Что такое линейный рост
Экспоненциальный рост
Экспоненциальный рост — возрастание величины, когда скорость роста пропорциональна значению самой величины. Говорят, что такой рост подчиняется экспоненциальному закону. Экспоненциальный рост противопоставляется более медленным (на достаточно длинном промежутке времени) линейному, степенному или геометрическому зависимостям.
Содержание
Свойства
Для любой экспоненциально растущей величины, чем большее значение она принимает, тем быстрее растет. Также это означает, что величина зависимой переменной и скорость ее роста прямо пропорциональны. Но при этом, в отличие от гиперболической экспоненциальная кривая никогда не уходит в бесконечность за конечный промежуток времени.
Экспоненциальный рост в итоге оказывается более быстрым, чем любая геометрическая прогрессия, чем любой степенной, и тем более, чем любой линейный рост.
Математическая запись
Экспоненциальный рост описывается дифференциальным уравнением:
Решение этого дифференциального уравнения — экспонента:
Примеры
Примером экспоненциального роста может быть рост числа бактерий в колонии до наступления ограничения ресурсов. Другим примером экспоненциального роста являются сложные проценты.
См. также
Ссылки
Полезное
Смотреть что такое «Экспоненциальный рост» в других словарях:
экспоненциальный рост — eksponentinis didėjimas statusas T sritis fizika atitikmenys: angl. exponential rising vok. Exponentialanstieg, m rus. экспоненциальный рост, m pranc. accroissement exponentiel, m … Fizikos terminų žodynas
ЭКСПОНЕНЦИАЛЬНЫЙ РОСТ — рост с относительно постоянной скоростью … Словарь ботанических терминов
Рост — процесс увеличения какого либо качества со временем. Качества могут быть как физическими (например, рост в высоту), так и абстрактными (например, взросление человека, расширение системы): Клеточный рост, или пролиферация Рост населения Рост… … Википедия
Закон экспоненциального роста — Экспоненциальный рост в математике экспоненциальное возрастание величины (возрастание в геометрической прогрессии), которая растет со скоростью, пропорциональной её значению. Говорят что такой рост подчиняется экспоненциальному закону. Это… … Википедия
АЛГОРИТМ — [от algorithm!; algorismus, первоначально лат. транслитерация имени ср. азиат. учёного 9 в. Хорезми (Мухаммед бен Муса аль Хорезми)], программа, определяющая способ поведения (вычисления); система правил (предписаний) для эффективного… … Философская энциклопедия
ДИОФАНТОВЫХ УРАВНЕНИИ ПРОБЛЕМА РАЗРЕШИМОСТИ — проблема отыскания алгоритма для распознавания по любому диофантову уравнению, имеет ли оно решение. Существенным в постановке проблемы является требование найти универсальный метод, к рый должен быть пригоден для любого уравнения (все известные… … Математическая энциклопедия
Перцептрон — Логическая схема перцептрона с тремя выходами Перцептрон, или персептрон[nb 1] (англ. perceptron от … Википедия
Экспонента в математике – это функция «y=ex», которая отражает непрерывный рост с коэффициентом. В этой функции «е» – это число Эйлера, которое представляет собой постоянную (
2,72). Говоря иначе, рост любой величины прямо пропорционален ее значению.
Допустим, мы слепили снежный ком и спустили его с горы. Он начинает катиться, одновременно наращивая объем. При этом чем больше он становится, тем выше скорость его движения. И наоборот: чем быстрее он катится, тем быстрее увеличивается в размерах. Получается, что масса и скорость снежного кома (y) экспоненциально возрастают со временем (x).
Экспонента в жизни. Экспоненциальный рост
Рассмотрим примеры экспоненты и экспоненциального роста в реальной жизни.
Вклад в банке под процент. У всех процессов, идущих по экспоненте, есть одна особенность: за одно и то же количество времени их параметры меняются одинаковое количество раз.
Например, вклад в банке каждый год увеличивается на определенное количество процентов. Если положить 1000 рублей в банк под 10% годовых, то через год вклад будет составлять 1100 рублей. А в следующем году 10% будут начисляться уже исходя из суммы в 1100 рублей. То есть, вклад вырастет сильнее, и так размер прироста будет увеличиваться из года в год.
Численность животных. Чем больше популяция животных, тем больше они размножаются. Соответственно, рост численности популяции прямо пропорционален количеству особей в ней.
Чем экспоненциальный рост отличается от линейного?
Линейный рост характеризуется стабильным прибавлением постоянной, а экспоненциальный рост – это следствие многократного умножения на постоянную. То есть если линейный рост на графике представляет собой стабильную линию, то экспоненциальный рост характеризуется быстрым взлетом.
В качестве примера можно привести обычную ходьбу. Если длина одного шага составляет 1 метр, то через 6 шагов человек преодолевает расстояние в 6 метров. Это и называется линейным ростом.
При экспоненциальном росте длина каждого шага в нашем примере увеличивается в 2 раза. То есть сначала человек шагает на 1 метр, потом на 2 метра, потом на 4 метра и так далее. В таком случае за 6 шагов можно пройти 32 метра, что гораздо больше, чем в предыдущем примере.
Рост по экспоненте: как научиться предсказывать будущее
Люди не слишком хорошие предсказатели будущего. На протяжении большей части истории наш опыт был «локальным и линейным»: мы использовали одни и те же инструменты, ели одни и те же блюда, жили в определенном месте. В результате наши способности к прогнозированию основаны на интуиции и прошлом опыте. Это похоже на лестницу: сделав несколько шагов вверх, мы понимаем, каким будет оставшийся путь по этой лестнице. Проживая жизнь, мы ожидаем, что каждый новый день будет похож на предыдущий. Однако сейчас все меняется.
Известный американский изобретатель и футуролог Рэймонд Курцвейл в своей книге «Сингулярность уже близко» (The Singularity Is Near) пишет, что скачок развития технологий, который мы наблюдаем последние десятилетия, вызвал ускорение прогресса во множестве разных областей. Это привело к неожиданным технологическим и социальным изменениям, происходящим не только между поколениями, но и внутри них. Теперь интуитивный подход в предсказании будущего не работает. Будущее разворачивается уже не линейно, а экспоненциально: все сложнее предсказать, что будет дальше и когда это случится. Темпы технического прогресса постоянно удивляют нас, и чтобы за ними успевать и научиться предсказывать будущее, нужно сначала научиться мыслить экспоненциально.
Что такое экспоненциальный рост?
В отличие от линейного роста, который является результатом многократно добавления постоянной, экспоненциальный рост – это многократное умножение. Если линейный рост – это стабильная во времени прямая линия, то линия экспоненциального роста похожа на взлет. Чем большее значение принимает величина, тем быстрее она растет дальше.
Представьте, что вы идете по дороге, и каждый ваш шаг получается метр в длину. Вы делаете шесть шагов, и теперь вы продвинулись на шесть метров. После того, как вы сделаете еще 24 шага, вы окажетесь в 30 метрах от того места, где вы начали. Это линейный рост.
А теперь представьте (хотя ваше тело так не умеет, но представьте), что каждый раз длина вашего шага увеличивается вдвое. То есть сначала вы шагаете на один метр, затем на два, затем на четыре, затем на восемь и так далее. За шесть таких шагов вы преодолеете 32 метра – это гораздо больше, чем за шесть шагов по одному метру. В это трудно поверить, но если продолжать в том же темпе, то после тридцатого шага вы окажетесь на расстоянии миллиарда метров от исходной точки. Это 26 поездок вокруг Земли. И это экспоненциальный рост.
Интересно, что каждый новый шаг при таком росте – это сумма всех предыдущих. То есть после 29 шагов вы преодолели 500 миллионов метров, и столько же вы преодолеваете за один следующий, тридцатый шаг. Это означает, что любой из ваших предыдущих шагов несравнимо мал по отношению к последующим нескольким шагам взрывного роста, а большая его часть происходит в течение относительно короткого периода времени. Если представить такой рост в виде движения из точки А в точку Б, самый большой прогресс в перемещении будет достигнут на последнем этапе.
Мы часто упускаем показательные тенденции на ранних стадиях, так как начальный темп экспоненциального роста медленный и постепенный, его трудно отличить от линейного роста. Кроме того, зачастую предсказания, основанные на предположении, что какое-то явление будет развиваться по экспоненте, могут показаться невероятными, и мы от них отказываемся.
«Когда в 1990 году началось сканирование генома человека, критики отметили, что, учитывая скорость, с которой сначала шел этот процесс, геном мог бы быть отсканирован только через тысячи лет. Однако проект был завершен уже в 2003 году», – приводит пример Рэймонд Курцвейл.
В последнее время развитие технологий идет по экспоненте: с каждым десятилетием, с каждым годом мы умеем несравнимо больше, чем раньше.
Может ли экспоненциальный рост когда-нибудь закончиться?
На практике экспоненциальные тенденции не длятся вечно. Тем не менее, некоторые из них могут продолжаться в течение длительных периодов времени, если есть соответствующие условия для взрывного развития.
Как правило, экспоненциальный тренд состоит из серии последовательных S-образных технологических циклов жизни или S-образных кривых. Каждая кривая выглядит как буква «S» из-за трех стадий роста, которые она показывает: начальный медленный рост, взрывной рост и выравнивание, по мере того, как технология созревает. Эти S-кривые пересекаются, и когда одна технология замедляется, начинается рост новой. С каждым новым S-образным витком развития, количество времени, необходимое для достижения более высоких уровней производительности, становится меньше.
Например, говоря о развитии технологий в прошлом веке, Курцвейл перечисляет пять вычислительных парадигм: электромеханические, реле, вакуумные лампы, дискретные транзисторы и интегральные схемы. Когда одна технология исчерпывала свой потенциал, начинала прогрессировать следующая, и она делала это стремительнее, чем ее предшественники.
Планирование экспоненциального будущего
В условиях экспоненциального развития очень сложно предсказать, что ждет нас в будущем. Построить график, основанный на геометрической прогрессии – это одно, а прикинуть, как изменится жизнь за десять-двадцать лет – совсем другое. Но можно следовать простому эмпирическому правилу: ожидай, что жизнь тебя очень сильно удивит, и планируй все исходя из ожидаемых сюрпризов. Иными словами, предполагать можно самые невероятные исходы и готовиться к ним, как если бы они точно состоялись.
«Будущее будет гораздо более удивительным, чем большинство людей могут себе представить. Лишь немногие действительно осознали тот факт, что скорость самого изменения ускоряется», – пишет Рэймонд Курцвейл.
Как будет выглядеть наша жизнь в ближайшие пять лет? Один из способов сделать прогноз – посмотреть на последние пять лет и перенести этот опыт на следующие пять, но это «линейное» мышление, которое, как мы выяснили, работает не всегда. Скорость изменений меняется, поэтому для того прогресса, который был достигнут за последние пять лет, в будущем потребуется уже больше времени. Вполне вероятно, что те изменения, которых вы ждете через пять лет, на самом деле произойдут через три или два года. После небольшой практики мы научимся лучше предсказывать дальнейшее развитие жизни, научимся видеть перспективы экспоненциального роста и сможем лучше планировать наше собственное будущее.
Это не просто интересная концепция. Наше мышление, заточенное чаще под линейное развитие, может привести нас в тупик. Именно линейное мышление заставляет некоторых бизнесменов и политиков противиться переменам, они просто не понимают, что развитие происходит по экспоненте, и беспокоятся из-за того, что все сложнее становится контролировать будущее. Но именно это поле для конкуренции. Чтобы угнаться за этим изменением, нужно всегда быть на шаг впереди и делать не то, что актуально сейчас, а то, что будет актуальным и востребованным в будущем, учитывать, что развитие происходит не линейно, а экспоненциально.
Экспоненциальное мышление уменьшает действие разрушительных стрессов, которые возникают из-за нашего страха перед будущим, и открывает новые возможности. Если мы сможем лучше планировать наше будущее и сможем мыслить экспоненциально, мы облегчим переход от одной парадигмы к другой и встретим будущее спокойно.
Экспоненциальный рост
Журналисты, блогеры и диванные эксперты… Все используют фразы «экспоненциальный рост», а кто по проще «рост по экспоненте». Кое-кто, наверное, даже помнит, что такое экспонента, но вряд ли сможет объяснить простыми словами. Что же, пришла пора разобраться то, чем мы так часто пользуемся. Возможно, все совсем не так…
Экспонента
Здесь все просто (но это только пока). Многие считают, что экспонента это просто число е=2,718281828459045235360287. Конечно, это не так. Это самое число e, называется числом Эйлера, оно трансцендентно и иррационально, что звучит красиво и загадочно, но экспонента, не число, а функция.
Те, кто немного дружил с математикой в школе сразу заметят интересную особенность этой функции. Ее основанием является не отрицательное число, а значит, она будет всегда возрастать.
При х=0 у=1, при х=1, у=2,718, при х=2 y=7,39…. Ну а при х=10, у=22 026,5
Значение функции растет и растет явно очень быстро. Стремительно и неудержимо.
Экспоненциальный рост
Что такое экспоненциальный рост? Простыми словами, это такой рост, при котором, чем больше вырастят какое-либо значение, тем больше ускоряется его рост. То есть, со временем растет не только значение, но и сама скорость его роста.
А это, иными словами, означает, что значение переменной функции и скорость ее роста находятся в прямо пропорциональной зависимости. То есть, если значение увеличиться два раза, скорость роста увеличится тоже в 2 раза.
В конечном итоге, экспоненциальный рост — самый быстрый.
На самом деле, все вышесказанное касается любой показательной функции, а не только экспоненты.
Основанием может быть любое не отрицательное число, хоть два, хоть три, хоть… сколько угодно.
Несколько примеров из жизни
Самым актуальным и наглядным можно назвать ситуацию с распространением вируса (либо любой другой инфекции). Предположим, что каждый человек в течение дня заражает двух других. Тогда, в первый день у нас будет один инфицированный, во второй — трое. Один старый знакомый и два новых. Каждый из новичков, в свою очередь заразит двух других. В третий день — 7 заразившихся, в четвертый — 1, а пятый — 31… Стоп, это только при условии, что каждый человек заразит только двоих и, чудесным образом, перестанет это делать на притяжении следующих дней. Но ведь так не будет! Все эти люди и дальше будут заражать по 2 человека в день.
А раз так, то на третий день будет уже 9 разносчиков вируса, на пятый — 81, а через неделю по нашему воображаемому городу будет бродить уже 729 зараженных.
Это и будет экспоненциальный рост количества зараженных. Без учета их лечения, карантина или любых других мер, болезнь будет развиваться именно так. Через 10 дней зараженных людей будет уже 59 тысяч человек. Через 15 дней — более 14 миллионов. Просто математика, но какой яркий пример экспоненциального роста?
Легко вывести формулу: 1, 3, 9, 27, 81… это «три» в степени 2, 3 и 4. То есть, показательна функция с основанием 3.
И, хотя в этой формуле в степень возводится не число Эйлера (2,71828….), такой рост тоже называется экспоненциальным.
Еще один пример из биологии: размножение бактерий.
Бактерии размножаются делением. Каждая делится надвое и так далее… Но, конечно, не бесконечно. Предел есть, но об этом чуть позже.
Экспоненциальный рост в экономике
Есть примеры роста по экспоненте и в экономике. Самый интересный — финансовая пирамида. Самый безопасный — Закон Мура.
Первый закон Мура гласит, что количество транзисторов удваивается каждые 2 года. Таким образом и вычислительные мощности компьютера удваиваются каждые два года.
Второй Закон Мура (который сформулировал уже не Гордон Мур) гласит, что стоимость производства микросхем также возрастает экспоненциально из-за усложнения технологий.
Что же касается финансовых пирамид, то основная идея в том, что их рост обусловлен исключительно ростом количества «сектантов» верящих в огромные прибыли или тех, кто верит, что сумеет вовремя «соскочить». Так или иначе, пирамиды всегда рушатся. И вот вопрос, почему?
Но, конечно, рост не может продолжаться бесконечно. В случае с бактериями (и любыми другими организмами, да хоть мышами), наступит время, когда им не хватит пространства и пищи. В случае с микросхемами наступит физический предел скорости передачи данных (мы вряд ли сумеем превысить скорость света). Ну а всевозможные волшебные экономические модели в форме пирамид рано или поздно сталкиваются с той же проблемой, питательная среда в виде легковерных последователей
Логистическая кривая
В реальном мире, не таком идеальном как математика, любой процесс может столкнутся с пределом. В примере роста популяции бактерий или даже крупных животных, это количество ресурсов, которое всегда ограничено. Поэтому, при условии, что ресурсы не бесконечны, процесс развивается по s образной кривой. Сначала стремительно растет, а потом — замедляется.
В пример с вирусом, наступает день, когда большая часть населения уже переболела и выработала антитела (либо была искусственно привита) и вирус больше не может распространяться по экспоненциальному закону. Главный вопрос, можно ли точно предсказать этот день?
Мальтузианская ловушка
С экспонентой связан еще один занимательный экономический эффект — «мальтузианская ловушка». Представьте, что рост населения страны происходит по экспоненциальному закону. Например, каждая пара производит на свет не менее 4 детей, те в свою очередь поступают также. Рано или поздно, количество людей превысит количество пищи, необходимое для нормальной жизни.
Просто потому, что производительность труда физически ограничена (например, количеством плодородных земель), к тому же развитие технологий чаще всего происходит линейно, а экспонента всегда растет быстрее. Получается, что технологическое развитие общества не успевает за ростом населения.
Чем это заканчивается? Кризисом, голодом, войнами за ресурсы. Население уменьшается и все начинается с начала.
Почему это сложно представить?
Нам, людям, сложно себе представить развитие процесса «по экспоненте» потому, что не свойственно так мыслить. Мы привыкли к линейным и циклическим процессам. Они чаще встречаются в нашей жизни: циклические изменения дня и ночи и линейные изменения времени. Это просто и привычно. А вот экспоненциальные процессы встречаются реже.
Тем не менее они есть и игнорировать их опасно. Просто потому, что за этой скоростью нашему разуму сложно угнаться. Даже простые объяснения экспоненциального роста кажутся чем-то абстрактным, а ведь это не выдумка, а наша реальность.
Что такое линейный рост
3.2 Линейный и экспоненциальный рост
Логистическую кривую часто используют для описания развития систем, претерпевающих переход от роста к насыщению. Обычно графики, с тем или иным успехом, подгоняют под данные вблизи области перехода и не обращают внимания на то, как эта зависимость описывает поведение системы вдали от этой области (см. рис. П.7). Однако для сложных и существенно нелинейных систем развитие вдали от критических точек перехода, так называемое асимптотическое поведение, характеризует собственную динамику системы и должно в полной мере учитываться при описании роста и переходного процесса.
Рис 3.2 Линейный рост в двойном (A) и экспоненциальный рост в полулогарифмическом масштабе, спрямляющем любую экспоненту (B)
Следующий шаг при рассмотрении закона роста числа людей был сделан Мальтусом [50]. Опираясь на наблюдения за ростом численности населения в Америке, он установил, что в условиях неограниченных территориальных ресурсов население растет экспоненциально, удваиваясь в этих условиях за 18 лет. В то же время он предположил, что производство пищи происходит по линейному закону и будет отставать от роста населения. Основной вывод Мальтуса, а также его последователей, состоял в том, что рост населения будет ограничиваться производством пищи и ресурсами.
Подход Мальтуса, развитый Медоузом [104,111], оказался неверным, в первую очередь, потому, что в нем не учитывался системный характер развития. Системность означает, что и производство пищи, и развитие в целом, и воспроизводство населения взаимообусловлены множеством связей. Так, например, рост числа машин будет способствовать производству пищи, что в свою очередь приведет к росту населения и т.д. Поэтому надо искать законы эволюции всей системы. Последовательное развитие такого целостного системного взгляда на развитие человечества позволило понять, что рост числа людей на всем протяжении сцеплен с развитием. Однако параметры развития статистически усреднены по всему человечеству, в то время как численность аддитивна: и миллионер, и бомж, при разном вкладе в развитие, суммируются с равным весом в население мира.
Для понимания процесса роста важно его графическое представление. При этом существенно не только, в каком масштабе представлены кривые, но каковы те функции времени и населения, которые отложены на осях координат. Линейный рост изображается прямой линией тогда, когда по осям время и численность населения также отложены в линейном масштабе. Наклон же прямой определяет постоянную скорость абсолютного роста.
Т 2 =T e ln 2=0,7T e (см. рис. 3.2).
Изменение масштаба соответствует изменению основания логарифмов. В практических целях используют десятичные логарифмы, где целая часть логарифма определяет порядок величины или соответственно степень десяти:
1=10 0 , 10=10 1 , 100=10 2 , 1 миллион =10 6 и 1 миллиард = 10 9 .
В теоретических расчетах обычно обращаются к натуральным логарифмам с числом e=2,718 в качестве основания. Десятичные логарифмы в ln 10=2,303 раз меньше, чем натуральные. Наклон графика на двойной логарифмической сетке отвечает степени, связывающей время и численность населения. Так линейный рост, пропорциональный времени будет изображаться прямой под углом 45 градусов, а в случае разных скоростей роста такая прямая будет смещаться в соответствии с изменением масштаба численности, без изменения наклона.
Для описания развития всего человечества, рассматриваемого как единая демографическая система, следует перейти к следующей степени зависимости скорости роста, пропорциональной уже квадрату численности населения. Это очень существенный шаг, который приводит к гиперболическому закону роста, который быстрее любого экспоненциального роста и уходит в бесконечность при конечном времени расходимости.
Представить такой процесс лучше всего на двойной логарифмической сетке. На ней и время, и численность населения откладываются в логарифмическом масштабе. В этом случае гиперболический рост, соответствующий обратной пропорциональности численности населения и времени, изобразится прямой, но с отрицательным наклоном. Именно таким графиком будет описываться зависимость численности населения мира от времени.