Что такое лазерный диод

Лазерный диод

Лазерный диод — полупроводниковый лазер, построенный на базе диода. Его работа основана на возникновении инверсии населённостей в области p-n перехода при инжекции носителей заряда. [1] [2]

Содержание

Что такое лазерный диод. Смотреть фото Что такое лазерный диод. Смотреть картинку Что такое лазерный диод. Картинка про Что такое лазерный диод. Фото Что такое лазерный диод

Что такое лазерный диод. Смотреть фото Что такое лазерный диод. Смотреть картинку Что такое лазерный диод. Картинка про Что такое лазерный диод. Фото Что такое лазерный диод

Принцип действия

Когда на анод обычного диода подаётся положительный потенциал, то говорят, что диод смещён в прямом направлении. При этом дырки из p-области инжектируются в n-область p-n перехода, а электроны из n-области инжектируются в p-область полупроводника. Если электрон и дырка оказываются «вблизи» (на расстоянии, когда возможно туннелирование), то они могут рекомбинировать с выделением энергии в виде фотона определённой длины волны (в силу сохранения энергии) и фонона (в силу сохранения импульса, потому что фотон уносит импульс). Такой процесс называется спонтанным излучением и является основным источником излучения в светодиодах.

Однако, при определённых условиях, электрон и дырка перед рекомбинацией могут находиться в одной области пространства достаточно долгое время (до микросекунд). Если в этот момент через эту область пространства пройдёт фотон нужной (резонансной) частоты, он может вызвать вынужденную рекомбинацию с выделением второго фотона, причём его направление, вектор поляризации и фаза будут в точности совпадать с теми же характеристиками первого фотона.

В лазерном диоде полупроводниковый кристалл изготавливают в виде очень тонкой прямоугольной пластинки. Такая пластинка по сути является оптическим волноводом, где излучение ограничено в относительно небольшом пространстве. Верхний слой кристалла легируется для создания n-области, а в нижнем слое создают p-область. В результате получается плоский p-n переход большой площади. Две боковые стороны (торцы) кристалла полируются для образования гладких параллельных плоскостей, которые образуют оптический резонатор, называемый резонатором Фабри-Перо. Случайный фотон спонтанного излучения, испущенный перпендикулярно этим плоскостям, пройдёт через весь оптический волновод и несколько раз отразится от торцов, прежде чем выйдет наружу. Проходя вдоль резонатора, он будет вызывать вынужденную рекомбинацию, создавая новые и новые фотоны с теми же параметрами, и излучение будет усиливаться (механизм вынужденного излучения). Как только усиление превысит потери, начнётся лазерная генерация.

Лазерные диоды могут быть нескольких типов. У основной их части слои сделаны очень тонкими, и такая структура может генерировать излучение только в направлении, параллельном этим слоям. С другой стороны, если волновод сделать достаточно широким по сравнению с длиной волны, он сможет работать уже в нескольких поперечных режимах. Такой диод называется многомодовым (англ. «multi-mode» ). Применение таких лазеров возможно в тех случаях, когда от устройства требуется высокая мощность излучения, и не ставится условие хорошей сходимости луча (то есть допускается его значительное рассеивание). Такими областями применений являются: печатающие устройства, химическая промышленность, накачка других лазеров. С другой стороны, если требуется хорошая фокусировка луча, ширина волновода должна изготавливаться сравнимой с длиной волны излучения. Здесь уже ширина луча будет определяться только пределами, накладываемыми дифракцией. Такие устройства применяются в оптических запоминающих устройствах, лазерных целеуказателях, а также в волоконной технике. Следует, однако, заметить, что такие лазеры не могут поддерживать несколько продольных режимов, то есть не могут излучать на разных длинах волн одновременно.

Длина волны излучения лазерного диода зависит от ширины запрещённой зоны между энергетическими уровнями p- и n-областей полупроводника.

В связи с тем, что излучающий элемент достаточно тонок, луч на выходе диода, благодаря дифракции, практически сразу расходится. Для компенсации этого эффекта и получения тонкого луча необходимо применять собирающие линзы. Для многомодовых широких лазеров наиболее часто применяются цилиндрические линзы. Для одномодовых лазеров, при использовании симметричных линз, сечение луча будет эллиптическим, так как расхождение в вертикальной плоскости превышает расхождение в горизонтальной. Нагляднее всего это видно на примере луча лазерной указки.

В простейшем устройстве, которое было описано выше, невозможно выделить отдельную длину волны, исключая значение, характерное для оптического резонатора. Однако в устройствах с несколькими продольными режимами и материалом, способным усиливать излучение в достаточно широком диапазоне частот, возможна работа на нескольких длинах волн. Во многих случаях, включая большинство лазеров с видимым излучением, они работают на единственной длине волны, которая, однако обладает сильной нестабильностью и зависит от множества факторов — изменения силы тока, внешней температуры и т. д. В последние годы описанная выше конструкция простейшего лазерного диода подвергалась многочисленным усовершенствованиям, чтобы устройства на их основе могли отвечать современным требованиям.

Виды лазерных диодов

Конструкция лазерного диода, описанная выше, имеет название «Диод с n-p гомоструктурой», смысл которого станет понятен чуть позже. К сожалению, такие диоды крайне неэффективны. Они требуют такой большой входной мощности, что могут работать только в импульсном режиме; в противном случае они быстро перегреваются. Несмотря на простоту конструкции и историческую значимость, на практике они не применяются.

Лазеры на двойной гетероструктуре

В этих устройствах, слой материала с более узкой запрещённой зоной располагается между двумя слоями материала с более широкой запрещённой зоной. Чаще всего для реализации лазера на основе двойной гетероструктуры используют арсенид галлия (GaAs) и арсенид алюминия-галлия (AlGaAs). Каждое соединение двух таких различных полупроводников называется гетероструктурой, а устройство — «диод с двойной гетероструктурой» (ДГС). В англоязычной литературе используются названия «double heterostructure laser» или «DH laser». Описанная в начале статьи конструкция называется «диод на гомопереходе» как раз для иллюстрации отличий от данного типа, который сегодня используется достаточно широко.

Преимущество лазеров с двойной гетероструктурой состоит в том, что область сосуществования электронов и дырок («активная область») заключена в тонком среднем слое. Это означает, что много больше электронно-дырочных пар будут давать вклад в усиление — не так много их останется на периферии в области с низким усилением. Дополнительно, свет будет отражаться от самих гетеропереходов, то есть излучение будет целиком заключено в области максимально эффективного усиления.

Диод с квантовыми ямами

Если средний слой диода ДГС сделать ещё тоньше, такой слой начнёт работать как квантовая яма. Это означает, что в вертикальном направлении энергия электронов начнёт квантоваться. Разница между энергетическими уровнями квантовых ям может использоваться для генерации излучения вместо потенциального барьера. Такой подход очень эффективен с точки зрения управления длиной волны излучения, которая будет зависеть от толщины среднего слоя. Эффективность такого лазера будет выше по сравнению с однослойным лазером благодаря тому, что зависимость плотности электронов и дырок, участвующих в процессе излучения, имеет более равномерное распределение.

Гетероструктурные лазеры с раздельным удержанием

Основная проблема гетероструктурных лазеров с тонким слоем — невозможность эффективного удержания света. Чтобы преодолеть её, с двух сторон кристалла добавляют ещё два слоя. Эти слои имеют меньший коэффициент преломления по сравнению с центральными слоями. Такая структура, напоминающая световод, более эффективно удерживает свет. Эти устройства называются гетероструктурами с раздельным удержанием («separate confinement heterostructure», SCH)

Большинство полупроводниковых лазеров, произведённых с 1990-го года, изготовлены по этой технологии.

Лазеры с распределённой обратной связью

Лазеры с распределённой обратной связью (РОС) чаще всего используются в системах многочастотной волоконно-оптической связи. Чтобы стабилизировать длину волны, в районе p-n перехода создаётся поперечная насечка, образующая дифракционную решётку. Благодаря этой насечке, излучение только с одной длиной волны возвращается обратно в резонатор и участвует в дальнейшем усилении. РОС-лазеры имеют стабильную длину волны излучения, которая определяется на этапе производства шагом насечки, но может незначительно меняться под влиянием температуры. Такие лазеры — основа современных оптических телекоммуникационных систем.

VCSEL

VCSEL — «Поверхностно-излучающий лазер с вертикальным резонатором» — полупроводниковый лазер, излучающий свет в направлении, перпендикулярном поверхности кристалла, в отличие от обычных лазерных диодов, излучающих в плоскости, параллельной поверхности.

VECSEL

VECSEL — «Поверхностно-излучающий лазер с вертикальным внешним резонатором». Аналогичен по своему устройству VCSEL, но имеющий внешний резонатор. Может исполняться как с токовой, так и с оптической накачкой

Применение лазерных диодов

Лазерные диоды — важные электронные компоненты. Они находят широкое применение как управляемые источники света в волоконно-оптических линиях связи. Также они используются в различном измерительном оборудовании, например лазерных дальномерах. Другое распространённое применение — считывание штрих-кодов. Лазеры с видимым излучением, обычно красные и иногда зелёные — в лазерных указках, компьютерных мышах. Инфракрасные и красные лазеры — в проигрывателях CD- и DVD-дисков. Фиолетовые лазеры — в устройствах HD DVD и Blu-Ray. Синие лазеры — в проекторах нового поколения в качестве источника синего света и зеленого (получаемого за счёт флюоресценции специального состава под воздействием синего света). Исследуются возможности применения полупроводниковых лазеров в быстрых и недорогих устройствах для спектроскопии.

До момента разработки надёжных полупроводниковых лазеров, в проигрывателях CD и считывателях штрих-кодов разработчики вынуждены были использовать небольшие гелий-неоновые лазеры.

Источник

Все о Лазерах

Что такое лазерный диод. Смотреть фото Что такое лазерный диод. Смотреть картинку Что такое лазерный диод. Картинка про Что такое лазерный диод. Фото Что такое лазерный диодВы все любите лазеры. Я то знаю, я от них тащусь больше вашего. А если кто не любит – то он просто не видел танец сверкающих пылинок или как ослепи- тельный крошечный огонек прогрызает фанеру Что такое лазерный диод. Смотреть фото Что такое лазерный диод. Смотреть картинку Что такое лазерный диод. Картинка про Что такое лазерный диод. Фото Что такое лазерный диод

А началось все со статьи из Юного техника за 91-й год о создании лазера на красителях – тогда повторить конструкцию для простого школьника было просто нереально… Сейчас к счастью с лазерами ситуация проще – их можно доставать из сломанной техники, их можно покупать готовые, их можно собирать из деталей… О наиболее приближенных к реальности лазерах и пойдет сегодня речь, а также о способах их применения. Но в первую очередь о безопасности и опасности.

Почему лазеры опасны

Проблема в том, что параллельный луч лазера фокусируется глазом в точку на сетчатке. И если для зажигания бумаги надо 200 градусов, для повреждения сетчатки достаточно всего 50, чтобы кровь свернулась. Вы можете точкой попасть в кровеносный сосуд и закупорить его, можете попасть в слепое пятно, где нервы со всего глаза идут в мозг, можете выжечь линию «пикселей»… А потом поврежденная сетчатка может начать отслаиваться, и это уже путь к полной и необратимой потере зрения. И самое неприятное –вы не заметите по началу никаких повреждений: болевых рецепторов там нет, мозг достраивает предметы в поврежденных областях (так сказать ремапинг битых пикселей), и лишь когда поврежденная область становится достаточно большой вы можете заметить, что предметы пропадают при попадании в неё. Никаких черных областей в поле зрения вы не увидите – просто кое-где не будет ничего, но это ничего и не заметно. Увидеть повреждения на первых стадиях может только офтальмолог.

Опасность лазеров считается исходя из того, может ли он нанести повреждения до того как глаз рефлекторно моргнет – и считается не слишком опасной мощность в 5мВт для видимого излучения. Потому инфракрасные лазеры крайне опасны (ну и отчасти фиолетовые – их просто очень плохо видно) – вы можете получить повреждения, и так и не увидеть, что вам прямо в глаз светит лазер.

Потому, повторюсь, лучше избегать лазеров мощнее 5мВт и любых инфракрасных лазеров.

Также, никогда и ни при каких условиях не смотрите «в выход» лазера. Если вам кажется что «что-то не работает» или «как-то слабовато» — смотрите через вебкамеру/мыльницу (только не через зеркалку!). Это также позволит увидеть ИК излучение.

Есть конечно защитные очки, но тут много тонкостей. Например на сайте DX есть очки против зеленого лазера, но они пропускают ИК излучение- и наоборот увеличивают опасность. Так что будьте осторожны.

PS. Ну и я конечно отличился один раз – нечаянно себе бороду лазером подпалил 😉

650нм – красный

Это пожалуй наиболее распространенный на просторах интернета тип лазера, а все потому, что в каждом DVD-RW есть такой, мощностью 150-250мВт (чем больше скорость записи – тем выше). На 650нм чувствительность глаза не очень, потому хоть точка и ослепительно яркая на 100-200мВт, луч днем лишь едва видно (ночью видно конечно лучше). Начиная с 20-50мВт такой лазер начинает «жечь» — но только в том случае, если можно менять его фокус, чтобы сфокусировать пятно в крошечную точечку. На 200 мВт жгет очень резво, но опять же нужен фокус. Шарики, картон, серая бумага…

Что такое лазерный диод. Смотреть фото Что такое лазерный диод. Смотреть картинку Что такое лазерный диод. Картинка про Что такое лазерный диод. Фото Что такое лазерный диодПокупать их можно готовые (например такой на первом фото красный). Там же продаются мелкие лазерчики «оптом» — настоящие малютки, хотя у них все по взрослому – система питания, настраиваемый фокус — то что нужно для роботов, автоматики.

И главное – такие лазеры можно аккуратно доставать из DVD-RW (но помните, что там еще инфракрасный диод есть, с ним нужно крайне аккуратно, об этом ниже). (Кстати, в сервис-центрах бывает негарантийные DVD-RW кучами лежат — я себе унес 20 штук, больше не донести было). Лазерные диоды очень быстро дохнут от перегрева, от превышения максимального светового потока – мгновенно. Превышение номинального тока вдвое (при условии не превышения светового потока) сокращает срок службы в 100-1000 раз (так что аккуратнее с «разгоном»).

Питание: есть 3 основных схемы: примитивнейшая, с резистором, со стабилизатором тока (на LM317, 1117), и самый высший пилотаж – с использованием обратной связи через фотодиод.

В нормальных заводских лазерных указках применяется обычно 3-я схема – она дает максимальную стабильность выходной мощности и максимальный срок службы диода.

Что такое лазерный диод. Смотреть фото Что такое лазерный диод. Смотреть картинку Что такое лазерный диод. Картинка про Что такое лазерный диод. Фото Что такое лазерный диодВторая схема – проста в реализации, и обеспечивает хорошую стабильность, особенно если оставлять небольшой запас по мощности (

10-30%). Именно её я бы и рекомендовал делать – линейный стабилизатор – одна из наиболее популярных деталей, и в любом, даже самом мелком радиомагазине есть аналоги LM317 или 1117.

И на последок, отлаживать схему стоит с обычным красным светодиодом, а припаивать лазерный диод в самом конце. Охлаждение обязательно! Диод «на проводочках» сгорит моментально! Также не протирайте и не трогайте руками оптику лазеров (по крайней мере >5мВт) — любое повреждение будет «выгорать», так что продуваем грушей если нужно и все.

А вот как выглядит лазерный диод вблизи в работе. По вмятинам видно, как близок я был к провалу, доставая его из пластикового крепления. Это фото также не далось мне легко Что такое лазерный диод. Смотреть фото Что такое лазерный диод. Смотреть картинку Что такое лазерный диод. Картинка про Что такое лазерный диод. Фото Что такое лазерный диод
Что такое лазерный диод. Смотреть фото Что такое лазерный диод. Смотреть картинку Что такое лазерный диод. Картинка про Что такое лазерный диод. Фото Что такое лазерный диод

532нм – зеленый

Устроены они сложно – это так называемые DPSS лазеры: Первый лазер, инфракрасный на 808nm, светит в кристалл Nd:YVO4 – получается лазерное излучение на 1064нм. Оно попадает на кристалл «удвоителя частоты» — т.н. KTP, и получаем 532нм. Кристаллы все эти вырастить непросто, потому долгое время DPSS лазеры были чертовски дороги. Но благодаря ударному труду китайских товарищей, теперь они стали всполне доступны — от 7$ штука. В любом случае, механически это сложные устройства, боятся падений, резких перепадов температур. Будьте бережными.

Что такое лазерный диод. Смотреть фото Что такое лазерный диод. Смотреть картинку Что такое лазерный диод. Картинка про Что такое лазерный диод. Фото Что такое лазерный диодОсновной плюс зеленых лазеров – 532нм очень близко к максимальной чувствительности глаза, и как точка, так и сам луч очень хорошо видны. Я бы сказал, 5мВт зеленый лазер светит ярче, чем 200мВт красный (на первой фото как раз 5мВт зеленый, 200мВт красный и 200мВт фиолетовый). Потому, я бы не рекомендовал покупать зеленый лазер мощнее чем 5мВт: первый зеленый я купил на 150мВт и это настоящая жесть – с ним ничего нельзя сделать без очков, даже отраженный свет слепит, и оставляет неприятные ощущения.

Также у зеленых лазеров есть и большая опасность: 808 и особенно 1064нм инфракрасное излучение выходит из лазера, и в большинстве случаев его больше чем зеленого. В некоторых лазерах есть инфракрасный фильтр, но в большинстве зеленых лазеров до 100$ его нет. Т.е. «поражающая» способность лазера для глаза намного больше, чем кажется — и это еще одна причина не покупать зеленый лазер мощнее чем 5 мВт.

Жечь зелеными лазерами конечно можно, но нужны мощности опять же от 50мВт + если вблизи побочный инфракрасный луч будет «помогать», то с расстоянием он быстро станет «не в фокусе». А учитывая как он слепит – ничего веселого не выйдет.

405нм – фиолетовый

Это уже скорее ближний ультрафиолет. Большинство диодов – излучают 405нм напрямую. Проблема с ними в том, что глаз имеет чувствительность на 405нм около 0.01%, т.е. пятнышко 200мВт лазера кажется дохленьким, а на самом деле оно чертовски опасное и ослепительно-яркое – сетчатку повреждает на все 200мВт. Другая проблема – глаз человека привык фокусироваться «под зеленый» свет, и 405нм пятно всегда будет не в фокусе – не очень приятное ощущение. Но есть и хорошая сторона – многие предметы флуоресцируют, например бумага – ярким голубым светом, только это и спасает эти лазеры от забвения массовой публики. Но опять же, с ними не так весело. Хоть 200мВт жгут будь здоров, из-за сложности фокусировки лазера в точку это сложнее чем с красными. Также, к 405нм чувствительны фоторезисты, и кто с ними работает, может придумать зачем это может понадобиться 😉

780нм – инфракрасный

Такие лазеры в CD-RW и как второй диод в DVD-RW. Проблема в том, что глаз человека луч не видит, и потому такие лазеры очень опасны. Можно сжечь себе сетчатку и не заметить этого. Единственный способ работать с ними – использовать камеру без инфракрасного фильтра (в веб камерах её легко достать например) – тогда и луч, и пятно будет видно. ИК лазеры применять пожалуй можно только в самодельных лазерных «станочках», баловаться с ними я бы крайне не рекомендовал.

Также ИК лазеры есть в лазерных принтерах вместе со схемой развертки — 4-х или 6-и гранное вращающееся зеркало + оптика.

10мкм – инфракрасный, CO2

Это наиболее популярный в промышленности тип лазера. Основные его достоинства – низкая цена(трубки от 100-200$), высокая мощность (100W — рутина), высокий КПД. Ими режут металл, фанеру. Гравируют и проч. Если самому хочется сделать лазерный станок – то в Китае(alibaba.com) можно купить готовые трубки нужной мощности и собрать к ним только систему охлаждения и питания. Впрочем, особые умельцы делают и трубки дома, хоть это очень сложно (проблема в зеркалах и оптике – стекло 10мкм излучение не пропускает – тут подходит только оптика из кремния, германия и некоторых солей).

Применения лазеров

В основном – используют на презентациях, играют с кошками/собаками (5мвт, зеленый/красный), астрономы указывают на созвездия (зеленый 5мВт и выше). Самодельные станки – работают от 200мВт по тонким черным поверхностям. CO2 лазерами режут почти все, что угодно. Вот только печатную плату резать трудно – медь очень хорошо отражает излучение длиннее 350нм (потому на производстве, если очень хочется – применяют дорогущие 355nm DPSS лазеры). Ну и стандартное развлечение на YouTube – лопание шариков, нарезка бумаги и картона – любые лазеры от 20-50мВт при условии возможности фокусировки в точку.

Из более серьёзного — целеуказатели для оружия(зеленый), можно дома делать голограммы (полупроводниковых лазеров для этого более чем достаточно), можно из пластика, чувствительного к УФ печатать 3Д-объекты, можно экспонировать фоторезист без шаблона, можно посветить на уголковый отражатель на луне, и через 3 секунды увидеть ответ, можно построить лазерную линию связи на 10Мбит… Простор для творчества неограничен Что такое лазерный диод. Смотреть фото Что такое лазерный диод. Смотреть картинку Что такое лазерный диод. Картинка про Что такое лазерный диод. Фото Что такое лазерный диод

Так что, если вы еще думаете, какой-бы купить лазер – берите 5мВт зеленый 🙂 (ну и 200мВт красный, если хочется жечь)

Источник

Лазерный диод — принцип работы, ток лазерного диода

Под термином « лазерный диод » понимается лазер полупроводникового типа, основа конструкции которого представлена диодом. Принцип работы такого лазера строится на том, что после того, как в диод были инжектированы носители заряда в зоне p-n — перехода возникает инверсия населённостей.

Принцип работы лазерного диода

Всегда необходимо помнить, что при формировании излучения больше важен не ток лазерного диода, а напряжение. В момент подачи на анодный конец диода положительного потенциала, наблюдается смещение диода по прямому направлению. Это подразумевает инжекцию дырок из p-области в n-область и аналогичную инжекцию электронов в обратном направлении. Расположение электрона и дырки в достаточной близости для проявления эффекта туннелирования делает возможной их рекомбинацию. Данное действие сопровождается образованием:

Явление носит название спонтанного излучения и применительно к светодиодам считается главным методом создания излучения.

Что такое лазерный диод. Смотреть фото Что такое лазерный диод. Смотреть картинку Что такое лазерный диод. Картинка про Что такое лазерный диод. Фото Что такое лазерный диод

Рис 1 Конструкция лазерного диода.

Если рекомбинирование электрона и дырки, несмотря на общую пространственную область, не происходит весьма долго. Пересечение этой области фотоном с резонансной частотой провоцирует процесс вынужденной рекомбинации, результатом которой становится формирование другого фотона, полностью совпадающего с первым по всем значимым параметрам.

Особенности конструкции

Кристалл полупроводника лазерного диода представляет собой весьма тонкую прямоугольную пластинку. Деление на p и n области здесь происходит по принципу не лево-право, а верх-низ. То есть, вверху расположена p-область, а внизу — n-область.

Как результат: площадь p-n — перехода достаточно велика. Для торцевых (боковых) сторон обязательна полировка, поскольку формирование оптического резонатора (Фабри-Перо) требуются наличие параллельных плоскостей абсолютной гладкости. Перпендикулярно направленный в отношении одной из таких плоскостей случайный фотон (сформированный спонтанным излучением) будет двигаться по всему оптическому волноводу, периодически отражаясь от боковых граней, пока наконец не покинет резонатор.

Во время движения этот фотон станет причиной нескольких актов вынужденной рекомбинации, формирования подобных фотонов и усиления излучения. В момент, когда усиление достаточно для перекрытия потерь, происходит лазерная генерация.

Разновидности лазерных диодов

В большинстве случаев слой лазерного диода весьма тонок и генерация фотонового потока происходит параллельно структуре этого слоя. Однако, при конструкции достаточной ширины, диод может функционировать в поперечном варианте. Это многомодовые диоды, и их использование демонстрирует высокую мощность излучения в комбинации с высокой его расходимостью.

С целью обеспечения лучшей фокусировки по ширине волновод должен сопоставляться с длиной волны излучения.

Ввиду малой толщины излучающего элемента и дифракции наблюдается сильное расхождение луча в момент выхода. Компенсировать данный эффект можно при помощи собирающих линз. В случае с многомодовыми лазерами обычно используют линзы цилиндрического типа. А если для стандартного лазера применить симметричные линзы, то луч в сечении приобретёт форму эллипса поскольку в вертикальном направлении луч расходится сильнее, чем в горизонтальном.

Лазерный диоды данного типа не отличаются эффективностью. Для их работы применяется большая входная мощность и импульсное воздействие (позволяющее избежать перегрева). В производстве они практически не используются.

Особенностью диодов данного типа является то, что в них кристаллический слой, имеющий более узкую запрещённую зону, фиксируется между двух кристаллических слоёв, имеющих более широкую запрещённую зону.

Большим плюсом моделей данного типа является увеличение активной области (распространяющуюся практически на весь средний слой) и усиление потока фотонов (благодаря дополнительному отражению света от гетеропереходов).

При более сильном истончении среднего слоя в диодах ДГС-типа, его свойства изменяются таким образом, что он превращается в квантовую яму. Таким образом по вертикали электронная энергия будет подвергаться квантованию.

Что такое лазерный диод. Смотреть фото Что такое лазерный диод. Смотреть картинку Что такое лазерный диод. Картинка про Что такое лазерный диод. Фото Что такое лазерный диод

Рис 2 Лазерный диод — вид разрезе

Разность энергетических уровней квантовых ям может быть использована излучения взамен возможного барьера. Это позволяет регулировать длину волны при излучении, определяемую толщиной среднего слоя. Более эффективный вариант ввиду равномерности распределения электронов и дырок.

Гетероструктурные лазеры с тонким слоем имеют один весомый недостаток — они не в состоянии эффективно удерживать свет. Для разрешения проблемы к двум сторонам кристалла крепится по дополнительному слою. По коэффициенту преломления эти слои уступают центральным. Общая конструкция при этом становится подобна световоду. Наибольший процент лазерных диодов сформирован по данной технологии.

Лазеры РОС-типа применяются для многочастотных волоконно-оптических связей. При помощи поперечной насечки в области p-n — перехода, необходимой для формирования дифракционной решётки, становится возможной стабилизация длины волны. Конкретное её значение зависит от параметров насечки, однако возможны некоторые деформации под действием температурных всплесков. Лазеры данного типа применяются преимущественно для телекоммуникаций и оптики.

Лазер поверхностного излучения, снабжённый вертикальным резонатором. Это означает, что свет будет направлен перпендикулярно относительно грани кристалла, в то время как лазеры других типов излучают свет параллельно кристаллу.

Аналогичен по свойствам предыдущему варианту, но оснащён внешним резонатором.

Драйвер для лазерного диода

Выходная оптическая мощность лазерного диода (являющая одной из основных оптических характеристик) находится в зависимости от тока, проходящего по p-n — переходу. Ввиду этого драйвер лазерного диода обязательно должен соотноситься с источником тока. Все характеристики относящиеся к источнику тока отражаются на параметрах оптической мощности.

В сферу «обязанностей» драйвера входит не только регулировка мощности, но и терморегуляция, осуществляемая через охладитель. Конструкция управляющего блока при этом может быть как совмещённой, так и раздельной.

Что такое лазерный диод. Смотреть фото Что такое лазерный диод. Смотреть картинку Что такое лазерный диод. Картинка про Что такое лазерный диод. Фото Что такое лазерный диод

Рис з Схема простейшего драйвера лазерного диода

Как подключить лазерный диод

Питать лазерный диод можно при помощи:

Подключение лазерного диода к сети на 220 вольт опасно выбросами напряжения и высокочастотными всплесками. Чтобы обеспечить в защиту при данном варианте, потребуется конструкция, включающая в себя:

При использовании всех приведённых компонентов можно гарантировать безопасность эксплуатации диода.

Что такое лазерный диод. Смотреть фото Что такое лазерный диод. Смотреть картинку Что такое лазерный диод. Картинка про Что такое лазерный диод. Фото Что такое лазерный диод

Рис 4 Одно из подключений лазерного диода

Излучение с какой длиной волны может производить лазерный диод?

Единица измерения длины волны, которую может продуцировать лазерный диод — нм, иначе «нанометры». Благодаря этому значению можно определить цветовой спектр испускаемого светового луча:

Поток фотонов красного цвета наиболее часто используется в конструкциях дисководов. При дневном свете луч этого лазера виден не очень хорошо, но причина этому только невосприимчивость человеческого зрения. При мощности от 20-50 мВт и фокусировки светового пятна в минимально возможную по площади точку проявляется эффект «жжения». Мощность на 200 мВт при правильной фокусировке позволяет резать бумагу различной плотности.

Зелёный поток. Лазеры данного типа очень хрупки и чувствительны к температурным всплескам, требуют крайне осторожного обращения. К тому же обладают сложным устройством и до недавнего времени были крайне дорогими.

Главный положительный момент их применения: зрительно излучение на 532 нм наиболее хорошо различимо. Поэтому использовать лазер зелёного цвета мощнее, чем на 5мВт будет небезопасно для зрения. Кроме того, в силу особенностей конструкции вместе с зелёным спектром лазер поставляет и инфракрасный с длиной волны на 808 нм и 1064 нм, а это только повышает травмоопасность такого прибора. Правда в более дорогих экземплярах стоят специальные фильтры, но это обязательно нужно проверять.

Фиолетовое излучение. Опасно тем, что слабо различимо для человеческого глаза и кажется слабым по мощности, хотя на деле ситуация строго противоположная. Его трудно сфокусировать. В общем, в целях эксплуатации не самый удобный вариант. Может быть актуален разве что при работе с фоторезисторами.

Инфракрасное излучение. Опасно в силу того, что не воспринимается человеческим зрением от слова совсем. А это грозит различными травмами зрения. Работа возможна только при отсутствии инфракрасного фильтра, что обеспечит хотя бы относительную видимость луча.

Излучение также инфракрасное с надбавкой CO2. Наиболее широко применяется в промышленности. Подобные лазеры имеют низкую стоимость, высокую мощность и отличаются высоким КПД. Используются данные лазерные диоды для резки металла или фанеры. С их помощью выполняется гравировка.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *