Что такое лучистый теплообмен
Что такое лучистый теплообмен
Спектр излучения абсолютно чёрного тела определяется только его температурой. Под чёрным телом понимаются реальные вещества, например, сажа, поглощают до 99 % падающего излучения (то есть имеют альбедо, равное 0.01) в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ими значительно хуже. Среди тел Солнечной системы свойствами абсолютно чёрного тела в наибольшей степени обладает Солнце.
Абсолютно чёрных тел в природе не существует, поэтому в физике для экспериментов используется модель. Она представляет собой замкнутую полость с небольшим отверстием. Свет, попадающий внутрь сквозь это отверстие, после многократных отражений будет полностью поглощён, и отверстие снаружи будет выглядеть совершенно чёрным. Но при нагревании этой полости у неё появится собственное видимое излучение. Поскольку излучение, испущенное внутренними стенками полости, прежде чем выйдет (ведь отверстие очень мало), в подавляющей доле случаев претерпит огромное количество новых поглощений и излучений, то можно с уверенностью сказать, что излучение внутри полости находится в термодинамическом равновесии со стенками. (На самом деле, отверстие для этой модели вообще не важно, оно нужно только чтобы подчеркнуть принципиальную наблюдаемость излучения, находящегося внутри; отверстие можно, например, совсем закрыть, и быстро приоткрыть только тогда, когда равновесие уже установилось и проводится измерение). На рисунке 1 представлена зависимость энергии теплового (инфракрасного) излучения от длины волны. Тепловое излучение может сопровождаться испусканием видимого света, но его энергия мала по сравнению с энергией излучения невидимой части спектра.
В соответствии с международным стандартом ISO инфракрасный диапазон излучения подразделяется на поддиапазоны. В таблице 1 приведено деление инфракрасного диапазона.
Равновесное излучение создается источником при постоянной его температуре. Например, тело находится внутри оболочки с непрозрачными стенками, температура которых равна температуре тела. Неравновесное излучение происходит, когда источник излучения нагревают. Например, в лампах накаливания в энергию электромагнитных волн преобразуется часть тепла, выделяющаяся при протекании электрического тока.
Для не чёрного (серого)тела
Лучистый теплообмен
Лучистый теплообмен — перенос тепловой энергии в виде электромагнитных волн между двумя взаимно излучающими поверхностями. Интенсивность излучения зависит от взаимного расположения поверхностей, излучательной и поглощательной способности тел. Отличается от теплопроводности и конвекции тем, что теплота в этом случае может передаваться через вакуум. Сходство же его с другими способами передачи тепла в том, что он тоже обусловлен разностью температур. Тепловое излучение — это один из видов электромагнитного излучения. Другие его виды — радиоволновое, ультрафиолетовое и гамма-излучения — возникают в отсутствие разности температур.
На рисунке представлена зависимость энергии теплового (инфракрасного) излучения от длины волны. Тепловое излучение может сопровождаться испусканием видимого света, но его энергия мала по сравнению с энергией излучения невидимой части спектра.
Интенсивность теплопередачи путем теплопроводности и конвекции пропорциональна температуре, а лучистый тепловой поток пропорционален четвертой степени температуры и подчиняется закону Стефана — Больцмана
где, как и ранее, q — тепловой поток (в джоулях в секунду, т.е. в Вт), A — площадь поверхности излучающего тела (в м 2 ), а T1 и T2 — температуры (в кельвинах) излучающего тела и окружения, поглощающего это излучение. Коэффициент s называется постоянной Стефана — Больцмана и равен (5,66961 + 0,00096)·10 —8 Вт/(м 2 ·К 4 ).
Представленный закон теплового излучения справедлив лишь для идеального излучателя — так называемого абсолютно черного тела. Ни одно реальное тело таковым не является, хотя плоская черная поверхность по своим свойствам приближается к абсолютно черному телу. Светлые же поверхности излучают сравнительно слабо. Чтобы учесть отклонение от идеальности многочисленных «серых» тел, в правую часть выражения, описывающего закон Стефана — Больцмана, вводят коэффициент, меньший единицы, называемый излучательной способностью. Для плоской черной поверхности этот коэффициент может достигать 0,98, а для полированного металлического зеркала не превышает 0,05. Соответственно лучепоглощательная способность высока для черного тела и низка для зеркального.
Жилые и офисные помещения часто обогревают небольшими электрическими теплоизлучателями; красноватое свечение их спиралей — это видимое тепловое излучение, близкое к границе инфракрасной части спектра. Помещение же обогревается теплотой, которую несет в основном невидимая, инфракрасная часть излучения. В приборах ночного видения применяются источник теплового излучения и приемник, чувствительный к ИК-излучению, позволяющий видеть в темноте.
Лучистый теплообмен
Лучистый теплообмен
В тех областях теплотехники, где отмечаются высокие температуры, теполообмен путем излучения по своей интенсивности превосходит другие виды теплообмена, поэтому при создании агрегатов, работающих в таких температурных условиях, предусматривается максимальный лучистый теплообмен. Прежде всего это относится к котельным установкам и промышленным печам с развитым пламенным пространством. В промышленности строительных материалов такие печи широко применяют для производства извести, цемента, шамота и других материалов. Для обжига строительных деталей начинают применять электрические печи сопротивления, в которых теплота передается изделиям путем излучения от боковых нагревателей. При умеренных температурах лучистый теплообмен используют также для сушки керамических изделий инфракрасными лучами.
Излучение свойственно всем телам, т. е. наряду с прямым потоком лучистой энергии от более нагретых тел к менее нагретым всегда имеется обратный поток энергии от менее нагретых тел к более нагретым. Конечный результат такого обмена и представляет собой количество переданной путем излучения теплоты. При этом известные из оптики законы распространения, отражения и преломления видимого света остаются справедливыми и для невидимых тепловых лучей.
Лучистый теплообмен при R = 1 (А = D = 0) всю энергию отражает телом, и такое тело называется абсолютно белым. Если А = 1 (R = D = 0), то тело поглощает все падающие на него лучи и называется абсолютно черным. При D = 1 (R = А = 0) тело полностью пропускает сквозь себя лучистый поток и называется абсолютно прозрачным или диатермичным. В природе не встречается тел, полностью соответствующих этим трем условиям, но есть тела, которые почти удовлетворяют им. Например, полированная поверхность металлов имеет R = 0,97; нефтяная сажа, бархат, снег, лед имеют А = 0,954 ÷ 0,96; двухатомные газы О3, N2, Н2 имеют D = 1. Воздух также является практически прозрачной средой, но если в нем есть пары воды или углекислоты, прозрачность его становится значительно меньше.
Многие тела диатермичны лишь для определенных длин волн. Например, оконное стекло пропускает световые лучи и почти непрозрачно для ультрафиолетовых и инфракрасных лучей, а кварц диатермичен для ультрафиолетового и светового излучения и непрозрачен для инфракрасного. Эти свойства оконного стекла и кварца широко используют в технике.
Для тепловых лучей твердые тела и жидкости практически атермичны, т. е. непрозрачны, и поглощение лучистой энергии у этих тел, как правило, заканчивается на очень малой глубине (менее 0,01 мм), поэтому можно говорить о поглощении энергии поверхностью твердых и жидких тел. Можно говорить и о лучеиспускании с поверхности этих тел, так как излучение, происходящее внутри твердого и жидкого тел, поглощается соседними частицами этих же тел; то, что наблюдается снаружи, является лишь излучением поверхностных слоев. Заметим также, что в теплотехнике в основном рассматривается лучеиспускание лишь твердых тел и газов, так как применяемые жидкости при температурах, которым соответствует достаточно высокая плотность излучения, могут находиться только в газообразном состоянии.
Рис. 15.1. К выводу закона Кирхгофа
Необходимо иметь в виду, что для поглощения и отражения тепловых лучей основное значение имеет не цвет, а состояние поверхности тела: например, белая поверхность хорошо отражает лишь световые лучи, а невидимые тепловые лучи поглощает так же хорошо, как и темная.
По отношению к падающей лучистой энергии поверхность тела называется зеркальной, если она отражает луч в определенном направлении, составляющем с нормалью угол, равный углу падения, и матовой, если отраженные лучи рассеиваются по всем направлениям.
Очевидно, что при Т = Т0 приток и расход лучистой энергии должны быть одинаковыми, т. е. Е = АЕ0 или Е/Е0 = А. Если отношение поверхностных плотностей излучения серого тела Е и абсолютно черного тела Е0 при одинаковой температуре, называемое степенью черноты серого тела, обозначить а, то закон Кирхгофа выразится равенством:
Е/Е0 = а = А (15.1)
Таблица 15.1. Степень черноты различных материалов
Вычисления по уравнению (15.2) подтверждаются опытом и показывают, что с увеличением длины волны λ интенсивность излучения (лучистый теплообмен) возрастает от нуля (при λ = λ0) до максимума и затем снова падает до нуля (при λ = ∞). Длину волны λ0, м, на которую приходится максимальная интенсивность теплового излучения, находят из равенства dIoλ/dλ = 0. При этом получается
Уравнение (15.3) выражает закон смещения Вина, формулируемый следующим образом: длина волны, на которую приходится максимум теплового излучения, обратно пропорциональна абсолютной температуре или, иначе говоря, с повышением температуры максимум излучения смещается в сторону более коротких волн.
Полное количество энергии, излучаемой абсолютно черным телом, находят из равенства
Как показали опыты ряда исследователей, для серого тела количество излучаемой энергии выражается формулой, аналогичной формуле (15.4), но с другим (меньшим) коэффициентом излучения с, т. е.
Е = с(Т/100) 4 (15.5)
Если сопоставить энергии излучения абсолютно черного и серого тел при одинаковой температуре, то получим
т. е. для серого тела с 2 × К 4 ).
Интегрирование равенства (а) в пределах от 0 до 2π дает соотношение Еп = Е/π, т. е. лучеиспускательная способность в направлении нормали в я раз меньше полной лучеиспускательной способности тела. Под лучеиспускательной способностью тела понимают количество энергии, излучаемой в единицу времени единицей поверхности тела в пределах единичного телесного угла. Опыт показывает, что закон Ламберта строго справедлив для абсолютно черного тела. Для серых шероховатых тел этот закон справедлив лишь при φ = 0÷60.
Для водяного пара полосы излучения расположены на участках φ = 2,24 ÷ 3,27 мкм; φ = 4,8 ÷ 8,5 мкм; φ = 12÷25 мкм.
В отличие от твердых тел излучение и поглощение энергии газами происходит не в поверхностном слое их оболочек, а во всем объеме, при этом по мере прохождения тепловых лучей через многоатомные газы их энергия излучения вследствие поглощения уменьшается. Это ослабление зависит от рода газов, температуры и числа находящихся на пути молекул; оно пропорционально длине пути луча l (толщине слоя) и плотности газа (парциальному давлению pi). Обычно вместо величин pi и l рассматривают их произведение pil, характеризующее эффективность ослабления лучей в данной среде.
Для инженерных расчетов условно принимают, что излучение газов, так же как излучение твердых тел, пропорционально четвертой степени их абсолютной температуры, и в этом случае расчетная формула принимает вид
Энергия излучения смеси газов практически равна сумме энергии лучеиспускания отдельных газов, так как полосы излучения различных газов почти нигде не перекрываются.
Лучистый теплообмен
Полезное
Смотреть что такое «Лучистый теплообмен» в других словарях:
ЛУЧИСТЫЙ ТЕПЛООБМЕН — (радиационный теплообмен, лучистый перенос), перенос энергии от одного тела к другому (а также между частями одного и того же тела), обусловленный процессами испускания, распространения, рассеяния и поглощения эл. магн. излучения. Каждый из этих… … Физическая энциклопедия
ЛУЧИСТЫЙ ТЕПЛООБМЕН — то же, что радиационный теплообмен … Большой Энциклопедический словарь
ЛУЧИСТЫЙ ТЕПЛООБМЕН — (радиационный теплообмен), вид переноса ЭНЕРГИИ через атмосферу или космическое пространство. Энергия Солнца достигает Земли путем лучистого обмена или как ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ, а также как излучение в видимой части спектра и другие… … Научно-технический энциклопедический словарь
лучистый теплообмен — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN radiation [radiative] exchange … Справочник технического переводчика
лучистый теплообмен — то же, что радиационный теплообмен. * * * ЛУЧИСТЫЙ ТЕПЛООБМЕН ЛУЧИСТЫЙ ТЕПЛООБМЕН, то же, что радиационный теплообмен (см. РАДИАЦИОННЫЙ ТЕПЛООБМЕН) … Энциклопедический словарь
лучистый теплообмен — ▲ теплообмен ↑ посредством, излучение, теплота тепловое излучение. припек. припекать. пригревать (солнце пригревает все сильнее). пекло. печь. ▼ излучение Солнца … Идеографический словарь русского языка
ЛУЧИСТЫЙ ТЕПЛООБМЕН — радиационный теплообмен, теплообмен излучением, теплообмен между телами, осуществляющийся вследствие испускания и поглощения ими электромагнитного излучения. Л. т. может происходить при отсутствии промежуточной среды (напр., обогрев Земли… … Большой энциклопедический политехнический словарь
ЛУЧИСТЫЙ ТЕПЛООБМЕН — то же, что радиационный теплообмен … Естествознание. Энциклопедический словарь
результирующий лучистый теплообмен от поверхности — (напр. топки котла) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN net surface radiation heat transfer … Справочник технического переводчика
ЛУЧИСТЫЙ ТЕПЛООБМЕН
Перенос излучения в материальной среде в произвольном направлении s описывается в общем случае интегродифференц. ур-нием
При рассмотрении Л. т. в системе тел вводятся понятия эффективного и результирующего излучения. Плотность эфф. излучения H эфф представляет собой сумму плотностей собств. и отражённого излучения, т. е. сумму всех видов излучения, уходящих от поверхности тела:
В свою очередь плотность отражённого излучения H отр может быть выражена через плотность падающего на поверхность излучения:
При расчёте Л. т. между отд. телами важную роль играет понятие углового коэф., или коэф. взаимной облучённости. Если тело 1 испускает энергию, а тело 2 её поглощает, то угл. коэф. Ф 12 представляет собой отношение потока энергии, испускаемого телом 1 и падающего на поверхность тела 2, к полному потоку энергии, испускаемому телом 1. Если излучение тела является диффузным, т. е. подчиняется Ламберта закону , коэф. взаимной облучённости тел конечных размеров ‘ имеет вид
Для диатермичной среды, не испускающей, не поглощающей и не рассеивающей излучение, расчёт Л. т. в системе излучающих, поглощающих и отражающих поверхностей с заданной пост. темп-рой при наличии упрощающих предположений, что поверхность является непрозрачной и её степень черноты равна поглощат. способности, сводится к линейной системе алгебраич. ур-ний:
Система, составленная из N ур-ний вида (3), может быть решена методами линейной алгебры. В результате получают значения плотности потоков полусферического эффективного излучения для каждой поверхности.
Если темп-pa ограничивающих поверхностей переменна, то вместо системы алгебраич. ур-ний (3) пользуются линейным интегральным ур-нием Фредгольма:
где r1 — радиус-вектор рассматриваемой точки поверхности, а r2 — радиус-вектор текущей точки при интегрировании по всем ограничивающим поверхностям.
Если оптич. свойства поверхностей имеют селективный характер, т. е. зависят от длины волны излучения, ур-ния (3) разрешаются относительно монохроматич. (спектральных) потоков излучения для разл. спектральных интервалов, после чего соответствующие интегральные характеристики получают интегрированием по спектру. Наиб. трудности вызывает учёт отступлений от закона Ламберта для излучат. и отражат. свойств поверхностей. При наличии в системе плоских поверхностей с зеркальными свойствами вводят т. н. разрешающие (или зеркальные) угл. коэф., характеризующие перенос излучения в системе с учётом зеркальных отражений. В общем случае произвольных индикатрис для степени черноты и отражат. способности поверхностей учитывают перенос излучения в системе по всевозможным направлениям методом статистич. испытаний (метод Монте-Карло).
Учёт переноса излучения в системе излучающих поверхностей необходим и в случае, когда среда не является диатермичной. При этом также можно использовать приближённый подход, основанный на введении разрешающих угловых коэф., учитывающих поглощение излучения в объёме между поверхностями.
Расчёт Л. т. между излучающими, поглощающими и рассеивающими средами и поверхностями основан на решении интегродифференц. ур-ния переноса излучения (1), к-рое в отсутствие рассеяния сводится к дифференц. ур-нию (2). При этом важную роль играет селективный (т. е. зависящий от длины волны) характер излучения газов при высоких темп-pax. Строгий расчёт Л. т. в этой ситуации вызывает значит. трудности. Широкое распространение получили приближённые методы. При этом определяющим фактором является оптическая толщина среды, к-рая равна отношению характерного размера L излучающего объёма V к ср. длине свободного пробега излучения Безразмерную оптич. толщину наз. также числом Бугера:
Если (оптически тонкий слой), то можно пренебречь ослаблением излучения в объёме. При этом для расчёта интегрального потока излучения вводят ср. коэф. излучения по Планку:
Л. т. определяет такие природные явления, как заморозки на почве и парниковый эффект атмосфер Земли и Венеры; с Л. т. связаны астрофиз. процессы, протекающие в атмосферах планет и звёзд. Важную роль играет Л. т. в ядерных реакторах, топках паровых котлов, камерах сгорания авиационных и ракетных двигателей, в электрич. дугах; Л. т. определяет тепловой режим космич. аппаратов в открытом космосе и тепловые нагрузки при входе спускаемых аппаратов в атмосферу планет со скоростями, превышающими вторую космическую. Законы Л. т. используют при определении яркостной и цветовой темп-р тел и пламён, измерении лучистых тепловых потоков (радиометры), поглощат. способности тел и др.