Что такое математическая линия
ЛИНИЯ
кривая,- геометрическое понятие, точное и в то же время достаточно общее определение к-рого представляет значитю трудности и осуществляется в разных разделах геометрии различно.
В рамках элементарной геометрии понятие Л. не получает отчетливой формулировки и иногда определяется как «длина без ширины» или как «граница поверхности». По существу в элементарной геометрии изучение Л. сводится к рассмотрению примеров (прямая, отрезок, ломаная, окружность и др.). Не располагая общими методами, элементарная геометрия довольно глубоко проникла в изучение свойств конкретных Л. (конич. сечения, нек-рые алгебраич. Л. высших порядков и трансцендентные Л.), применяя в каждом случае специальные приемы.
В аналитич. еометрии Л. на плоскости определяется как множество точек, координаты к-рых удовлетворяют уравнению F(x, у)=0. При этом на функцию Fдолжны быть наложены ограничения так, чтобы, с одной стороны, уравнение это имело бесконечное множество решений и, с другой стороны, чтобы это множество решений не заполняло «куска плоскости».
Важный класс Л. составляют те, для к-рых функция F(x, у).есть многочлен от двух переменных; в этом случае Л., определяемая уравнением F(x, y) = 0, наз. алгебраической. Алгебраич. Л., задаваемые уравнением 1-й степени, суть прямые. Уравнение 2-й степени, имеющее бесконечное множество решений, определяет эллипс, гиперболу, параболу или Л., распадающуюся на две прямые. Алгебраич. Л., определяемые уравнениями высших степеней, рассматриваются в алгебраич. геометрии. При этом большую стройность приобретает их теория, если рассмотрение ведется на комплексной проективной плоскости. В этом случае алгебранч. Л. определяется уравнением вида
Для тех разделов математики, в к-рых господствуют методы теории функций (анализ, дифференциальная геометрия и др.), естественное определение Л.- задание ее пара метрически мп уравнениями. Так, в случае плоскости, Л., заданная параметрич. уравнениями
Кроме такого подхода существует п другая точка зрения (К. Жордан, С. Jordan, 1882) на определение Л. параметрич. уравнениями: Л. наз. множество точек плоскости, координаты к-рыХ суть непрерывные функции параметра t, заданные на отрезке [a, b]; теперь точки, соответствующие различным значениям параметра, но имеющие одни и те же координаты, уже не считаются различными, и множество, составляющее Л., уже не рассматривается как упорядоченное значениями t. Это определение обобщается на любое топологич. пространство: множество точек топологич. пространства, являющееся непрерывным образом отрезка, наз. жордановой кривой.
Однако построены такие непрерывные функции и что множество точек, координаты к-рых определяются. этими функциями, заполняют квадрат (см. Пеано кривая). Более общо, всякий локально связный континуум (т. е. континуум, каждая точка к-рого обладает сколь угодно малой связной окрестностью) является непрерывным образом отрезка (теорема М а з у р к е в и ч а). Таким образом, не только квадрат, но и куб любого числа измерений и даже бесконечномерный гильбертов кирпич являются непрерывными образами отрезка.
Вышеизложенное показывает, что Л. не может быть определена как непрерывный образ отрезка, если на отображение не наложить дополнительных ограничений. Так, в дифференциальной геометрии эти ограничения выражаются в том, что на функции, фигурирующие в параметрическом задании Л., налагаются условия существования производных различных порядков. С другой стороны, существуют континуумы, которые естественно рассматривать как Л., но к-рые, не будучи локально связными, не являются непрерывными образами отрезка. Таков, напр., континуум, определяемый
Общее определение Л. для случая плоскости было дано (Г. Кантор, G. Cantor, 1870-е гг.) в связи с созданием теории точечных множеств. Плоский континуум, в любой окрестности каждой точки к-рого имеются точки плоскости, не принадлежащие континууму, наз. канторовой кривой. Важный пример канторовой кривой доставляет ковер Серпиньского, строящийся следующим образом. Квадрат Qсо стороной 1 делят на девять равных квадратов прямыми, параллельными его сторонам, и удаляют все
внутренние точки центрального квадрата (рис. 2,. n=1). Так же поступают и с каждым из оставшихся восьми квадратов первого ранга, получается 64 квадрата второго ранга (рис. 2, n = 2). Продолжая процесс для всех натуральных n, на n-м шаге получают 8 n квадратов n- горанга со стороною Пересечение полученных таким образом множеств и есть ковер Серпинь-ского (рис. 2).
Какова бы ни была канторова кривая L, она может быть топологически вложена в ковер Серпиньского 5, т. е. в Sсодержится континуум L’, гомеоморфный Л. L. Ковер Серпиньского является локально связным континуумом и потому может быть получен как непрерывный образ отрезка.
В топологии пользуются понятием Л., введенным в 1921 П. С. Урысоном и являющимся наиболее общим (но не чрезмерно). Определение Л. формулируется следующим образом: линией наз. одномерный континуум, т. с. связное компактное метрич. пространство С, каждая точка к-рого обладает сколь угодно малой окрестностью с границей размерности нуль. Другими словами, при любом e>0 пространство Сможет быть представлено в виде суммы конечного числа замкнутых множеств диаметра, меньшего е, обладающих тем свойством, что никакие три из этих множеств не имеют общей точки. Ковер Серпиньского удовлетворяет этому определению Л., так что всякая канторова кривая является также и Л. в смысле П. С. Урысона. Обратно, если плоский континуум является Л. в смысле П. С. Урысона, то он будет канторовой кривой. Определение Л., данное П. С. Урысоном, является внутренним: оно характеризуется лишь свойствами самого пространства С и не зависит от того, рассматривается ли это пространство само по себе или как подмножество другого топологич. пространства.
В исследовании Л. важную роль играет понятие индекса ветвления. Л. Св точке химеет индекс ветвления т, если каково бы ни было число e>0, существует открытое множество Uдиаметра, меньшего, чем е, содержащее точку х. граница к-рого есть множество мощности, не превосходящей т, но для достаточно малого e’>0 граница всякого открытого множества, содержащего точку х, диаметр к-рого меньше e’, имеет мощность, не меньшую, чем т. Точки Л. относительно их индекса ветвления классифицируются следующим образом.
2) Точки неограниченного индекса ветвления w. (Точка х Л. С имеет индекс ветвления со, если каково бы ни было число e>0, существует открытое множество, содержащее точку х, с диаметром, меньшим, чем е, граница к-рого состоит’из конечного множества точек; но каково бы ни было натуральное п, найдется такое e n >0, что граница всякого открытого множества,
содержащего хи имеющего диаметр меньший, чем e n состоит не менее, чем из га точек.)
3) Точки счетного индекса ветвления
4) Точки континуального индекса ветвления с.
Точка Л. С, индекс ветвления к-рой больше двух, наз. точкой ветвления; точка, индекс ветвления к-рой равен единице, наз. концевой точкой.
Примеры, а) Отрезок во всех своих внутренних точках имеет индекс ветвления, равный двум; индекс ветвления концов отрезка равен единице, б) Окружность в каждой своей точке имеет индекс ветвления два. в) Л., состоящая из га прямолинейных отрезков,.
исходящих из одной точки О, имеет в точке Оиндекс ветвления п. г) Л., состоящая из отрезков выходящих из начала координат О, имеющих длины и образующих с осью Ох углы, соответственно равные имеет в точке Онеограниченно возрастающий: индекс ветвления со (рис. 5). д) Л., состоящая из отрезка Оа 0 длины 1 и отрезков длины 1, выходящих из точки Ои образующих с отрезком Оа 0 углы, соответственно равные имеет в каждой точке отрезка Оа 0 счетный индекс ветвления (рис. 6). е) Л., состоящая из отрезков, соединяющих точку Осо всеми точками канторова множества, лежащего на отрезке
y=0, имеет во всех своих точках континуальный индекс ветвления с (рис. 7). ж) Ковер Серпиньского также имеет во всех своих точках континуальный индекс ветвления.
Существуют также Л., имеющие во всех своих точках неограниченный индекс ветвления, счетный индекс ветвления и континуальный индекс ветвления. Лит.:[1] Александров П. С., Введение в общую теорию множеств и функций, М.- Л., 1948; [2] К у р а т о в с к и й К., Топология, пер. с англ., т. 2, М., 1969; [3] М е n g е r К., Kurventheorie, Lpz.- В., 1932; [4] Пархоменко А. С., Что такое линия, М., 1954; [5] У р ы с о н П. С., Труды по топологии и другим областям математики, т. 2, М.- Л., 1951; [6] Хаусдорф Ф., Теория множеств, пер. с нем., М.- Д., 1937. А. С. Пархоменко.
Точка и линия
Я не буду рассказывать вам, что об этом пишут в различных учебниках, ведь вы здесь для того, чтобы понять и применять, а не для того, чтобы зубрить. Я расскажу так, чтобы было понятно.
Точка – это воображаемый геометрический объект, не имеющий никаких размеров и не состоящий ни из чего.
У точки нет ни длины, ни ширины, ни высоты. Ее нельзя измерить. Точка неделимая. Она не состоит ни из каких-либо других частей.
Зачем нужна точка, если она воображаемая? Для чего ее придумали?
Точка выполняет только одну задачу: указание месторасположения.
Пример: точка на карте навигатора указывает нам на то, где находится конечный пункт поездки, то есть, на его местоположение.
Линия – это множество точек, расположенных последовательно друг за другом.
Например, представим себе цепь. Можно вообразить, что каждое ее звено – это точка. И точно так же, как цепь состоит из звеньев, соединенных между собой, так и линия состоит из точек, образно говоря, склеенных друг с другом.
Рис. 1 Цепь и линия
Линия не имеет ширины и высоты, но можно измерить ее длину. Линия состоит из точек.
Как можно измерить то, что состоит из придуманных объектов, не имеющих размеров? Зачем нужна линия?
Действительно, геометрическая точка не имеет размеров, ее невозможно измерить. Но она, как было сказано выше, указывает на местоположение чего-либо конкретного.
Возьмем для примера опять навигатор. Вы на автомобиле проехали от своего дома в любимое кафе.
Рис. 2 Путь автомобиля
Можем ли мы представить автомобиль точкой? Да, можем. Во время движения автомобиль изменял свое местоположение. Чтобы показать на карте, в каких именно местах побывал автомобиль во время поездки, мы обозначим их точками, следовательно, для упрощения рисунка мы смело можем заменить автомобиль точкой. Тогда полный путь от дома к кафе (множество мест на дороге, на которых побывала машина) мы можем изобразить в виде линии, то есть, идущих друг за другом точек. А так как путь от дома к кафе имеет какую-то длину, то и нарисованная линия имеет длину, равную этому пути, а значит, линию можно измерить.
Рис. 3 Контур и диапазон
Как видно на примере рисунка 3-а, при помощи линии обозначено очертание птицы на ветке, а на 3-б – пример решения неравенств методом интервалов.
Для чего нужна линия:
1. Показывает путь движения какого-либо объекта;
2. С ее помощью можно измерить расстояние между какими-нибудь объектами;
3. Служит для обозначения границ объекта или фигуры;
4. Показывает диапазон каких-то значений.
Обозначение точек и линий
Рис. 4 Обозначение точек и линий
Взаимное расположение точек и линии
Точка может принадлежать линии (то есть, быть одной из ее составляющих), а может не принадлежать ей.
Рис. 4.1 Принадлежность точек линии
При записи на письме точка обозначается при помощи знака точка, заключенного в скобки, с добавлением заглавной буквы латинского алфавита: (·) H
Теперь я запишу то, что мы увидели на рисунке 4.1, на языке геометрии, а вы попробуйте прочитать самостоятельно:
Виды линий
Рис. 5 Замкнутая и незамкнутая линия
Замкнутая линия не имеет обрывающихся концов. Она начинается и заканчивается в одной точке. Причем эта точка может находиться в любом месте на этой линии.
Рис. 6 Контур птицы
Незамкнутая линия имеет один или два обрывающихся конца. Начало и конец такой линии находятся в разных местах (точки A и B ).
Рис. 7 Незамкнутые линии
Еще несколько примеров.
1. Ты вышел из дома погулять и вернулся домой. Какой линией можно обозначить твой путь? Правильно, замкнутой.
2. Ты вышел из дома, погулял, а потом зашел к соседу. Какой линией можно обозначить твой путь? Правильно, разомкнутой.
3. Ты вышел из дома и пошел к другу в дом напротив. Какой линией можно обозначить твой путь? Правильно, разомкнутой.
Также линии бывают:
Рис. 11 Самопересекающиеся и не самопересекающиеся линии
Попробуйте сформулировать самостоятельно, какие линии называются самопересекающиеся, а какие – не самопересекающиеся.
Рис. 12 Прямая, ломаная, кривая линии
Более подробно о прямых, кривых и ломаных линиях рассмотрено в других уроках.
Плоскость, прямая линия, луч
Плоскость в математике можно сравнить с другими плоскостями, которые окружают нас в повседневной жизни: школьная доска, лист бумаги, экран планшета или смартфона и т.д. На них мы можем легко обозначить точки и линии, которые мы изучали на предыдущем уроке. На школьной доске мы это делаем мелом или фломастером, на листе бумаги можем нарисовать их ручкой, карандашом, фломастером; когда мы прокручиваем окно сайта или приложения на смартфоне, мы проводим на экране пальцем линию, когда переходим по ссылкам – ставим на его плоскости точку.
Но эти примеры плоскостей из жизни имеют свои размеры и границы, они конечные, их можно измерять.
Плоскость – это воображаемая абсолютно ровная и неизменяемая поверхность, которая не имеет толщины, но обладает бесконечными длиной и шириной.
Плоскость нельзя измерять, потому что она бесконечная.
Плоскость нельзя согнуть, в каком бы положении она ни находилась.
Все объекты и фигуры, которые изучаются в курсе математики 5 класса, находятся на плоскости.
Прямая линия
Прямая линия – абсолютно ровная линия, которая длится бесконечно в обе стороны, и на всем ее протяжении не изгибается и не преломляется.
Обозначение прямой
Например, на рисунке 1 обозначены такие прямые:
Рис. 1 Обозначение прямой линии
Рис. 2 Обозначение прямой с несколькими точками
Некоторые свойства прямой
Две точки, лежащие на одной прямой, создают отрезок этой прямой.
Через две любые точки на плоскости можно провести единственную прямую.
Рис. 3 Отрезок на прямой
Две разные прямые могут пересекаться или не пересекаться.
Две прямые пересекаются в том случае, если у них есть общая точка.
Рис. 5 Пересечение прямых
Более подробно об этих и других свойствах прямой написано в уроке геометрии 7 класса.
Луч – это часть прямой, которая начинается в определенной точке и длится бесконечно в одну сторону.
Рис. 6 Деление прямой линии точкой
У луча есть начало, но нет конца. От прямой луч отличается тем, что луч бесконечно продолжается только в одну сторону.
Свое название этот математический объект получил по аналогии с лучом света, который имеет начало (источник света), но определенного конца у него нет.
Обозначение луча
Луч, как и прямую, обозначают двумя способами.
Рис. 7 Обозначение луча
На рисунке 2 приведены примеры обозначения луча:
Луч имеет второе название – полупрямая.
Рис. 8 Дополнительные друг другу и совпадающие лучи
На рисунке 8 видно, что:
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 4.6 / 5. Количество оценок: 22
Ломаная линия — что это такое простыми словами
Ломаная линия — определение
Одним из наиболее простых и понятных геометрических терминов считают прямую линию. Есть в математике похожая фигура, но с некоторыми характерными чертами. Давайте попробуем разобраться, что такое ломаная линия и каковы её особенности.
Ломаная линия — математическая фигура, включающая в себя несколько отрезков, которые меняют направление.
Если выражаться более чётко, то это черта, которая не является прямой по всей длине, но может не иметь изгибов на отдельном отрезке.
Таким образом, фигура в обязательном порядке отвечает нескольким признакам:
Обозначение ломаной линии
Чтобы отметить ломаную линию на чертеже вам необходимо указать наименования точек стыка, в которых она меняет направление, латинскими буквами.
Из чего состоит ломаная линия
Как вы уже успели заметить, на рисунках присутствуют звенья — отрезки, составляющие ломаную линию. А вот начальные и конечные точки этих составных частей — вершины. На картинке вершины ломаной ABCD — позиции A, B, C, D.
Признак замкнутости ломаной линии
Классификация ломаных линий прежде всего осуществляется по свойству замыкания.
Замкнутая ломаная линия — фигура, у которой конечная позиция совпадает с начальной. Иначе говоря, когда она заканчивается в том же месте, где начиналась.
Яркие представители — треугольник и квадрат, а также остальные виды многоугольников:
Незамкнутая ломаная линия — фигура, которая приходит в позицию, отличающуюся от начальной.
Время от времени, у учащихся возникает вопрос: «Как определить, замкнутая фигура или нет?». Ответ будет весьма прост:»Когда число отрезков равно количеству вершин — она замкнутая, а при наблюдающемся неравенстве — незамкнутая».
В качестве дополнительного вида рассматривают понятие самопересекающаяся ломаная линия — та, которая скрещивается на пути своего следования. Для данного термина не имеет значения сколько раз произошло пересечение.
На рисунке отмечены точки пересечения — S, P, а также вершины — A,B,C,D,E,F.
Иногда люди спрашивают — «Могут ли вершины являться точками пересечения?». Чтобы найти ответ, обратите внимание на рисунок с пересекающейся и одновременно замыкающейся — ломаной линией:
Изображение отличается от предыдущего: отрезок EB перемещён, поэтому вершина A приобрела статус точки пересечения.
Как измерить длину ломаной линии
Ломаная линия, имеющая начало и конец, имеет распространённую стандартную характеристику — длину. Имея цель сделать замер её длины, необходимо суммировать длины всех её составных частей — отрезков.
Чем ломаная линия отличается от прямой
При взгляде на рисунок очевидно: уникальный признак ломаной линии — отсутствие углов, равных 180 градусам. В остальном, фигуры одинаковые и обладают схожими свойствами, например, длиной.
Примеры ломаных линий в быту
В целях наилучшего усвоения теории, разумно на практике ознакомиться с примерами ломаных линий из жизни.
Ломаная линия— график фондового рынка. Так как отрезки графика очень маленькие, поэтому может показаться, что это кривая, но при ближайшем рассмотрении оказывается, что это не так.
Фасад дома при переводе на «язык геометрии» выглядит как замкнутая ломаная линия.
Пирамиды древнего Египта обладали формой треугольника — одной из самых популярных ломаных линий.