Что такое куча в программировании
Основные принципы программирования: стек и куча
Авторизуйтесь
Основные принципы программирования: стек и куча
Мы используем всё более продвинутые языки программирования, которые позволяют нам писать меньше кода и получать отличные результаты. За это приходится платить. Поскольку мы всё реже занимаемся низкоуровневыми вещами, нормальным становится то, что многие из нас не вполне понимают, что такое стек и куча, как на самом деле происходит компиляция, в чём разница между статической и динамической типизацией, и т.д. Я не говорю, что все программисты не знают об этих понятиях — я лишь считаю, что порой стоит возвращаться к таким олдскульным вещам.
Сегодня мы поговорим лишь об одной теме: стек и куча. И стек, и куча относятся к различным местоположениям, где происходит управление памятью, но стратегия этого управления кардинально отличается.
Стек — это область оперативной памяти, которая создаётся для каждого потока. Он работает в порядке LIFO (Last In, First Out), то есть последний добавленный в стек кусок памяти будет первым в очереди на вывод из стека. Каждый раз, когда функция объявляет новую переменную, она добавляется в стек, а когда эта переменная пропадает из области видимости (например, когда функция заканчивается), она автоматически удаляется из стека. Когда стековая переменная освобождается, эта область памяти становится доступной для других стековых переменных.
Из-за такой природы стека управление памятью оказывается весьма логичным и простым для выполнения на ЦП; это приводит к высокой скорости, в особенности потому, что время цикла обновления байта стека очень мало, т.е. этот байт скорее всего привязан к кэшу процессора. Тем не менее, у такой строгой формы управления есть и недостатки. Размер стека — это фиксированная величина, и превышение лимита выделенной на стеке памяти приведёт к переполнению стека. Размер задаётся при создании потока, и у каждой переменной есть максимальный размер, зависящий от типа данных. Это позволяет ограничивать размер некоторых переменных (например, целочисленных), и вынуждает заранее объявлять размер более сложных типов данных (например, массивов), поскольку стек не позволит им изменить его. Кроме того, переменные, расположенные на стеке, всегда являются локальными.
В итоге стек позволяет управлять памятью наиболее эффективным образом — но если вам нужно использовать динамические структуры данных или глобальные переменные, то стоит обратить внимание на кучу.
Куча — это хранилище памяти, также расположенное в ОЗУ, которое допускает динамическое выделение памяти и не работает по принципу стека: это просто склад для ваших переменных. Когда вы выделяете в куче участок памяти для хранения переменной, к ней можно обратиться не только в потоке, но и во всем приложении. Именно так определяются глобальные переменные. По завершении приложения все выделенные участки памяти освобождаются. Размер кучи задаётся при запуске приложения, но, в отличие от стека, он ограничен лишь физически, и это позволяет создавать динамические переменные.
13–15 декабря, Онлайн, Беcплатно
Вы взаимодействуете с кучей посредством ссылок, обычно называемых указателями — это переменные, чьи значения являются адресами других переменных. Создавая указатель, вы указываете на местоположение памяти в куче, что задаёт начальное значение переменной и говорит программе, где получить доступ к этому значению. Из-за динамической природы кучи ЦП не принимает участия в контроле над ней; в языках без сборщика мусора (C, C++) разработчику нужно вручную освобождать участки памяти, которые больше не нужны. Если этого не делать, могут возникнуть утечки и фрагментация памяти, что существенно замедлит работу кучи.
В сравнении со стеком, куча работает медленнее, поскольку переменные разбросаны по памяти, а не сидят на верхушке стека. Некорректное управление памятью в куче приводит к замедлению её работы; тем не менее, это не уменьшает её важности — если вам нужно работать с динамическими или глобальными переменными, пользуйтесь кучей.
Заключение
Вот вы и познакомились с понятиями стека и кучи. Вкратце, стек — это очень быстрое хранилище памяти, работающее по принципу LIFO и управляемое процессором. Но эти преимущества приводят к ограниченному размеру стека и специальному способу получения значений. Для того, чтобы избежать этих ограничений, можно пользоваться кучей — она позволяет создавать динамические и глобальные переменные — но управлять памятью должен либо сборщик мусора, либо сам программист, да и работает куча медленнее.
Что такое куча
Это зависит от содержимого.
В программировании есть два разных понятия, которые обозначаются одним и тем же словом «куча». Одно про выделение памяти, второе — про организацию данных. Разберём оба и закроем этот вопрос.
Это про данные
Эта статья из цикла про типы данных. Уже было:
Ещё бывают связанные списки, очереди, множества, хеш-таблицы, карты и кучи. Вот сегодня про кучи.
Куча и работа с памятью
Каждая запущенная программа использует собственную область оперативной памяти. Эта область делится на несколько частей: в одной хранятся данные, в другой — сам код программы, в третьей — константы. Ещё в эту область входят стек вызовов и куча. Про стек вызовов мы уже рассказывали в отдельной статье, теперь поговорим про кучу.
В отличие от стека, который строго упорядочен и все элементы там идут друг за другом, данные в куче могут храниться как угодно. Технически куча — это область памяти, которую компьютер выделяет программе и говорит: вот тебе свободная память для переменных, делай с ней что хочешь.
То, как программист распорядится этой памятью и каким образом будет с ней работать, влияет на быстродействие и работоспособность всей программы.
Аналогия со стройплощадкой
Представьте, что мы строим дом, а куча — это огромная площадка для хранения стройматериалов. Площадка может быть большой, но она не безграничная, поэтому важно как-то по-умному ей пользоваться. Например:
На стройке: мы выгрузили кирпич на один участок, использовали этот кирпич. Теперь нужно сказать, что этот участок можно снова использовать под стройматериалы. Новый кирпич можно разгрузить сюда же, а не искать новое место на площадке.
В программе: мы выделили память для переменной, использовали переменную, она больше не нужна. Можно сказать «Эта память свободна» и использовать её снова.
На стройке: мы храним определённый вид труб на палете №53. Мы говорим крановщику: «Поднимайте на этаж то, что лежит на палете 53». Если мы ошибёмся с номером, то крановщик поднимет на этаж не те трубы.
В программе: в некоторых языках мы можем обратиться к куче напрямую через специальный указатель. Если мы ошиблись и сказали обратиться не к тому участку памяти, программа заберёт не те данные, а дальше будет ошибка.
👉 Прямой доступ к памяти есть не во всех языках программирования. Многие компиляторы и интерпретаторы ставят между программистом и памятью своеобразного администратора — диспетчера памяти. Он сам решает, какие переменные нужны, а какие нет; когда чистить память; сколько памяти на что выделить.
С одной стороны, это удобно: программист просто говорит «храни данные». А где они будут храниться и как их получить — это вопрос другой системы.
С другой стороны, автоматические диспетчеры памяти бывают менее эффективными, чем если управлять памятью вручную. Поэтому драйвера или софт для высоконагруженных систем чаще пишут в «ручном режиме».
Куча и организация данных
Второй вид кучи в программировании — это организация данных.
Куча — это такой вид дерева, у которого есть одно важное свойство:
если узел A — это родитель узла B, то ключ узла A больше ключа узла B (или равен ему).
Если мы представим какой-то набор данных в виде кучи, он может выглядеть, например, так:
У кучи нет ограничений на число потомков у каждого родителя, но на практике чаще всего используются бинарные кучи. Бинарные — значит, у каждого родителя может быть не больше двух потомков.
Для чего нужны кучи данных
Так как данные в куче упорядочены заранее понятным образом, то их можно использовать для быстрого нахождения нужного элемента или оптимальной последовательности действий, например:
Зачем это знать
Если вы просто пишете веб-приложения на JS — в принципе, это знать не нужно. Вы не можете из JS напрямую управлять памятью, а для простых задач вам вряд ли придётся часто обходить деревья и делать сложные сортировки.
Понимание структур данных нужно для глубокой экспертной работы с софтом. Это как понимание принципов работы механизма внутреннего сгорания. Вам необязательно в этом разбираться, если вы просто хотите водить автомобиль, но обязательно — если хотите собирать гоночные болиды.
Структуры данных: двоичная куча (binary heap)
Двоичная куча (binary heap) – просто реализуемая структура данных, позволяющая быстро (за логарифмическое время) добавлять элементы и извлекать элемент с максимальным приоритетом (например, максимальный по значению).
Для дальнейшего чтения необходимо иметь представление о деревьях, а также желательно знать об оценке сложности алгоритмов. Алгоритмы в этой статье будут сопровождаться кодом на C#.
Введение
Двоичная куча представляет собой полное бинарное дерево, для которого выполняется основное свойство кучи: приоритет каждой вершины больше приоритетов её потомков. В простейшем случае приоритет каждой вершины можно считать равным её значению. В таком случае структура называется max-heap, поскольку корень поддерева является максимумом из значений элементов поддерева. В этой статье для простоты используется именно такое представление. Напомню также, что дерево называется полным бинарным, если у каждой вершины есть не более двух потомков, а заполнение уровней вершин идет сверху вниз (в пределах одного уровня – слева направо).
Приведу заготовку класса на C#:
Добавление элемента
Новый элемент добавляется на последнее место в массиве, то есть позицию с индексом heapSize :
Возможно, что при этом будет нарушено основное свойство кучи, так как новый элемент может быть больше родителя. В таком случае следует «поднимать» новый элемент на один уровень (менять с вершиной-родителем) до тех пор, пока не будет соблюдено основное свойство кучи:
Иначе говоря, новый элемент «всплывает», «проталкивается» вверх, пока не займет свое место. Сложность алгоритма не превышает высоты двоичной кучи (так как количество «подъемов» не больше высоты дерева), то есть равна O(log2 N).
Упорядочение двоичной кучи
В ходе других операций с уже построенной двоичной кучей также может нарушиться основное свойство кучи: вершина может стать меньше своего потомка.
Метод heapify восстанавливает основное свойство кучи для дерева с корнем в i-ой вершине при условии, что оба поддерева ему удовлетворяют. Для этого необходимо «опускать» i-ую вершину (менять местами с наибольшим из потомков), пока основное свойство не будет восстановлено (процесс завершится, когда не найдется потомка, большего своего родителя). Нетрудно понять, что сложность этого алгоритма также равна O(log2 N).
Построение двоичной кучи
Наиболее очевидный способ построить кучу из неупорядоченного массива – это по очереди добавить все его элементы. Временная оценка такого алгоритма O(N log2 N). Однако можно построить кучу еще быстрее — за О(N). Сначала следует построить дерево из всех элементов массива, не заботясь о соблюдении основного свойства кучи, а потом вызвать метод heapify для всех вершин, у которых есть хотя бы один потомок (так как поддеревья, состоящие из одной вершины без потомков, уже упорядочены). Потомки гарантированно есть у первых heapSize/2 вершин.
Извлечение (удаление) максимального элемента
В упорядоченном max-heap максимальный элемент всегда хранится в корне. Восстановить упорядоченность двоичной кучи после удаления максимального элемента можно, поставив на его место последний элемент и вызвав heapify для корня, то есть упорядочив все дерево.
Сортировка с применением двоичной кучи
Заметим, что можно отсортировать массив, сначала построив из него двоичную кучу, а потом последовательно извлекая максимальные элементы. Оценим временную сложность такого элемента: построение кучи – O(N), извлечение N элементов – O(N log2 N). Следовательно, итоговая оценка O(N log2 N). При этом дополнительная память для массива не используется.
Урок №105. Стек и Куча
На этом уроке мы рассмотрим стек и кучу в языке C++.
Сегменты
Память, которую используют программы, состоит из нескольких частей — сегментов:
Сегмент кода (или «текстовый сегмент»), где находится скомпилированная программа. Обычно доступен только для чтения.
Сегмент bss (или «неинициализированный сегмент данных»), где хранятся глобальные и статические переменные, инициализированные нулем.
Сегмент данных (или «сегмент инициализированных данных»), где хранятся инициализированные глобальные и статические переменные.
Куча, откуда выделяются динамические переменные.
Стек вызовов, где хранятся параметры функции, локальные переменные и другая информация, связанная с функциями.
Сегмент кучи (или просто «куча») отслеживает память, используемую для динамического выделения. Мы уже немного поговорили о куче на уроке о динамическом выделении памяти в языке С++.
В языке C++ при использовании оператора new динамическая память выделяется из сегмента кучи самой программы:
Адрес выделяемой памяти передается обратно оператором new и затем он может быть сохранен в указателе. О механизме хранения и выделения свободной памяти нам сейчас беспокоиться незачем. Однако стоит знать, что последовательные запросы памяти не всегда приводят к выделению последовательных адресов памяти!
При удалении динамически выделенной переменной, память возвращается обратно в кучу и затем может быть переназначена (исходя из последующих запросов). Помните, что удаление указателя не удаляет переменную, а просто приводит к возврату памяти по этому адресу обратно в операционную систему.
Куча имеет свои преимущества и недостатки:
Выделение памяти в куче сравнительно медленное.
Выделенная память остается выделенной до тех пор, пока не будет освобождена (остерегайтесь утечек памяти) или пока программа не завершит свое выполнение.
Доступ к динамически выделенной памяти осуществляется только через указатель. Разыменование указателя происходит медленнее, чем доступ к переменной напрямую.
Поскольку куча представляет собой большой резервуар памяти, то именно она используется для выделения больших массивов, структур или классов.
Стек вызовов
Стек вызовов (или просто «стек») отслеживает все активные функции (те, которые были вызваны, но еще не завершены) от начала программы и до текущей точки выполнения, и обрабатывает выделение всех параметров функции и локальных переменных.
Стек вызовов реализуется как структура данных «Стек». Поэтому, прежде чем мы поговорим о том, как работает стек вызовов, нам нужно понять, что такое стек как структура данных.
Стек как структура данных
Структура данных в программировании — это механизм организации данных для их эффективного использования. Вы уже видели несколько типов структур данных, например, массивы или структуры. Существует множество других структур данных, которые используются в программировании. Некоторые из них реализованы в Стандартной библиотеке C++, и стек как раз является одним из таковых.
Например, рассмотрим стопку (аналогия стеку) тарелок на столе. Поскольку каждая тарелка тяжелая, а они еще и сложены друг на друге, то вы можете сделать лишь что-то одно из следующего:
Посмотреть на поверхность первой тарелки (которая находится на самом верху).
Взять верхнюю тарелку из стопки (обнажая таким образом следующую тарелку, которая находится под верхней, если она вообще существует).
Положить новую тарелку поверх стопки (спрятав под ней самую верхнюю тарелку, если она вообще была).
В компьютерном программировании стек представляет собой контейнер (как структуру данных), который содержит несколько переменных (подобно массиву). Однако, в то время как массив позволяет получить доступ и изменять элементы в любом порядке (так называемый «произвольный доступ»), стек более ограничен.
В стеке вы можете:
Посмотреть на верхний элемент стека (используя функцию top() или peek() ).
Вытянуть верхний элемент стека (используя функцию pop() ).
Добавить новый элемент поверх стека (используя функцию push() ).
Стек — это структура данных типа LIFO (англ. «Last In, First Out» = «Последним пришел, первым ушел»). Последний элемент, который находится на вершине стека, первым и уйдет из него. Если положить новую тарелку поверх других тарелок, то именно эту тарелку вы первой и возьмете. По мере того, как элементы помещаются в стек — стек растет, по мере того, как элементы удаляются из стека — стек уменьшается.
Например, рассмотрим короткую последовательность, показывающую, как работает добавление и удаление в стеке:
Stack: empty
Push 1
Stack: 1
Push 2
Stack: 1 2
Push 3
Stack: 1 2 3
Push 4
Stack: 1 2 3 4
Pop
Stack: 1 2 3
Pop
Stack: 1 2
Pop
Stack: 1
Стопка тарелок довольно-таки хорошая аналогия работы стека, но есть лучшая аналогия. Например, рассмотрим несколько почтовых ящиков, которые расположены друг на друге. Каждый почтовый ящик может содержать только один элемент, и все почтовые ящики изначально пустые. Кроме того, каждый почтовый ящик прибивается гвоздем к почтовому ящику снизу, поэтому количество почтовых ящиков не может быть изменено. Если мы не можем изменить количество почтовых ящиков, то как мы получим поведение, подобное стеку?
Во-первых, мы используем наклейку для обозначения того, где находится самый нижний пустой почтовый ящик. Вначале это будет первый почтовый ящик, который находится на полу. Когда мы добавим элемент в наш стек почтовых ящиков, то мы поместим этот элемент в почтовый ящик, на котором будет наклейка (т.е. в самый первый пустой почтовый ящик на полу), а затем переместим наклейку на один почтовый ящик выше. Когда мы вытаскиваем элемент из стека, то мы перемещаем наклейку на один почтовый ящик ниже и удаляем элемент из почтового ящика. Всё, что находится ниже наклейки — находится в стеке. Всё, что находится в ящике с наклейкой и выше — находится вне стека.
Сегмент стека вызовов
Сегмент стека вызовов содержит память, используемую для стека вызовов. При запуске программы, функция main() помещается в стек вызовов операционной системой. Затем программа начинает свое выполнение.
Когда программа встречает вызов функции, то эта функция помещается в стек вызовов. При завершении выполнения функции, она удаляется из стека вызовов. Таким образом, просматривая функции, добавленные в стек, мы можем видеть все функции, которые были вызваны до текущей точки выполнения.
Наша аналогия с почтовыми ящиками — это действительно то, как работает стек вызовов. Стек вызовов имеет фиксированное количество адресов памяти (фиксированный размер). Почтовые ящики являются адресами памяти, а «элементы», которые мы добавляем или вытягиваем из стека, называются фреймами (или «кадрами») стека. Кадр стека отслеживает все данные, связанные с одним вызовом функции. «Наклейка» — это регистр (небольшая часть памяти в ЦП), который является указателем стека. Указатель стека отслеживает вершину стека вызовов.
Единственное отличие фактического стека вызовов от нашего гипотетического стека почтовых ящиков заключается в том, что, когда мы вытягиваем элемент из стека вызовов, нам не нужно очищать память (т.е. вынимать всё содержимое из почтового ящика). Мы можем просто оставить эту память для следующего элемента, который и перезапишет её. Поскольку указатель стека будет ниже этого адреса памяти, то, как мы уже знаем, эта ячейка памяти не будет находиться в стеке.
Стек вызовов на практике
Давайте рассмотрим детально, как работает стек вызовов. Ниже приведена последовательность шагов, выполняемых при вызове функции:
Программа сталкивается с вызовом функции.
Создается фрейм стека, который помещается в стек. Он состоит из:
адреса инструкции, который находится за вызовом функции (так называемый «обратный адрес»). Так процессор запоминает, куда ему возвращаться после выполнения функции;
памяти для локальных переменных;
сохраненных копий всех регистров, модифицированных функцией, которые необходимо будет восстановить после того, как функция завершит свое выполнение.
Процессор переходит к точке начала выполнения функции.
Инструкции внутри функции начинают выполняться.
После завершения функции, выполняются следующие шаги:
Регистры восстанавливаются из стека вызовов.
Фрейм стека вытягивается из стека. Освобождается память, которая была выделена для всех локальных переменных и аргументов.
Обрабатывается возвращаемое значение.
ЦП возобновляет выполнение кода (исходя из обратного адреса).
Возвращаемые значения могут обрабатываться разными способами, в зависимости от архитектуры компьютера. Некоторые архитектуры считают возвращаемое значение частью фрейма стека, другие используют регистры процессора.
Знать все детали работы стека вызовов не так уж и важно. Однако понимание того, что функции при вызове добавляются в стек, а при завершении выполнения — удаляются из стека, дает основы, необходимые для понимания рекурсии, а также некоторых других концепций, которые полезны при отладке программ.
Разбираемся с управлением памятью в современных языках программирования
Привет, Хабр! Представляю вашему вниманию перевод статьи «Demystifying memory management in modern programming languages» за авторством Deepu K Sasidharan.
В данной серии статей мне бы хотелось развеять завесу мистики над управлением памятью в программном обеспечении (далее по тексту — ПО) и подробно рассмотреть возможности, предоставляемые современными языками программирования. Надеюсь, что мои статьи помогут читателю заглянуть под капот этих языков и узнать для себя нечто новое.
Углублённое изучение концептов управления памятью позволяет писать более эффективное ПО, потому как стиль и практики кодирования оказывают большое влияние на принципы выделения памяти для нужд программы.
Часть 1: Введение в управление памятью
Управление памятью — это целый набор механизмов, которые позволяют контролировать доступ программы к оперативной памяти компьютера. Данная тема является очень важной при разработке ПО и, при этом, вызывает затруднения или же вовсе остаётся черным ящиком для многих программистов.
Для чего используется оперативная память?
Когда программа выполняется в операционный системе компьютера, она нуждается в доступе к оперативной памяти (RAM) для того, чтобы:
Стек используется для статичного выделения памяти. Он организован по принципу «последним пришёл — первым вышел» (LIFO). Можно представить стек как стопку книг — разрешено взаимодействовать только с самой верхней книгой: прочитать её или положить на неё новую.
Использование стека в JavaScript. Объекты хранятся в куче и доступны по ссылкам, которые хранятся в стеке. Тут можно посмотреть в видеоформате
Куча используется для динамического выделения памяти, однако, в отличие от стека, данные в куче первым делом требуется найти с помощью «оглавления». Можно представить, что куча это такая большая многоуровневая библиотека, в которой, следуя определённым инструкциям, можно найти необходимую книгу.
Почему эффективное управление памятью важно?
В отличие от жёстких дисков, оперативная память весьма ограниченна (хотя и жёсткие диски, безусловно, тоже не безграничны). Если программа потребляет память не высвобождая её, то, в конечном итоге, она поглотит все доступные резервы и попытается выйти за пределы памяти. Тогда она просто упадет сама, или, что ещё драматичнее, обрушит операционную систему. Следовательно, весьма нежелательно относиться легкомысленно к манипуляциям с памятью при разработке ПО.
Различные подходы
Современные языки программирования стараются максимально упростить работу с памятью и снять с разработчиков часть головной боли. И хотя некоторые почтенные языки всё ещё требуют ручного управления, большинство всё же предоставляет более изящные автоматические подходы. Порой в языке используется сразу несколько подходов к управлению памятью, а иногда разработчику даже доступен выбор какой из вариантов будет эффективнее конкретно для его задач (хороший пример — C++). Перейдём к краткому обзору различных подходов.
Ручное управление памятью
Язык не предоставляет механизмов для автоматического управления памятью. Выделение и освобождение памяти для создаваемых объектов остаётся полностью на совести разработчика. Пример такого языка — C. Он предоставляет ряд методов (malloc, realloc, calloc и free) для управления памятью — разработчик должен использовать их для выделения и освобождения памяти в своей программе. Этот подход требует большой аккуратности и внимательности. Так же он является в особенности сложным для новичков.
Сборщик мусора
Сборка мусора — это процесс автоматического управления памятью в куче, который заключается в поиске неиспользующихся участков памяти, которые ранее были заняты под нужды программы. Это один из наиболее популярных вариантов механизма для управления памятью в современных языках программирования. Подпрограмма сборки мусора обычно запускается в заранее определённые интервалы времени и бывает, что её запуск совпадает с ресурсозатратными процессами, в результате чего происходит задержка в работе приложения. JVM (Java/Scala/Groovy/Kotlin), JavaScript, Python, C#, Golang, OCaml и Ruby — вот примеры популярных языков, в которых используется сборщик мусора.
Получение ресурса есть инициализация (RAII)
RAII — это программная идиома в ООП, смысл которой заключается в том, что выделяемая для объекта область памяти строго привязывается к его времени существования. Память выделяется в конструкторе и освобождается в деструкторе. Данный подход был впервые реализован в C++, а так же используется в Ada и Rust.
Автоматический подсчёт ссылок (ARC)
Данный подход весьма похож на сборку мусора с подсчётом ссылок, однако, вместо запуска процесса подсчёта в определённые интервалы времени, инструкции выделения и освобождения памяти вставляются на этапе компиляции прямо в байт-код. Когда же счётчик ссылок достигает нуля, память освобождается как часть нормального потока выполнения программы.
Автоматический подсчёт ссылок всё так же не позволяет обрабатывать циклические ссылки и требует от разработчика использования специальных ключевых слов для дополнительной обработки таких ситуаций. ARC является одной из особенностей транслятора Clang, поэтому присутствует в языках Objective-C и Swift. Так же автоматический подсчет ссылок доступен для использования в Rust и новых стандартах C++ при помощи умных указателей.
Владение
Это сочетание RAII с концепцией владения, когда каждое значение в памяти должно иметь только одну переменную-владельца. Когда владелец уходит из области выполнения, память сразу же освобождается. Можно сказать, что это примерно как подсчёт ссылок на этапе компиляции. Данный подход используется в Rust и при этом я не смог найти ни одного другого языка, который бы использовал подобный механизм.
В данной статье были рассмотрены основные концепции в сфере управления памятью. Каждый язык программирования использует собственные реализации этих подходов и оптимизированные для различных задач алгоритмы. В следующих частях, мы подробнее рассмотрим решения для управления памятью в популярных языках.
Читайте так же другие части серии:
Ссылки
Вы можете подписаться на автора статьи в Twitter и на LinkedIn.