Пусть [math] \xi [/math] — случайная величина, которая возвращает количество инверсий в перестановке.
Очевидно, что вероятность любой перестановки равна [math] \dfrac<1> [/math]
Докажем, что количество инверсий в этих двух перестановках равно [math] \dfrac <2>[/math]
Примеры распределений [ править ]
Распределение Бернулли [ править ]
Случайная величина [math]\xi[/math] имеет распределение Бернулли, если она принимает всего два значения: [math]1[/math] и [math]0[/math] с вероятностями [math]p[/math] и [math]q \equiv 1-p[/math] соответственно. Таким образом:
Тогда несложно догадаться, чему будет равно математическое ожидание:
[math]E(\xi) = 1 \cdot p + 0 \cdot q = p[/math]
Гипергеометрическое распределение [ править ]
Гипергеометрическое распределение в теории вероятностей моделирует количество удачных выборок без возвращения из конечной совокупности.
Пусть имеется конечная совокупность, состоящая из [math]N[/math] элементов. Предположим, что [math]D[/math] из них обладают нужным нам свойством. Оставшиеся [math]N-D[/math] этим свойством не обладают. Случайным образом из общей совокупности выбирается группа из [math]n[/math] элементов. Пусть [math]a[/math] — случайная величина, равная количеству выбранных элементов, обладающих нужным свойством. Тогда функция вероятности [math]a[/math] имеет вид:
где [math]C_n^k \equiv \dfrac[/math] обозначает биномиальный коэффициент.
Формула математического ожидания для гипергеометрического распределения имеет вид:
Математическое ожидание — это ожидаемый результат от какого-то действия.
Например, можно рассчитать ожидаемую стоимость инвестиции в определённый момент в будущем. Рассчитывая математическое ожидание перед тем, как инвестировать, можно выбрать наилучший сценарий который, по мнению инвестора, даст наилучший результат.
Случайная величина может быть двух типов:
Математическое ожидание дискретной случайной величины рассчитывается этой формулой:
Математическое ожидание дискретной случайной величины рассчитывается: 1. Сначала нужно умножить каждое из возможных результатов на свою вероятность (например: вероятность, что выпадет «1» — 1/6, «2» — 1/3, значит умножаем 1 на 1/6, 2 на 1/3, и т.д.), 2. Затем суммируем все эти значения (1 × 1/6 + 2 × 1/3 и т.д.).
Для непрерывной случайной величины используется эта формула:
В этом случае рассчитывается интеграл в заданном интервале.
Примеры вычисления математического ожидания
Пример 1
Вычислить математическое ожидание дискретной случайной величины Х со следующими данными:
xi
−1
1
2
3
4
pi
0,1
0,2
0,3
0,1
0,3
Используется формула для дискретной случайной величины:
Я все же введу пару определений, чтобы хоть немного формализовать написанное. 1) Если имеется несколько возможных случайных исходов, «равновозможных» между собой, то классическая вероятность — это отношение количества «хороших» случайных (элементарных) событий к их общему количеству. Например, если у вас есть 5 шариков, 2 из которых белые, то вероятность взять именно белый шар будет равняться 2/5. 2) Случайная величина — это величина, которая принимает в результате опыта одно из множества значений, причем появление того или иного значения этой величины до ее измерения нельзя точно предсказать. Классический пример — игральная кость. Кидая ее, можно случайно получить одно из шести возможных значений. 3) Математическое ожидание случайной величины — это сумма всех возможных ее значений, помноженных на их вероятность. Говоря простым языком, это «среднее значение» принимаемой случайной величины. Для игральной кости оно равно (1+2+3+4+5+6)*1/6=3.5. Что нам это дает? То, что кидая кость много (например 100) раз, в среднем каждый раз будет выпадать 3.5, а в сумме выпадет примерно 100*3.5=350. При увеличении количества бросков, относительная погрешность реального результата и его математического ожидания, помноженного на количество бросков, будет уменьшаться все сильнее.
Теперь суть того, что я, собственно, хотел рассказать: математические подсчеты довольно хорошо прогнозируют разные события, если они напрямую не зависят от выбора человека. Если же вмешивается антропогенный фактор, то строить какие-то планы, опираясь только на теорию вероятности нужно с осторожностью. Приведу пару простых примеров. Возможно они немного надуманные, но зато простые и понятные.
Монетка
Случай раз
Вам во время пары в универе (урока в школе, рабочего дня) стало скучно и Вы предложили соседу по парте (коллеге по работе) сыграть в следующую игру: подбрасываете монетку; если выпал орел — Ваш друг платит вам 5 рублей, если же выпала решка, то Вы платите 5 рублей. От скуки человек может и согласиться. Вы будете играть так весь день, а в конечном итоге оба останетесь практически при тех же деньгах, что были изначально. Вероятность выпадения любой стороны монетки 1/2 и, как следствие, математическое ожидание Вашего выигрыша равно нулю. Так что в среднем выигрыш/проигрыш будет в районе плюс-минус 10 рублей. Ну, может быть, немногим больше. В любом случае, для бюджета не критично.
Случай два
Ситуация та же, но вы предложили за проигрыш платить не по 5, а по 1000 рублей. Скорее всего ваш друг/коллега откажется. Ибо не хочется просто так потерять ощутимую сумму денег.
Что же изменилось? Математическое ожидание выигрыша по-прежнему равно нулю. С точки зрения математики все практически то же самое. А тут уже вмешался человеческий фактор, и Ваш план скоротать скучный день провалился.
Лотерея
Вы меняете условия и делаете лотерею практически благотворительной. Теперь выигрыш 25 рублей. Математическое ожидание выигрыша минус стоимость билета — 2.5 рубля! Вы даже останетесь в убытке! Но народ в большинстве своем по-прежнему не будет жаловать Вашу лотерею, ибо выигрыш немногим больше цены билета. В лотерею будут играть разве что школьники, которым не хватает мелочи на мороженное.
Читатель может решить, что дело просто в количественном размере выигрыша. Но это далеко не обязательно. Приведу еще один довольно надуманный, но показательный пример:
Очень крупная лотерея
Вам предлагают подарок неслыханной щедрости. «Супер-лотерею». Одну из двух, на выбор. Сыграть в нее можно только один раз. В первой «лотерее» Вам гарантированно выплачивают миллион долларов. А во второй с 50% шансом Вы получите 2 миллиона, с 40% шансом миллион и с 10% шансом уйдете ни с чем. Математическое ожидание выигрыша в первой «лотерее» 1 миллион. Во второй — 1.4 миллиона. Но что же Вы выберете? Может кто-то и выберет второй вариант, но проведение опроса среди некоторого количества людей покажет, что большинство наверняка выберет первый вариант. Ведь, как говорится, лучше синица в руках… Тем более, если синица — это миллион, а во второй «лотерее» есть шанс не получить ничего. И гипотетические 2 миллиона ничего не решают.
Последний пример
Ну и что в итоге?
В итоге, с одной стороны, математические подсчеты могут дать не совсем очевидные с точки зрения математики результаты. Человек может из почти одинаковых условий выбирать строго одно, а среди нескольких предложений брать более невыгодное для себя. Почему? Так устроен человек. Выгода одного конкретного человека не всегда может быть просто так подсчитана. С другой стороны, если смотреть с точки зрения различных фирм, корпораций и т.д., то имея множество клиентов, можно получать неплохие деньги, даже если с точки зрения математики предложение для клиента не самое выгодное. Именно поэтому существуют банки, лотереи, страховые компании. И люди берут кредиты под дикие проценты, покупают сомнительные лотерейные билеты и страхуют вещи, с которыми, скорее всего, все будет в порядке. А значит, пытаясь применить по отношению к людям какие-то подсчеты «в тупую», мысля как робот, скорее всего, ничего путного и полезного не выйдет. Но ежели действовать с умом, представить себя на месте других людей, то можно горы свернуть и миллиарды заработать с помощью математики.
В общем, думайте как люди, но про математику тоже не забывайте.
Второй раздел по теории вероятностей посвящён случайным величинам, которые незримо сопровождали нас буквально в каждой статье по теме. И настал момент чётко сформулировать, что же это такое:
Случайной называют величину, которая в результате испытания примет одно и только одно числовое значение, зависящее от случайных факторов и заранее непредсказуемое.
Случайные величины, как правило, обозначают через *, а их значения – соответствующими маленькими буквами с подстрочными индексами, например, .
*Иногда используют , а также греческие буквы
Пример встретился нам на первом же уроке по теории вероятностей, где мы фактически рассмотрели следующую случайную величину:
– количество очков, которое выпадет после броска игрального кубика.
В результате данного испытания выпадет одна и только грань, какая именно – не предсказать (фокусы не рассматриваем); при этом случайная величина может принять одно из следующий значений:
.
– количество мальчиков среди 10 новорождённых.
Совершенно понятно, что это количество заранее не известно, и в очередном десятке родившихся детей может оказаться:
, либо мальчиков – один и только один из перечисленных вариантов.
И, дабы соблюсти форму, немного физкультуры:
– дальность прыжка в длину (в некоторых единицах).
Её не в состоянии предугадать даже мастер спорта 🙂
Тем не менее, ваши гипотезы?
Коль скоро речь идёт о множестве действительных чисел, то случайная величина может принять несчётно много значений из некоторого числового промежутка. И в этом состоит её принципиальное отличие от предыдущих примеров.
Таким образом, случайные величины целесообразно разделить на 2 большие группы:
1) Дискретная (прерывная) случайная величина – принимает отдельно взятые, изолированные значения. Количество этих значений конечно либо бесконечно, но счётно.
…нарисовались непонятные термины? Срочно повторяем основы алгебры!
2) Непрерывная случайная величина – принимает все числовые значения из некоторого конечного или бесконечного промежутка.
Примечание: в учебной литературе популярны аббревиатуры ДСВ и НСВ
Сначала разберём дискретную случайную величину, затем – непрерывную.
Закон распределения дискретной случайной величины
– это соответствие между возможными значениями этой величины и их вероятностями. Чаще всего закон записывают таблицей:
Довольно часто встречается термин рядраспределения, но в некоторых ситуациях он звучит двусмысленно, и поэтому я буду придерживаться «закона».
А теперь очень важный момент: поскольку случайная величина обязательно примет одно из значений , то соответствующие события образуют полную группу и сумма вероятностей их наступления равна единице:
или, если записать свёрнуто:
Так, например, закон распределения вероятностей выпавших на кубике очков имеет следующий вид:
Возможно, у вас сложилось впечатление, что дискретная случайная величина может принимать только «хорошие» целые значения. Развеем иллюзию – они могут быть любыми:
Некоторая игра имеет следующий закон распределения выигрыша:
Найти
…наверное, вы давно мечтали о таких задачах 🙂 Открою секрет – я тоже. В особенности после того, как завершил работу над теорией поля.
Решение: так как случайная величина может принять только одно из трёх значений, то соответствующие события образуют полную группу, а значит, сумма их вероятностей равна единице:
Разоблачаем «партизана»:
– таким образом, вероятность выигрыша условных единиц составляет 0,4.
Контроль: , в чём и требовалось убедиться.
Ответ:
Не редкость, когда закон распределения требуется составить самостоятельно. Для этого используют классическое определение вероятности, теоремы умножения / сложения вероятностей событий и другие фишки тервера:
В коробке находятся 50 лотерейных билетов, среди которых 12 выигрышных, причём 2 из них выигрывают по 1000 рублей, а остальные – по 100 рублей. Составить закон распределения случайной величины – размера выигрыша, если из коробки наугад извлекается один билет.
Решение: как вы заметили, значения случайной величины принято располагать в порядке их возрастания. Поэтому мы начинаем с самого маленького выигрыша, и именно рублей.
Всего таковых билетов 50 – 12 = 38, и по классическому определению: – вероятность того, что наудачу извлечённый билет окажется безвыигрышным.
С остальными случаями всё просто. Вероятность выигрыша рублей составляет:
И для :
Проверка: – и это особенно приятный момент таких заданий!
Ответ: искомый закон распределения выигрыша:
Следующее задание для самостоятельного решения:
Вероятность того, что стрелок поразит мишень, равна . Составить закон распределения случайной величины – количества попаданий после 2 выстрелов.
…я знал, что вы по нему соскучились 🙂 Вспоминаем теоремы умножения и сложения. Решение и ответ в конце урока.
Закон распределения полностью описывает случайную величину, однако на практике бывает полезно (а иногда и полезнее) знать лишь некоторые её числовые характеристики.
Говоря простым языком, это среднеожидаемое значение при многократном повторении испытаний. Пусть случайная величина принимает значения с вероятностями соответственно. Тогда математическое ожидание данной случайной величины равно сумме произведений всех её значений на соответствующие вероятности:
или в свёрнутом виде:
Вычислим, например, математическое ожидание случайной величины – количества выпавших на игральном кубике очков:
очка
В чём состоит вероятностный смысл полученного результата? Если подбросить кубик достаточно много раз, то среднее значение выпавших очков будет близкО к 3,5 – и чем больше провести испытаний, тем ближе. Собственно, об этом эффекте я уже подробно рассказывал на уроке о статистической вероятности.
Теперь вспомним нашу гипотетическую игру:
Возникает вопрос: а выгодно ли вообще играть в эту игру? …у кого какие впечатления? Так ведь «навскидку» и не скажешь! Но на этот вопрос можно легко ответить, вычислив математическое ожидание, по сути – средневзвешенный по вероятностям выигрыш:
, таким образом, математическое ожидание данной игры проигрышно.
Не верь впечатлениям – верь цифрам!
Да, здесь можно выиграть 10 и даже 20-30 раз подряд, но на длинной дистанции нас ждёт неминуемое разорение. И я бы не советовал вам играть в такие игры 🙂 Ну, может, только ради развлечения.
Из всего вышесказанного следует, что математическое ожидание – это уже НЕ СЛУЧАЙНАЯ величина.
Творческое задание для самостоятельного исследования:
Мистер Х играет в европейскую рулетку по следующей системе: постоянно ставит 100 рублей на «красное». Составить закон распределения случайной величины – его выигрыша. Вычислить математическое ожидание выигрыша и округлить его до копеек. Сколько в среднем проигрывает игрок с каждой поставленной сотни?
Справка: европейская рулетка содержит 18 красных, 18 чёрных и 1 зелёный сектор («зеро»). В случае выпадения «красного» игроку выплачивается удвоенная ставка, в противном случае она уходит в доход казино
Существует много других систем игры в рулетку, для которых можно составить свои таблицы вероятностей. Но это тот случай, когда нам не нужны никакие законы распределения и таблицы, ибо доподлинно установлено, что математическое ожидание игрока будет точно таким же. От системы к системе меняется лишь дисперсия, о которой мы узнаем во 2-й части урока.
Но прежде будет полезно размять пальцы на клавишах калькулятора:
Случайная величина задана своим законом распределения вероятностей:
Найти , если известно, что . Выполнить проверку.
Тогда переходим к изучению дисперсии дискретной случайной величины, и по возможности, ПРЯМО СЕЙЧАС!! – чтобы не потерять нить темы.
Пример 3. Решение: по условию – вероятность попадания в мишень. Тогда: – вероятность промаха.
Составим – закон распределения попаданий при двух выстрелах:
– ни одного попадания. По теореме умножения вероятностей независимых событий:
– одно попадание. По теоремам сложения вероятностей несовместных и умножения независимых событий:
– два попадания. По теореме умножения вероятностей независимых событий:
Проверка: 0,09 + 0,42 + 0,49 = 1
Ответ:
Примечание: можно было использовать обозначения – это не принципиально.
Пример 4. Решение: игрок выигрывает 100 рублей в 18 случаях из 37, и поэтому закон распределения его выигрыша имеет следующий вид:
Вычислим математическое ожидание:
Таким образом, с каждой поставленной сотни игрок в среднем проигрывает 2,7 рубля.
Пример 5. Решение: по определению математического ожидания:
поменяем части местами и проведём упрощения:
таким образом:
Выполним проверку:
, что и требовалось проверить.
Ответ:
Автор: Емелин Александр
(Переход на главную страницу)
Zaochnik.com – профессиональная помощь студентам
cкидкa 15% на первый зaкaз, прoмoкoд: 5530-hihi5
Tutoronline.ru – онлайн репетиторы по математике и другим предметам