Что такое логический ноль и логическая единица
Уровни напряжения логических схем «0» и «1» и согласование транзисторно-транзисторной логики ТТЛ и КМОП логики с помощью обратной связи, резисторов, транзистора
Вследствие наличия паразитных падений напряжения в схемах на транзисторах, наводок, длины линии передачи сигнала и т.д.. Поэтому для логических схем интерпретируют сигналы как логическую единицу или логический нуль, даже в тех случаях, когда напряжение сигналов лежит в диапазоне между полным напряжением питания и нулём, то есть номинально не соответствует ни тому ни другом показателю.
Номинальное напряжение питания для логических радиоэлементов (микросхем) и номинальное значение логического 0 и логической 1
Спецификации входных и выходных сигналов схем КМОП логических элементов совершенно отличны от уровней напряжения, используемых для ТТЛ-элементов. Для КМОП-элементов, работающих при напряжении питания 5 вольт, приемлемые напряжения входного сигнала лежат в диапазоне от 0 до 1,5 вольт для низкого логического уровня, и от 3,5 до 5 вольт для высокого логического уровня. «Приемлемые» напряжения выходного сигнала (уровни напряжения, гарантируемые производителем элемента при указанном варианте нагрузки) лежат в диапазоне от 0 до 0,05 вольт для низкого логического уровня, и от 4,95 до 5 вольт для высокого логического уровня.
Представленные значения дают понять, что запас помехоустойчивости КМОП логических элементов гораздо больше аналогичного показателя ТТЛ-элементов: 1,45 вольт как для логического нуля, так и для логической единицы, против максимального запаса в 0,7 В в случае ТТЛ. Другими словами, КМОП-схемы могут выдержать более чем вдвое высокий наложенный шум на входе без ошибок интерпретации сигнала как логического нуля или единицы.
Запас помехоустойчивости КМОП логических схем становится ещё больше при более высоких рабочих напряжениях. В отличие от элементов ТТЛ, напряжение питания которых не превышает 5 вольт, напряжение питания КМОП-схем может достигать 15 (а в некоторых случаях и 18) вольт. Ниже показаны приемлемые уровни логических нуля и единицы, для выхода и входа КМОП-ИС, работающих при напряжении питания 10 и 15 вольт соответственно:
Помехоустойчивость при единичных (разовых) скачках напряжения, появления помехи (наводки)
В пределах «неопределённого» диапазона для любого входа логического элемента, будет иметься точка разделения актуального сигнала низкого уровня от диапазона действительного входного сигнала высокого уровня. То есть, где-то между наименьшим напряжением сигнала высокого логического уровня и наибольшим напряжением сигнала низкого логического уровня гарантированного производителем, существует порог напряжения, при котором логическая схема будет менять интерпретацию сигнала с высокого на низкий и наоборот. В случае большей части логических схем, это напряжение соответствует одной определённой точке:
При наличии шумового напряжения переменного тока, наложенного на входной сигнал постоянного тока единственная точка, в которой схема переменит интерпретацию логического уровня будет обуславливать ошибочный сигнал на выходе.
Подобная проблема характерна также для аналоговых ОУ-компараторов напряжения. В случае одиночной пороговой точки смены логического уровня наличие значительного шума может привести к неверной интерпретации логического уровня на выходе.
Эту проблему можно решить путём введения в цепь усилителя положительной обратной связи. В случае операционного усилителя необходимо соединить выход с неинвертирующим входом через резистор. Схемы подобного типа называются триггерами Шмитта. Триггеры Шмитта идентифицируют логический уровень сигнала согласно двум пороговым уровням: при нарастающем напряжении (VT+), и при падающем напряжении (VT-):
На схемах триггеры Шмитта изображаются с символом «гистерезиса». Гистерезис, вызванный положительной обратной связью в схеме логического элемента, придаёт схеме дополнительную помехоустойчивость. Триггеры Шмитта часто используются в схемах с высокой вероятностью шума на входе, а также в тех случаях когда ошибочно интерпретированный сигнал на выходе приведёт к некорректной работе системы в целом.
Различные требования по уровням напряжения ТТЛ- и КМОП-элементов создают определённые проблемы при использовании в одной схеме элементов двух типов. Хотя работа КМОП логических элементов может осуществляться при том же напряжении питания 5,00 В, которое необходимо для элементов ТТЛ, выходные уровни напряжения ТТЛ логики несовместимы с входными требованиями по напряжению для КМОП-схем.
Возьмём к примеру ТТЛ-элемент НЕ-И, сигнал с выхода которого подаётся на вход КМОП-инвертора. Питание обоих элементов составляет 5,00 В (Vcc). Если с выхода элемента ТТЛ приходит сигнал логического нуля (т.е. между 0 и 0,5 В), то он будет верно интерпретирован на входе КМОП-схемы как сигнал низкого логического уровня (т.е. сигнал между 0 и 1,5 В):
Однако, если с выхода элемента ТТЛ приходит сигнал логической единицы (т.е. между 5 и 2,7 В), то он может быть неверно интерпретирован на входе КМОП-схемы как сигнал высокого логического уровня (т.е. ожидается сигнал между 5 и 3,5 В):
Такое несоответствие может привести к тому, что «правильный» сигнал высокого уровня на выходе ТТЛ- элемента (правильный с точки зрения стандартов ТТЛ) будет лежат в «неопределённом» диапазоне входа КМОП-схемы, и быть неверно воспринят как сигнал логического нуля принимающим элементом. Простым решением этой проблемы может стать повышение сигнала логической единицы элемента ТТЛ с помощью нагрузочного повышающего резистора:
Однако потребуется гораздо более серьёзная переделка схемы, если питание КМОП-схемы выше 5 вольт:
Проблемы не возникнет в случае логического нуля, однако всё обстоит совершенно иначе в случае сигнала высокого логического уровня с выхода элемента ТТЛ. Диапазон выходного напряжения 2,7-5 В с выхода элемента ТТЛ совершенно не соответствует приемлемому диапазону 7-10 В КМОП логической схемы. Если мы используем ТТЛ-схемы с открытым коллектором, то нагрузочный резистор, включённый в шину питания Vdd 10 вольт, поднимет сигнал высокого логического уровня до полного напряжения питания КМОП логической схемы. Поскольку в схеме с открытым коллектором в наличии только втекающий ток, напряжение логической единицы полностью определяется тем напряжением питания, к которому подключён повышающий резистор, что помогает решить проблему несоответствия уровней напряжения.
Благодаря прекрасным характеристикам выходного напряжения КМОП схем, проблем при подключения ТТЛ элемента к выходу КМОП схемы обычно не возникает. Единственной серьёзной проблемой может стать токовая нагрузка, поскольку КМОП-схема должна обеспечивать втекающий ток на каждый вход элемента ТТЛ в случае логического нуля.
Если КМОП-схема питается от источника напряжения выше 5 вольт (Vcc), то возникнет проблема. Напряжение логической единицы КМОП-схемы выше 5 вольт не будет находиться в диапазоне допустимых входные параметров элемента ТТЛ. Решением этой проблемы может стать инвертор с «открытым коллектором» на дискретном NPN-транзисторе, используемом для соединения двух логических схем:
Повышающий резистор Rpullup используется опционально, поскольку входы элементов ТТЛ принимают высокий логический уровень, когда находятся в плавающем состоянии, что и произойдёт, когда выход КМОП-схемы будет низким, а транзистор будет находиться в состоянии отсечки. Конечно, важным последствием такого решения является логическая инверсия, создаваемая транзистором: когда на выходе КМОП-схемы будет сигнал логического нуля, элемент ТТЛ будет «видеть» логическую единицу и наоборот. Однако, если принимать эту инверсию во внимание, то корректная работа схемы не будет нарушена.
Уровни логического нуля и единицы
Дата добавления: 2014-11-27 ; просмотров: 14085 ; Нарушение авторских прав
Как уже говорилось ранее, цифровые микросхемы характеризуются тем, что могут находиться только в двух состояниях. Состояния цифровых микросхем могут быть описаны двумя цифрами: ‘0’ и ‘1’. При этом можно состояние микросхемы характеризовать различными параметрами. Например, током или напряжением в цепях микросхемы, открыты или заперты транзисторы на выходе микросхемы, светится или нет светодиод (если он входит в состав микросхемы).
Условились в качестве логических состояний цифровых микросхем воспринимать напряжение на их входе и выходе. При этом высокое напряжение договорились считать единицей, а низкое напряжение — считать нулем. В идеальном случае напряжение на выходе микросхем должно быть равным напряжению питания или общего провода схемы. В реальных схемах так не бывает. Даже на полностью открытом транзисторе есть падение напряжения. В результате на выходе цифровой микросхемы напряжение всегда будет меньше напряжения питания и больше потенциала общего провода. Поэтому договорились напряжение, меньшее заданного уровня (уровень логического нуля) считать нулём, а напряжение, большее заданного уровня (уровень логической единицы), считать единицей. Если же напряжение на выходе микросхемы будет больше уровня логического нуля, но меньше уровня логической единицы, то такое состояние микросхемы будем называть неопределённым. На рисунке 3.2 приведены допустимые уровни выходных логических сигналов дляТТЛ микросхем
. Обратите внимание, что чем ближе выходное напряжение к напряжению питания или к напряжению общего провода схемы, тем выше к.п.д. цифровой микросхемы.
Рисунок 3.2 Уровни логических сигналов на выходе цифровых ТТЛ микросхем
Напряжение с выхода одной микросхемы передаётся на вход другой микросхемы по проводнику. В процессе передачи на этот проводник может наводиться напряжение от каких либо генераторов помех (осветительная сеть, радиопередатчики, импульсные генераторы). Помехоустойчивость цифровых микросхем определяется максимальным напряжением помех, которое не приводит к превращению логического нуля в логическую единицу и зависит от разности логических уровней цифровой микросхемы.
То же самое относится и к помехам, превращающим логический ноль в логическую единицу.
Чем меньше разница между Uвх1мин и Uвх0макс, тем большим усилением обладает цифровая микросхема. Типовое усиление ТТЛ микросхем по напряжению Ku составляет 40 раз. Это приводит к тому, что подав на вход этой микросхемы напряжение, на 40 мВ меньшее уровня Uпор, мы воспримем его как логический ноль, и на выходе этой микросхемы получим нормальный логический уровень. При подаче на вход ТТЛ микросхемы напряжения, на 40 мВ большего уровня Uпор, это напряжение будет восприниматься как логическая единица. Граница уровня логического нуля и единицы для ТТЛ микросхем приведена на рисунке 3.3.
Рисунок 3.3 Уровни логических сигналов на входе цифровых ТТЛ микросхем
Вспомним, что на выходе цифровой ТТЛ микросхемы уровень логической единицы не может быть меньше 2,4 В, а уровень логического нуля не может быть больше 0,4 В. В результате, даже при наведении на вход ТТЛ микросхемы помехи, напряжением 0,96 вольт, искажение цифровой информации не произойдёт.
Теперь вспомним, что микросхемы могут работать при воздействии неблагоприятных факторов таких как пониженная температура, старение микросхем, воздействие радиации. Поэтому производители микросхем гарантируют срабатывание микросхем с некоторым запасом. Например, фирма Texas Instruments объявляет для своих микросхем входной уровень единицы — 2 В, а уровень нуля — 0,8 В. Эти уровни тоже показаны на рисунке 3.
А что же произойдёт, если напряжение на входе цифровой микросхемы будет близко к порогу, разделяющему уровень логического нуля и логической единицы? В этом случае микросхема перейдет в активный режим работы и оба выходных транзистора могут оказаться открытыми. В результате микросхема может выйти из строя. Поэтому входы цифровых (особенно КМОП) микросхем ни в коем случае не должны быть оставлены неподключенными! Если часть элементов цифровой микросхемы не используется, то их входы должны быть подключены к источнику питания или общему проводу схемы. И в заключение данной темы обратите внимание, что конкретное значение порога переключения для различных экземпляров микросхем и от серии к серии микросхем может изменяться в некоторых пределах. Это ещё одна причина, по которой нельзя подавать на вход логических микросхем напряжение в пределах неопределённого состояния или оставлять входы микросхем неподключенными.
Основные понятия цифровой схемотехники
Прежде чем мы начнем создавать цифровые устройства, определимся, что они собой представляют и рассмотрим основные понятия. Итак, цифровая схемотехника отличается от аналоговой тем, что работает она только с двумя уровнями сигнала – высоким и низким, которые соответственно называют «логическая единица» и «логический ноль». Поэтому первые (и основные) два понятия будут следующими:
Никаких других уровней цифровая схемотехника не допускает, только «есть напряжение»/»нет напряжения». С виду мало, но тому же ПК, за которым вы сейчас сидите, как видите, хватает.
В зависимости от того, на какой элементной базе собраны цифровые микросхемы, они могут различаться, как говорят, по типу логики. Существует несколько типов, но самое широкое распространение получили транзисторно-транзисторная логика (ТТЛ) или просто ТТЛ-микросхемы и комплементарный металлооксидный полупроводник (КМОП) или КМОП-микросхемы.
Первый тип микросхем собран на биполярных транзисторах, второй на полевых и каждый из них имеет свои достоинства и недостатки. ТТЛ микросхема, к примеру, может работать на более высоких, чем КМОП микросхема частотах и более помехоустойчива, но вторая потребляет с десятки и даже сотни раз меньше энергии и не так критична к стабильности величины питающего напряжения.
Стандартным напряжением для ТТЛ микросхем принято считать 5 В, при этом логическая единица близка к значению +5 В, ноль – напряжение относительно «–» источника питания отсутствует. Диапазон напряжений питания КМОП микросхем достаточно широк – от 3 В до 12 и даже выше, но принцип сохраняется: логическая единица – напряжение, близкое к источнику питания, логический ноль – напряжение отсутствует.
Слева – логический элемент ТТЛ микросхемы, справа – КМОП
Несмотря на такое отличие ТТЛ от КМОП (а есть еще ТТЛШ, ЭСЛ, ДТЛ и пр.) микросхем, логика их работы ничем не отличается, а это значит, что схемотехника цифровых устройств на ТТЛ и КМОП будет очень схожа. Настолько схожа, что во многих случаях ее можно будет назвать одинаковой, в чем мы в самое ближайшее время и убедимся.
Что такое логический ноль и логическая единица
ТТЛ | ТТЛШ | КМОП | Бастродейств. КМОП | ЭСЛ | |
Расшифровка названия | Транзисторно-Транзисторная Логика | ТТЛ с диодом Шоттки | Комплиментарный Металл-Оксид Полупроводник | Эмиттерно-Согласованная Логика | |
Основные серии отеч. микросхем | К155 К131 | К555 К531 КР1533 | К561 К176 | КР1554 КР1564 | К500 КР1500 |
Серии буржуйских микросхем | 74 | 74LS 74ALS | CD40 H 4000 | 74AC 74 HC | MC10 F100 |
Задержка распространения, нС | 10…30 | 4…20 | 15…50 | 3,5..5 | 0,5…2 |
Макс. частота, МГц | 15 | 50..70 | 1…5 | 50…150 | 300…500 |
Напряжение питания, В | 5 ±0,5 | 5 ±0,5 | 3. 15 | 2. 6 | -5,2 ±0,5 |
Потребляемый ток (без нагрузки), мА | 20 | 4. 40 | 0,002. 0,1 | 0,002. 0,1 | 0,4 |
Уровень лог.0, В | 0,4 | 0,5 |