вот так.
Теперь уже можно применить всю мощь математики для решения этого уравнения). Именно для этого и составлялась математическая модель. Решаем это линейное уравнение и получаем ответ.
Составим математичесскую модель ещё одной задачки:
Спросили Петровича: «А много ли у тебя денег?» Заплакал Петрович и отвечает: «Да всего чуть-чуть. Если я потрачу половину всех денег, да половину остатка, то всего-то один мешок денег у меня и останется. » Сколько денег у Петровича?
Опять работаем по пунктам.
2. Ищем скрытую информацию. Это половинки. Чего? Не очень понятно. Ищем дальше. Есть ещё вопрос задачи: «Сколько денег у Петровича?» Обозначим количество денег буквой «х»:
И вновь читаем задачу. Уже зная, что у Петровича х денег. Вот тут уже и половинки сработают! Записываем:
Остаток будет тоже половина, т.е. 0,5·х. А половину от половины можно записать так:
Теперь вся скрытая информация выявлена и записана.
3. Ищем связь между записанными данными. Здесь можно просто читать страдания Петровича и записывать их математически):
Если я потрачу половину всех денег.
да половину остатка.
Отнимем ещё половину остатка:
то всего-то один мешок денег у меня и останется.
А вот и равенство нашлось! После всех вычитаний один мешок денег остаётся:
Вот она, математическая модель! Это опять линейное уравнение, решаем, получаем:
Задачки, конечно, элементарные. Это специально, чтобы уловить суть составления математической модели. В некоторых задачах может быть гораздо больше данных, в которых легко запутаться. Это часто бывает в т.н. компетентностных задачах. Как вытаскивать математическое содержание из кучи слов и чисел показано на примерах здесь.
В задачах на движение требуется держать в голове формулу-ключ: связь расстояния, скорости и времени. По ссылке можно посмотреть примеры составления модели и решения таких задач.
В задачах на работу надо чётко понимать формулу-ключ: связь времени, производительности труда и объёма работы. Там имеются свои фишки, с которыми можно ознакомиться по ссылке.
Для того, чтобы свободнее ориентироваться в построении математических моделей очень полезно порешать обратные задачи. Т.е. по заданной модели придумать условие задачи. Это, кстати, не так просто.) Тема может быть совершенно любой, фантазия ограничена только математикой. Вот примеры таких заданий:
Составить задачу по математической модели:
х + (х+10) + (х-30) + 20 = 120
Попробуйте придумать задачку, а потом можете найти в уроке Как решать задачи по математике исходную задачу для этой модели. И сравните, для интереса.)
Еще пример, посложнее:
Составить задачу по математической модели:
Исходная задача и её решение приведены в уроке Решение задач на движение. Кстати, по ссылке подробно написано, как эту математическую модель составить.
Составить задачу по математической модели:
1 = 5 · (х + 2х + 2х + 3х + 4х)
Эта задача и её решение расписаны в уроке Задачи на работу.
Ещё одно замечание. В классических школьных задачах (трубы заполняют бассейн, куда-то плывут катера и т.п.) все данные, как правило, подобраны очень тщательно. Там выполняются два правила:
— информации в задаче хватает для её решения,
— лишней информации в задаче не бывает.
В компетентностных и прочих жизненных задачах эти правила строго не соблюдаются. Нету подсказки. Но и такие задачи можно решать. Если, конечно, потренироваться на классических.)
Если Вам нравится этот сайт.
Кстати, у меня есть ещё парочка интересных сайтов для Вас.)
А вот здесь можно познакомиться с функциями и производными.
Математическая модель. 5-й класс
Разделы: Математика
Класс: 5
Опыт работы учителем математики показывает, что решение текстовых задач неизменно вызывают затруднения у большинства учащихся. Это связано с тем, что неумение записать условие задачи в виде уравнений и неравенств, то есть “перевести” описанную в задаче жизненную ситуацию на математический язык, является основным затруднением, с которым сталкиваются старшеклассники при решении задач, обучение учащихся переводить словесное условие задачи на математический язык, установление соотношения между величинами является одним из самых важных этапов в решении любой задачи.
В учебнике “Математика – 5” авторов Н.Я. Виленкина и других составлению математических моделей посвящается очень мало заданий, а само понятие даже не рассматривается, поэтому в 7-ом классе при изучении темы “Математическая модель. Математический язык” и темы “Уравнения и системы уравнений как математические модели реальных ситуаций” возникает много затруднений. Поэтому уже в пятом классе после изучения тем “Упрощение выражений. Уравнения” всегда планирую несколько уроков по теме “Математическая модель”.
Данный урок является первым из трех уроков, предусмотренных программой по данной теме. Учащиеся знакомы с буквенными и числовыми выражениями, умеют решать уравнения и, в этот момент целесообразно рассмотреть элементы математического моделирования. На первом уроке учащиеся тренируются в построении моделей, методы, решения которых известны, на последующих уроках предполагается рассмотрение более сложных моделей, часть которых ребята решают, применяя имеющиеся знания, к другим задачам составляется только математическая модель.
Оценивание на уроке происходит при помощи жетонов, получаемых учащимися за каждый верный ответ.
На дом ребята получают задание составить задачу по математической модели, на повторение вычислительный пример и задание на упрощение выражения.
Урок в 5 классе по теме: “Математическая модель”
1) Сформировать представление о математических моделях реальнойдействительности. Научить строить математические модели текстовых задач.
2) Повторить и закрепить:
– упрощение выражения, используя свойства сложения и вычитания;
– совершенствовать вычислительные навыки
3)Способствовать развитию творческих способностей учащихся, умения анализировать, сравнивать.
4) Воспитывать внимание, аккуратность, ответственное отношение к труду.
Содержание темы: тема рассматривается в качестве углубления к теме: “ Числовые и буквенные выражения” учебника Н.Я. Виленкина.
Тип урока: Урок объяснения нового материала.
Оборудование: Проектор, экран
Организационные формы общения: индивидуальная, коллективная
Ход урока
I. Устный счет по карточкам.
II. Актуализация опорных знаний.
На прошлых уроках мы познакомились с числовыми и буквенными выражениями, упрощали выражения и решали уравнения.
– число, которое получается в результате сложения двух чисел называется…
– число, которое получается в результате вычитания двух чисел называется …
– что показывает разность, как найти неизвестное уменьшаемое и вычитаемое?
– какие свойства сложения и вычитания мы изучили?
– какие выражения называются числовыми и буквенными? Можно ли найти их значение?
III. Объяснение нового материала.
1. Давайте составим буквенное выражение к каждой задаче (учитель использует презентацию)
3 ряд
Мы получили, что для решения всех задач мы составили одинаковые буквенные выражения. В трех непохожих ситуациях мы использовали одну и ту же математическую модель, перевели условие задачи на язык цифр и математических знаков. Для решения задачи мы всегда составляем математическую модель.
2. Найдите выражение, которое является правильным переводом условия задачи на математический язык (учащийся объясняет, почему именно это выражение выбрано):
1) “Из с метров шелка сшили 7 платьев. Сколько метров шелка потребуется на 12 таких платьев?”
2) В одном альбоме х марок наклеено на 10 страниц поровну. В другом альбоме наклеено у марок и на и на каждой странице на 4 марки меньше, чем в первом альбоме. Сколько страниц занято марками во втором альбоме?
1) (х:10 – 4) :у ; 2)х : 10 + у : 4; 3); 4).
3. Что обозначает следующая модель для задачи: Пусть х рублей – цена 1 кг меда для Вини-Пуха, а у рублей – цена 1 кг сгущенки для Пятачка.
1) 5;
2)
3);
4) .
Для решения задачи составляем математическую модель, которая представляет собой буквенное выражение или уравнение. Повторим свойства, используемые при упрощении выражений и решении уравнений.
Упростим выражения, объясняя применяемые свойства (2 человека решают у доски):
1) ; 2) ;
; ;
; .
Решите уравнения (2 человека решают у доски):
1) ; 2) ;
; .
Решите задачу, составив математическую модель. В доме пятиклассника Васи К. жил прожорливый кот. За год ему скормили 30кг свежего мяса, колбасы – в 6 раз меньше, чем мяса, а “Вискаса” – в 5 раз меньше, чем мяса и колбасы вместе. Сколько всего мяса, колбасы и “Вискаса” скормили коту за год? (Первые трое решивших верно получают оценки)
VI. Домашнее задание.
Составьте задачу по математической модели:
1) ;
2) .
VII. Рефлексия.
Информатика
Именная карта банка для детей
с крутым дизайном, +200 бонусов
Закажи свою собственную карту банка и получи бонусы
План урока:
Математические модели
Давайте прочитаем такую простую загадку:
«Мама насыпала троим детям целую вазу любимых шоколадных конфет. Дети не дождались, пока конфеты поделят, стали потихоньку их кушать. 5-летний Антон взял 6 штук и скушал, 10-летняя Ирина взяла половину того, что осталось. А 3-летнему Игорю досталось 1/3 всех конфет, что купила мама. Когда мама пришла, дети ссорились, что конфеты поделили не честно. Но она успокоила их, что все получили поровну».
В этом отрывке много информации: любимые конфеты, сколько у мамы было детей, их имена и возраст, а также, кто, сколько скушал сладкого. Но, чтобы узнать, честно ли дети поделили угощение, нужна лишь часть данных.
Построение математической модели этой истории:
Записываем математическую модель: x-6-1/2*(x-6)=1/3*x
Получается, первый ребенок взял 6 конфет, второй – (18-6)/2=6, третий – 18/3=6. Значит, мама была права, все дети скушали одинаковое количество сладкого.
Так решение математической модели позволило маме помирить детей.
Математическими моделями называются количественное описание взаимосвязей между объектами или процессами.
Другими словами, математическая модель – это выражение какого либо процесса или объекта при помощи формул, знаков и чисел. Надь, выдели правило красным полем, пожалуйста
То, что мы с вами сейчас сделали, называется математическое моделирование, то есть, замена исходной информации математическим образом. Это наиболее логичный подход, чтобы позже описать что-либо при помощи компьютерной программы.
Математическую модель легче исследовать, написав вычислительный алгоритм, который позволяет считать, решать любые задачи подобного типа.
Назначение матмоделей
Сфера применения моделирования:
Матмоделирование широко применяется: экономико-математические модели, финансовые прогнозы, инженерные расчеты. Оно позволяет изучить, анализировать и прогнозировать.
Значит, реальный эксперимент можно провести несколько раз, написать математическую модель процесса, а далее, используя компьютерную программу или ручные расчеты, «прогонять» другие значения без эксперимента.
Например, накормить тортом 1 человека, рассчитать, сколько кусков ему нужно для насыщения. Рассчитать, какого размера нужен торт, если приглашенных гостей будет 10, 20, 100 человек.
Для этого используется математический язык: формулы, знаки, символы, цифры, уравнения, системы уравнений. Это один из наиболее часто используемых и точных методов научного исследования.
Расчеты ядерных реакций, количество выделяемого тепла, радиации – все это лучше рассчитывать теоретически, а проверять экспериментально лишь частично. Изучение космических бесконечностей, океанских глубин, пока возможно только математическим путем, но чем больше человек осваивает небо и океан, тем чаще убеждается в правильности своих расчетов.
Химию, физику, экономику сложно представить без матмоделей. Теперь биологи, экологи и медики также стали широко использовать математическое программирование. Например, сейчас ученые всего мира периодически рассчитывают количество людей, которые пострадают от пандемии. Плюс они постоянно актуализируют свои прогнозы, вводя новые данные по смертности и выздоровлению, по стойкости вируса в различных условиях.
Чтобы содержать курей несушек, нужно знать, сколько и какого корма необходимо для содержания 1 курицы на 1 день. Если же покупать комбикорма, зерно, зелень бездумно, птица останется голодной, ведь часть сырья испортится, в части заведутся насекомые, а чего-то не хватит. Логичнее заранее рассчитать, сколько и чего покупать (+небольшой запас) и только тогда заводить несушек.
Мы знаем, сколько необходимо корма на 1 день для 1 курицы-несушки. Около 300 г. на сутки, с учетом состава (86 г. пшеницы, 16 отрубей, по 44 кукурузы и ячменя, по 32 макухи, овса, гороха, по 10 мела, муки рыбной и мясокостной, по 6 г. дрожжей).
А на сутки для 10, 80, 150, 758 птиц? А на 3 месяца?
Данные по 1 курице получены экспериментально, а расчет для любого другого количества получим при помощи вычислений.
Имея модель, можно получить расчеты для любого вида птицы и любого количества, ведь подход будет аналогичный.
Отсюда получается, что данный метод позволяет уменьшить, а иногда и полностью избежать экспериментов, что очень важно при ограниченности ресурсов, их дороговизне или опасности процесса.
Плюсы математического моделирования:
Значит, матмоделирование – это тот же эксперимент, только расчетный, вычислительный. Поэтому нужен четкий план следования, который содержит 3 шага:
На первом этапе происходит описание математической модели – происходящие процессы, зависимости между объектами выражаются при помощи уравнений.
Модели могут захватывать все связи и процессы, но следует выбирать только значимые параметры, чтобы построить действующую упрощенную модель. Если же захватить и описать все факторы, на построение такой конструкции придется потратить неоправданно много времени и ресурсов, плюс в сложных алгоритмах чаще встречаются ошибки, а найти их непросто.
Следующий этап – построение алгоритма, который соответствует основным критериям:
На третьем этапе создают программу, которая также соответствует вышеописанным признакам.
Классификация математических моделей
Все модели можно поделить по виду, целям, содержанию и другим параметрам. Часто встречаются смешанные виды.
Статистическая модель по отношению ко времени – сколько нужно купить пирожных и сока, чтобы устроить сладкий стол для школьников.
Динамическая – динамика изменения цены на яйца, масло, и изменение стоимости готового торта помесячно.
Дискретная модель описывает поведение объекта в конкретный момент времени, например, энергия электрона в атоме водорода.
Непрерывная модель позволяет исследовать постоянное изменение высоты уровня океана от температуры воздуха на планете.
Предопределенная модель по характеру зависимости параметров – расчет качества зерна при изменении температуры и влажности в складе.
Случайная – описание движения кометы. В данном случае идет фактическое описание различных параметров, так как повлиять на них невозможно.
Важно разобрать поставленную задачу на простые расчеты, в зависимости от цели. В примере с курочками может понадобиться, сколько корма нужно с момента, когда курица начинает нести яйца и до спада или же до полного прекращения яйценоскости. Тогда нужно рассчитывать весь объем корма, но на разное количество голов и на различные сроки.
Так как треть от суточного состава занимает пшеница и продукты ее переработки, можно рассчитать, сколько сеять (зная, что ее средняя урожайность яровой 4,5 т/га или 5,8 т/га озимой), чтобы обеспечить 1000 голов курочек-несушек. В составе корма зерна и отруби из пшеницы занимают почти 32%. Остальные компоненты купить или рассчитать по аналогии.
Списки, виды, назначение, особенности
Математическое моделирование невозможно без алгоритма действия или пошагового плана действия. Такой список с номерами шагов и есть примером списка. Списки окружают нас везде.
Посмотрите в дневники, на стены кабинета, в учебник. Это расписание уроков, движение транспорта, рецепт блюда, перечень дел на день, список дней рождения и множество других примеров.
Списки – способ подачи информации для описания чего-либо или перечисление объектов.
Чаще всего используют 3 основных вида списков:
Для всех типов списков можно менять размер, цвет, начертание как для маркеров/нумеров, так и для пунктов (для них еще можно менять шрифт). По виду буллита (маркера) различают различные виды маркированных списков.
По тому, что использовалось в качестве маркера (цифры, буквы, знаки), нумерованные списки делят на разные виды.
Одним их самых удобных и простых способов создания списков является написание их в текстовом редакторе. Сделать это очень просто и под силу любому, кто хоть немного знаком с Word.
Способы создания списков в Word
Чтобы делать списки в текстовом редакторе Word, можно воспользоваться одним из предложенных способов:
Выбрать нужный тип маркера. Начать печатать текст. Каждая новая строчка (после Enter) считается новым пунктом, а значит, будет с выбранным маркером.
Пример маркированного списка:
Времена года и месяцы:
Аналогично делается нумерованный список:
Времена года и месяцы:
Важно! Правилом хорошего тона считается пункты маркированного списка начинать с маленькой буквы, а заканчивать точкой с запятой. Нумерованный список начинают с большой буквы, а заканчивают точкой.
Примеры, виды многоуровнего списка:
Времена года и месяцы:
Второй способ создания нумерованного или другого списка – при помощи контекстного меню, правой клавиши мыши (ПКМ).
Курсор поставить в нужное место в документе, нажать ПКМ, выбрать пункт Маркеры или Нумерация.
Для варианта с маркером:
Для варианта с нумерацией:
Можно преобразовать информацию в список. Для этого набранные строки выделить, потом выбрать тип списка на главной панели или при помощи ПКМ. Программа принимает, что окончание строки (Enter) есть окончание пункта списка.
Пошаговая инструкция или простой алгоритм
Среди огромного количества списков обособленно стоят нумерованные списки в ворде или в другом редакторе, которые являются не перечнем чего-либо, а пошаговым планом действия.
Как видно из примеров, когда нумерованный список используется просто как описание пунктов, объектов, пункты можно менять местами, конечная цель будет получена – пользователь получит весь объем информации.
Для нумерованного списка в виде пошаговой инструкции критично важна последовательность пунктов. Каждый следующий шаг можно делать только после предыдущего. Только тогда на выходе будет нужный результат. Это понятно на примере пошагового кулинарного рецепта.
Это и есть линейный алгоритм, в котором процесс разбивается на элементарные шаги. Выполняя эти простые действия, пользователь достигнет желанной цели, даже если она кажется сложной.
Давайте придумаем простейший алгоритм. Например, приготовление бутерброда с маслом и сыром.
Чтобы получить в конце готовый бутерброд, придется выполнить такие шаги:
Посмотрите, каждый шаг алгоритма простой и понятный. Но даже такие простейшие пункты можно разобрать на еще более детальные этапы. Например, взять деньги дома, положить в кошелек, одеться, обуться, выйти из квартиры, закрыть дверь ит.д. Детализировать можно до элементарных шагов.
Уровень детализации каждого шага алгоритма подбирают в зависимости от уровня исполнителя. Если алгоритм рассчитан для новичка, он будет состоять из самых простых шагов, если человек опытный, пункты будут сложнее. Это как объяснять новый рецепт неопытному кулинару и мастер-шефу.
Множество задач можно перевести в универсальную форму, используя математический язык. А составив алгоритм и написав по нему программу, ускорить, упростить расчет большинства задач. Без математических моделей и программирования невозможно представить расчет годового бюджета, мониторинг парникового эффекта, расчеты в садоводстве и земледелии.