Что такое магнитные домены

«ЖИЗНЬ» МАГНИТНЫХ ДОМЕНОВ

Доктор физико-математических наук Г. КАНДАУРОВА, Соросовский профессор, заслуженный деятель науки РФ, академик РАЕН (г. Екатеринбург).

Изучая свойства различных магнитных веществ, мы неоднократно наблюдали явления, которым при желании можно найти аналоги в живой природе. Приведу несколько примеров, предварительно сделав ряд кратких пояснений.

В микроскоп видно, что при малых амплитуде и частоте доменные границы колеблются около исходных положений равновесия; с ростом напряженности магнитного поля H и его частоты f начинается движение доменов. Они изгибаются, разрываются и смещаются в разных направлени ях с разными скоростями. По мере увеличения H и f движение становится все более интенсивным, так что картина расплывается в более или менее однородный серый фон. Но фотография с достаточно малой экспозицией фиксирует «мгновенную картину» неупорядоченной динамической доменной структуры. Мы называем эту структуру пространственно-временным доменным хаосом или просто «хаосом».

Время «жизни» спиралей зависит от параметров переменного поля и характеристик образцов и может в сотни или тысячи раз превышать период переменного поля, то есть упорядоченные динамические доменные структуры устойчивы.

Спиральные домены в разных образцах могут сильно отличаться друг от друга. Например, это могут быть исключительно красивые спирали, почти идеальной формы (рис. 2а) или очень нарядные спирали с гофрированными витками (рис. 2б).

На рис. 2 представлены разные динамические доменные структуры в разных образцах пленок ферритов-гранатов. Но оказалось, что в одном и том же образце на одном и том же месте можно наблюдать очень впечатляющие картины преобразования динамической структуры при изменении частоты и амплитуды переменного поля (рис. 3). Так, при малой частоте (рис. 3а) видны какие-то скрюченные, неправильной формы спиральные мотки. Из них с увеличением частоты образуются весьма приличные спиральные домены (рис. 3б). А далее с ростом частоты поля, как правило, формируется плотная упаковка спиральных доменов (рис. 3в), заполняющая весь образец.

По сгущению витков видно, что в первом (рис. 4б) и во втором (рис. 4в) случае спиральные домены сжимают друг друга. Максимальные значения характерных времен «жизни» T g и «ожидания» T w составляет 10-30 секунд при частоте поля 200 Гц и с ростом частоты резко уменьшаются. Предугадать, какие именно спиральные домены возникнут, не представляется возможным: процесс этот случайный.

Процессы возникновения и исчезновения спиральных доменов происходят настолько быстро, что при визуальном микроскопическом исследовании невозможно заметить, каким образом протекают эти процессы.

Однако по прошествии некоторого времени, в данном случае через 1,03 секунды, начинается резкая потеря витков, разрыхление центральной части спирального домена (рис. 6д). И еще через 0,05 секунды от него остаются лишь жалкие остатки (рис. 6е), которые исчезают уже на следующем кадре видеофильма. Итого, заметим, этот домен «прожил» более одной секунды при частоте поля 2500 Гц (если продолжить аналогию, то этот домен прожил около 7 «лет»).

Заметим еще, что есть в «жизни» некоторых спиральных доменов «тяжелые моменты»: например, многовитковый домен начинает резко «худеть» и терять витки (20 витков за секунду!). Казалось, он обречен, сейчас развалится и погибнет, но нет! Это была «болезнь», которую домен преодолел, выправился и снова накрутил витки, почти до максимального значения (24 витка). Однако через 2,8 секунды кончилось отведенное ему судьбой время «жизни».

Теперь рассмотрим различные этапы «жизни» и взаимодействия нескольких спиральных динамических доменов (рис. 8). На наблюдаемом участке того же пленочного образца, что и на рис. 6, возникли четыре спиральных домена (рис. 8а). Сначала домены не соприкасаются. Скажем так: обстановка спокойная, но каждый из доменов растет, увеличивая число витков, и через некоторое время сталкиваются (рис. 8б). Ситуация меняется коренным образом. Каждый из спиральных доменов «хочет отвоевать себе территорию» для дальнейшего роста. Их витки натянуты, как струны. На рис. 8б прямо-таки видно, насколько напряженная, воинственная создалась обстановка. В «битву» вступает еще один большой домен (сверху слева). Общими усилиями связанные между собой «агрессоры» «задавили-таки» зажатый со всех сторон маленький доменчик (рис. 8в). Но при этом сильно пострадал и еще один небольшой домен (рис. 8г, внизу). А дальше? Хотелось бы видеть продолжение схватки. Но у всех оставшихся участников «побоища» кончилось время, и они исчезли.

Конечно, я привела только малую часть результатов наблюдения динамических доменных структур. Надо бы остановиться на системах из кольцевых концентрических динамических доменов, на гигантских радиальных, радиально-кольцевых доменах. Следовало бы упомянуть о разных типах плотных упаковок доменов, об источниках динамических доменов и многом другом, но это уже за рамками данной статьи.

Наблюдая доменные картины непосредственно в микроскоп и анализируя кадры микровидеофильма, трудно отогнать мысль, что мы имеем дело в каком-то плане с «живыми» объектами, или по крайней мере не задаться тем же вопросом, что и Г. Браницкий: «Неживая природа, такая ли она неживая?».

См. в номере на ту же тему

Комментарии к статье

**Более подробно о методике см. Кандаурова Г. С. Новые явления в низкочастотной динамике коллектива магнитных доменов // Успехи физических наук, 2002, т. 172, № 10, с. 1165-1187.

Источник

Ферромагнетики и доменная структура

В статье ниже рассмотрим такой вид магнетиков как ферромагнетики. Разберём их основные свойства и доменную структуру.

Ферромагнетики – это особый класс магнетиков, способных обладать намагниченностью при отсутствии внешнего магнитного поля (спонтанная намагниченность).

Основные свойства ферромагнетиков

Отметим, что ферромагнетизм присущ веществам лишь в кристаллическом состоянии. Самыми известными примерами ферромагнетиков являются: железо, кобальт, соединения хрома и другие. Ферромагнетики относятся к сильномагнитным веществам, при этом их намагниченность находится в зависимости от напряженности внешнего поля нелинейно и достигает насыщения. Учитывая сказанное, магнитная восприимчивость ( χ ) и магнитная проницаемость ( μ ) для ферромагнетиков непостоянны. Так же имеет место запись:

но при этом μ и χ рассматриваются как функции от напряженности поля. С ростом напряжённости поля данные функции также получают рост, проходят через максимум, а в сильном поле (при достижении насыщения) μ стремится к единице, а χ – к нулю. Значение μ в максимуме достигает сотни тысяч единиц для большинства ферромагнетиков в условиях обычной температуры.

Монокристаллы ферромагнетиков являются анизотропными по отношению к магнитным свойствам. Каждый монокристалл содержит одно или несколько направлений, вдоль которых магнитная восприимчивость особо значима. Также имеются направления, в которых кристалл плохо намагничивается. Заметим, что, если вещество, являющееся ферромагнетиком, состоит малых поликристаллов, то оно является изотропным.

Рассмотрим еще одну отличительную черту ферромагнетиков: зависимости B → H → и J → H → являются неоднозначными, определенными предшествующей историей – для ферромагнетиков характерен магнитный гистерезис.

Для рассматриваемого класса магнетиков имеет место определенная температура, при которой вещество осуществляет фазовый переход второго рода. Такая температура носит название температуры Кюри ( T k ) или иначе: точки Кюри.

Когда значение температуры ниже точки Кюри, вещество проявляется как ферромагнетик; когда температура становится выше точки Кюри, вещество приобретает свойства парамагнетика. Вокруг точки Кюри магнитная восприимчивость ϰ отвечает закону Кюри-Вейса:

Доменная структура ферромагнетиков

Эйнштейн в ходе эксперимента показал, что ферромагнетизм вызывается спинами электронов. Как уже указывалось выше, ферромагнетики обладают спонтанной намагниченностью при отсутствии внешнего поля, но под влиянием внутренних причин спины электронов начинают выстраиваться в одном общем направлении. При этом стоит отметить, что энергетически не оптимально для ферромагнетика целиком обладать намагниченностью.

Впервые теорию о свойствах ферромагнетиков сформулировал Вейсс в 1907 году. Поверхностный взгляд может отметить, что в данной теории существует противоречие между спонтанным намагничиванием и фактом, что даже, когда значение температуры ниже точки Кюри, некоторые ферромагнетики не намагничены, хоть и имеются постоянные магниты. Данное противоречие было устранено сформулированной Вейссом гипотезой.

Ферромагнетики при температуре ниже точки Кюри в магнитном отношении распадаются на множество маленьких макроскопических областей, и каждая из них является спонтанно намагниченной. Эти области получили название доменов.

Домены направлены хаотично при обычных условиях. Тело в общем не является намагниченным. Включение внешнего поля вызывает рост доменов, имеющих ориентацию по полю, за счет доменов, имеющих ориентацию против поля; происходит смещение доменных границ. Если поле слабое, подобное смещение является обратимым. Если поле сильное, домены изменяют ориентацию в пределах всего домена; процесс приобретает необратимый характер, появляется явление гистерезиса и остаточное намагничивание.

Подобный доменный «распад» энергетически выгоден. Когда ферромагнетик дробится на домены, и появляются домены различной ориентации, наблюдается ослабление магнитного поля, порождаемого ферромагнетиком; сопутствующая энергия становится меньше. Энергия обменного взаимодействия электронов не изменяется для всех электронов за исключением электронов на границах доменов (так называемая поверхностная энергия). Ее рост обусловлен различной ориентацией спинов электронов соседних доменов. Дробление доменов получает окончание при достижении минимума суммы магнитной и обменной энергии. Условием минимума определяется также размер доменов. Доменная структура ферромагнетиков имеет эмпирическое доказательство.

Границы доменов

Резюмируя вышесказанное: чтобы минимизировать энергию магнитного поля, оптимально создать условия для уменьшения размера домена. При этом имеется препятствие, выраженное неизбежностью энергетических затрат на образование границ между доменами, поскольку намагниченность по разные стороны границы обладает разной направленностью. Граница имеет определенную толщину, в ее пределах намагниченность постепенно изменяет свое направление от ориентации в одном домене к ориентации в соседнем.

Стенки доменов имеют классификацию по особенностям поворота вектора намагниченности:

Рисунок 1 демонстрирует идеализированные структуры доменов в монокристалле. При помощи стрелок обозначены направления намагниченности.

Что такое магнитные домены. Смотреть фото Что такое магнитные домены. Смотреть картинку Что такое магнитные домены. Картинка про Что такое магнитные домены. Фото Что такое магнитные домены

Необходимо определить, какое свойство дает возможность использовать ферромагнетики для создания сильных полей.

Указанная отличительная черта намагничивания ферромагнетиков объясняет эффективное использование этих материалов для создания сильных магнитных полей в области, далекой до насыщения. В сильных полях наступает насыщение, и применение ферромагнетиков практически бесполезно.

Источник

Меньше не значит хуже: скирмионы и доменные стенки в феррИмагнетиках

Что такое магнитные домены. Смотреть фото Что такое магнитные домены. Смотреть картинку Что такое магнитные домены. Картинка про Что такое магнитные домены. Фото Что такое магнитные домены

Вы наверняка не раз слышали как кто-то где-то сделал самый большой торт в мире или самую большую пиццу или самый большой бургер. Эти рекорды забавные, порой очень смешные, а в случае вышеперечисленных вариантов еще и вкусные. Но они не несут пользы. Ученый мир тоже любит ставить рекорды в размерах чего-то, но последнее время диаметрально противоположные. Исследователи со всего мира стараются использовать самые малые объекты на благо человечества и технологий. Сегодня мы поговорим о перспективе использования доменных стенок и скирмионов внутри ферримагнита для хранения и передачи информации. Сказать, что эти «носители» малы, значит сильно преувеличить. Что и как работает, какие перспективы у сего исследования и почему именно ферримагниты? Ответы будем искать в докладе исследовательской группы. Поехали.

Теоретическая основа исследования

Прежде всего стоит отметить, что большинство исследований, в основе которых так или иначе лежит магнетизм и его аспекты, по большей степени используют ферромагнит, а не ферримагнит. Одна буковка в слове меняет на самом деле не только название, а всю суть.

Ферромагнит это то, что мы с вами наблюдаем чаще всего. Если у вас на холодильнике висит магнитик с прошлого отпуска, знайте, висит он там за счет именно ферромагнетизма. Ферромагнетик это вещество, которое обладает намагниченностью без применения внешнего магнитного поля и при температуре ниже точки Кюри. Если же говорить про комнатную температуру, то ферромагнитными свойствами обладает 4 вещества: никель (Ni), железо (Fe), кобальт (Co) и рутений (Ru).

Что такое магнитные домены. Смотреть фото Что такое магнитные домены. Смотреть картинку Что такое магнитные домены. Картинка про Что такое магнитные домены. Фото Что такое магнитные домены
Неодимовые магниты (редкоземельный элемент неодим + железо + бор) против смартфона. Людям с номофобией просьба не смотреть.

Стоит нам поменять буковку «о» на «и», как мы получим совершенно новый тип веществ. Ферримагнетики в чем-то похожи на своих братьев ферромагнетиков, по крайне мере и к тем, и к другим применимы все магнитные характеристики, а также и те, и другие «работают» при температуре ниже точки Кюри. Самым важным отличием является факт того, что у ферримагнетиков магнитные моменты атомов подрешеток антипараллельны. Почему так? По сути ферримагнетики это коктейль из нескольких химических элементов, а не одного, как у ферромагнетиков. За счет этого они состоят из нескольких подрешеток, структура которых отличается либо числом атомов, либо их происхождением (разные хим. элементы). Главными среди обладателей ферримагнитных черт являются ферриты, в основе которых лежит оксид железа (Fe2O3).

Что такое магнитные домены. Смотреть фото Что такое магнитные домены. Смотреть картинку Что такое магнитные домены. Картинка про Что такое магнитные домены. Фото Что такое магнитные домены
Сравнение направленности магнитных моментов ферромагнетика (а) и ферримагнетика (b).

А теперь заглянем еще глубже и попытаемся понять что такое эти доменные стенки.

Итак, доменная стенка это практически буквально стена между двумя магнитными доменами, своего рода черта или приграничный пункт. Продолжая последнюю аналогию, эти магнитные домены как Северная и Южная Корея, то есть противоположны друг другу. Точнее сказать, они обладают разными направлениями намагниченности.

Что такое магнитные домены. Смотреть фото Что такое магнитные домены. Смотреть картинку Что такое магнитные домены. Картинка про Что такое магнитные домены. Фото Что такое магнитные домены
Магнитные домены: черные и белые участки отличаются направленностью векторов своих магнитных моментов.

Домен же, если не углубляться, это часть магнитного кристалла, микроскопическая область, в которой векторы намагниченности строго упорядочены относительно векторов в соседней области.

Дабы не повторятся очередной раз, пояснение что такое магнитный скирмион вы можете найти в одной из предыдущих статей. Лишь вкратце скажу, что это своего рода воронки атомных спинов, которые названы в честь физика Тони Скирме.

Что такое магнитные домены. Смотреть фото Что такое магнитные домены. Смотреть картинку Что такое магнитные домены. Картинка про Что такое магнитные домены. Фото Что такое магнитные домены
Изображение а — скирмион «еж», b — спиралевидный скирмион.

С теорией мы немного разобрались, теперь давайте посмотрим что из всего этого слепили наши сегодняшние герои.

Выше мы с вами рассматривали ферромагнетики и ферримагнетики, а также их отличия не просто так. Исследователи считают, что хоть ферромагнетики и обладают удивительно полезными характеристиками и свойствами, они все же ограничены в скорости и размере, точнее сказать с их помощью можно передать данные медленнее, а каждый бит будет «крупнее», чем если использовать ферримагнетики. Звучит очень перспективно, но требует доказательств. Чем ученые и занялись в данном исследовании.

Вещественной базой эксперимента стало соединение Pt/Gd44Co56/TaOx, точнее тонкая пленка из него.

Что такое магнитные домены. Смотреть фото Что такое магнитные домены. Смотреть картинку Что такое магнитные домены. Картинка про Что такое магнитные домены. Фото Что такое магнитные домены
Изображение №1

Для начала следователи решили изучить статику и динамику спиновой структуры Gd44Co56 (изображение ), который является аморфным ферримагнитным сплавом. Антиферромагнитно связанные под-решетки этого сплава обладают схожим g-фактором, посему TA (температура компенсации углового момента) очень близка к TM (температуре компенсации намагниченности).

Как мы уже знаем, главным действующим лицом опытов был Pt/Gd44Co56/TaOx. Толщина пленки каждого компонента была следующей: Ta — 1 нм; Pt — 6 нм; Gd44Co56 — 6 нм; TaOx — 3 нм. Все пленки были перпендикулярно намагничены и методом напыления нанесены на подложку из Si/SiO2.

Нижний слой (Pt) являлся основным источником спин-орбитальных вихрей (далее СОВ) и постоянно генерировал сильное взаимодействие Дзялошинского-Мория (далее ВДМ), которое отвечает за слабые проявления ферромагнетизма в антиферромагнитных диэлектриках. Верхний же слой (TaOx) является защитным.

На графике 1b в виде функции зависимости от температуры изображены два показателя: коэрцитивная сила (квадраты), необходимая для полного размагничивания ферримагнетика (или ферромагнетика) и магнитное насыщение (круги). Первый показатель был получен посредством метода вибрационной магнитометрии, а второй — метода поляриметрии магнитооптического эффекта Керра.

Благодаря полученным данным ( и 1d) было установлено, что TM равна примерно 240 K (кельвин), поскольку наблюдается гистерезис магнитооптического эффекта Керра.

Посредством широкопольной керр-микроскопии были проведены исследования движения доменной стенки. На показано несколько снимков, когда наносекундные импульсы тока были применены на доменной стенке, заставив ее двигаться вдоль заданного маршрута.

Каждая из стенок, вверх-вниз и вниз-вверх (направление векторов намагниченности), продвигались по пути тока, где также присутствовали доменные стенки Нееля*, управляемые спин-орбитальными вихрями.

Что такое магнитные домены. Смотреть фото Что такое магнитные домены. Смотреть картинку Что такое магнитные домены. Картинка про Что такое магнитные домены. Фото Что такое магнитные домены
Сравнение стенки Нееля (а) и стенки Блоха (b).

Стенка Нееля* — поворот намагниченности в данном типе стенок происходит перпендикулярно ней, а не в ее плоскости.

График 1f представляет собой соотношение скорости доменной стенки (vDW) и температуры (Т). Значительный пик наблюдается именно при 260 К, что выше установленной ранее TM.

Стоит отметить, что расхождения между полями СОВ и ВДМ не являются основной причиной увеличения скорости доменной стенки.

Что такое магнитные домены. Смотреть фото Что такое магнитные домены. Смотреть картинку Что такое магнитные домены. Картинка про Что такое магнитные домены. Фото Что такое магнитные домены
Изображение №2а

На графике показан анализ влияния поля и тока на скорость доменной стенки посредством диаграммы ползучести. И мы видим, что в обеих вариантах результат идентичен.

Стоит отметить, что ферримагниты могут иметь куда более малые скирмионы, чем ферромагниты, что связано с их слабым полем размагничивания. При этом данные скирмионы существуют при комнатных температурах. Ранее размеры подобных скирмионов были в диапазоне 30 нм — 2 мкм при криогенных температурах. Большие размеры скирмионов объясняются сильным дипольным взаимодействием в многослойных структурах, состоящие как правило из тяжелых металлов и ферромагнетиков.

Что такое магнитные домены. Смотреть фото Что такое магнитные домены. Смотреть картинку Что такое магнитные домены. Картинка про Что такое магнитные домены. Фото Что такое магнитные домены
Сравнение скирмионов.

На изображении а показан случай, описанный выше (ферромагнитная многослойная структура), в котором есть прямая зависимость энергии скирмиона (Е) от его радиуса ®. В случае ферримагнетиков можно сделать слой значительно тоньше, при этом не будет нужды увеличивать силу поля размагничивания (изображение b). Также исследователями было рассчитано с применением ЯМР в нулевом поле* соотношение размеров скирмиона и состояния ВДМ (график с).

Что такое магнитные домены. Смотреть фото Что такое магнитные домены. Смотреть картинку Что такое магнитные домены. Картинка про Что такое магнитные домены. Фото Что такое магнитные домены
Запечатленные скирмионы.

Эти выводы являются результатом расчетов и моделирования, но они были полностью подтверждены с помощью рентгеновской голографии при комнатной температуре образца Pt/Gd44Co56/TaOx.

Что такое магнитные домены. Смотреть фото Что такое магнитные домены. Смотреть картинку Что такое магнитные домены. Картинка про Что такое магнитные домены. Фото Что такое магнитные домены
Снимки рентгеновской голографии Pt/Gd44Co56/TaOx.

Как видно из снимков, было обнаружено довольно много скирмионов в различных участках образца. Также ученые отмечают, что не было обнаружено никаких признаков корреляции между положением скирмионов до насыщения и ре-нуклеации. Например, на снимке 5d цветные квадраты отмечают места, где нет скирмионов, но они там были ранее (снимки и 5b). При этом все скирмионы исчезают, когда сила магнитного поля достигает 450 мТл (миллитесла).

Размер скирмионов в среднем составил 23 нм (5g). Самый же малый скирмион был примерно 10 нм в диаметре. Именно это важно, поскольку такой размер значительно меньше того, что наблюдается у скирмионов в ферромагнетиках при комнатной температуре. Неоднородность размеров скирмионов ученые объясняют анизотропией структуры образца, то есть наличием различий свойств внутри единой структуры.

Стоит также учесть факт того, что размер скирмионов на снимках определялся по самому большому контуру темных участков. В действительности же скирмионы еще меньше.

Желающим детальнее ознакомится с исследованием рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Исследователям удалось показать, что ферромагнетики, несмотря на их преимущества, не смогут долго оставаться монополистами. Ферримагнетики также способны показать отличный результат. В данном случае удалось достичь смещения доменной стенки со скоростью 1 км/с, а минимальный размер скирмиона составил не более 10 нм в диаметре. И самое важное — все это при комнатной температуре. Последнее является особенно привлекательным для практического применения. Многие разработки, находящиеся на стадии исследования, показывают хорошие результаты только в определенных условиях (температура, давление, влажность, различные воздействующие электромагнитные поля и излучения и т.д.), воссоздать которые можно только в лаборатории.

Ученые считают, что ферримагнетики могут стать базой для будущих устройств, опирающихся на спинтронику. При этом их свойства можно будет контролировать, изменять и подстраивать под нужды определенного устройства или процесса. Более того, это позволит реализовать антиферромагнитные спиновые системы, в которых магнитное состояние все же будет легко обнаружить оптическими или электрическими методами.

Изучить предстоит еще многое. Трудностей также будет не мало. Но все технологии и их авторы прошли тернистый путь в свое время прежде чем достичь совершенства. Вспомнился один случай, не знаю насколько он правдив, но все же. Во времена первых машин произошло ДТП, виновник которого решил скрыться с места происшествия. Полиция догнала его на велосипедах. А что мы имеем сейчас? Авто, способные разогнаться хоть до 350 км/час. Тут уже велосипед для погони не подойдет.

VPS (KVM) E5-2650 v4 (6 Cores) 10GB DDR4 240GB SSD 1Gbps до декабря бесплатно при оплате на срок от полугода, заказать можно тут.

Источник

Домен (магнетизм)

Что такое магнитные домены. Смотреть фото Что такое магнитные домены. Смотреть картинку Что такое магнитные домены. Картинка про Что такое магнитные домены. Фото Что такое магнитные домены

Что такое магнитные домены. Смотреть фото Что такое магнитные домены. Смотреть картинку Что такое магнитные домены. Картинка про Что такое магнитные домены. Фото Что такое магнитные домены

Домен — макроскопическая область в магнитном кристалле, в которой ориентация вектора спонтанной однородной намагниченности [1] или вектора антиферромагнетизма [2] (при температуре ниже точки Кюри или Нееля соответственно) определенным образом повернута или сдвинута относительно направлений соответствующего вектора в соседних доменах. Домены существуют в ферро- и антиферромагнитных, сегнетоэлектрических кристаллах и других веществах, обладающих спонтанным дальним порядком.

Содержание

Доменная теория

Что такое магнитные домены. Смотреть фото Что такое магнитные домены. Смотреть картинку Что такое магнитные домены. Картинка про Что такое магнитные домены. Фото Что такое магнитные домены

Что такое магнитные домены. Смотреть фото Что такое магнитные домены. Смотреть картинку Что такое магнитные домены. Картинка про Что такое магнитные домены. Фото Что такое магнитные домены

Применения на практике

См. также

Примечания

Ссылки

Что такое магнитные домены. Смотреть фото Что такое магнитные домены. Смотреть картинку Что такое магнитные домены. Картинка про Что такое магнитные домены. Фото Что такое магнитные домены

Полезное

Смотреть что такое «Домен (магнетизм)» в других словарях:

Магнетизм — Классическая электродинамика … Википедия

магнитные свойства веществ — магнетизм. магнетик. диамагнетизм. диамагнетик. диамагнитный. парамагнетизм. парамагнетик. парамагнитный. ферромагнетизм. ферромагнетик. ферромагнитный. антиферромагнетизм. антиферромагнетик. домен. магнон. магнитная проницаемость. коэрцитивная… … Идеографический словарь русского языка

МАГНИТЫ И МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА — Простейшие проявления магнетизма известны очень давно и знакомы большинству из нас. Однако объяснить эти, казалось бы, простые явления на основе фундаментальных принципов физики удалось лишь сравнительно недавно. Существуют магниты двух разных… … Энциклопедия Кольера

Франция — (France) Французская Республика (République Française). I. Общие сведения Ф. государство в Западной Европе. На С. территория Ф. омывается Северным морем, проливами Па де Кале и Ла Манш, на З. Бискайским заливом… … Большая советская энциклопедия

Магнитодвижущая сила — Единицы измерения СИ А СГС Гб Примечания … Википедия

МИКРОЧАСТИЦЫ — (от греч. μικρός – малый) – частицы очень малой массы (в частности, нулевой), для движения и взаимодействия к рых существенна дискретность (атомизм) действия. К М. относятся элементарные частицы, атомные ядра, атомы, молекулы, квазичастицы.… … Философская энциклопедия

НАМАГНИЧИВАНИЕ — процессы установления намагниченности, протекающие в в ве при действии на него внеш. магн. полем. В диамагнетиках Н. состоит в возникновении микроскопических индукц. токов, создающих намагниченность, направленную против внеш. магн. поля. В… … Физическая энциклопедия

МАГНИТНАЯ ДОМЕННАЯ СТРУКТУРА — совокупность макроскопич. областей ( доменов )магнитоупорядоченного вещества, отличающихся, в зависимости от конкретного типа магн. упорядочения, направлением намагниченности М, вектора антиферромагнетизма L или направлениями М и L одновременно… … Физическая энциклопедия

МАГНИТНАЯ ПЛЕНКА — слой магн. вещества (обычно ферро или ферримагнетика) толщиной от долей нанометра до неск. микрометров с рядом особенностей атомно кристаллич. структуры, магн., электрич. и др. физических свойств, отличающих плёнку от массивных магнетиков. М. п.… … Физическая энциклопедия

Ферриты (оксиферы) — У этого термина существуют и другие значения, см. Феррит. Стиль этой статьи неэнциклопедичен или нарушает нормы русского языка. Статью следует исправить согласно стилистическим правилам Википедии. Ферриты (оксиферы) химич … Википедия

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *