Что такое красностойкость быстрорежущих сталей
Быстрорежущие стали
Из учебника А.П.Гуляева «Металловедение»
В отожженном виде структура сталей (всех марок) состоит из α-твердого раствора и карбидов. Все легирующие элементы (Cr, W, Mo, V). Основными карбидами в быстрорежущей стали являются карбиды M6C, MC, M23C6 и M3C приблизительно одинакового для всех сталей состава (табл. 2).
Состав карбидов в быстрорежущих сталях, %
В зависимости от состава стали, в первую очередь соотношения (W+Mo)/V меняется и соотношение M6C/MC. Например, в стали Р18 почти нет карбида MC, а в стали Р0М2Ф3 нет карбида M6C. Кроме этих карбидов в отдельных случаях могут присутствовать в небольшом количестве карбиды M23C6, M3C, карбид M2C выделяется при отпуске.
Сами карбиды делятся по условиям образования на три вида:
1) «эвтектоидные», самые мелкие составляющие основной сорбитный фон (Превращение идет по перетектоидной реакции А+КII → Ф+КIII. Перетектоид (обычно называемый эвтектоид) представляет собой смесь феррита и карбида хрома (M23C6) или железа (M3C) в небольшом количестве (обозначают КIII));
2) вторичные карбиды, выделившиеся из аустенита после окончания кристаллизации;
3) первичные карбиды, самые крупные, выделившиеся в результате эвтектического превращения (L → А+КI) и раздробленные на отдельные частицы ковкой.
а) гранулы быстрорежущей стали | б) структура гранул | |||||||
Сталь | Температура закалки, °С | Состав твердого раствора, % (атоми.) | К 4 р 58, °С | Остаточный аустенит, % | ||||
W | Mo | V | Cr | Co | ||||
Р18 | 1 280 | 3 | — | 1 | 4 | — | 620 | 30 |
Р9 | 1 230 | 2,5 | — | 1,5 | 4 | — | 620 | 25 |
Р6М5 | 1 220 | 1 | 2 | 1 | 4 | — | 620 | 30 |
Р6М5К5 | 1 220 | 1 | 2 | 1 | 4 | 5 | 635 | 30 |
Р0М2Ф3 | 1 200 | — | 2 | 2 | 4 | — | 620 | 25 |
Р3М3Ф2 | 1 200 | 1 | 2 | 1 | 4 | — | 620 | 25 |
Рис. 1. Твердость инструментальных сталей при повышенных температурах |
На рис. 1 приведены кривые, характеризующие твердость углеродистой и быстрорежущей инструментальных сталей при повышенных температурах испытаний. При нормальной температуре твердость углеродистой стали даже несколько выше твердости быстрорежущей стали. Однако, в процессе работы режущего инструмента, происходит интенсивное выделение тепла. При этом до 80 % выделившегося тепла уходит на разогрев инструмента. Вследствие повышения температуры режущей кромки начинается отпуск материала инструмента и снижается его твердость.
После нагрева до 200 °С твердость углеродистой стали начинает быстро падать. Для этой стали недопустим режим резания, при котором инструмент нагревался бы выше 200 °С. У быстрорежущей стали высокая твердость сохраняется при нагреве до 500 ÷ 600 °С. Инструмент из быстрорежущей стали более производителен, чем инструмент из углеродистой стали.
Красностойкость
Если горячая твердость характеризует то, какую температуру сталь может выдержать, то красностойкость характеризует, сколько времени сталь будет выдерживать такую температуру. Т.е. насколько длительное время закаленная и отпущенная сталь будет сопротивляться разупрочнению при разогреве.
Существует несколько характеристик красностойкости. Приведем две из них.
Первая характеристика показывает, какую твердость будет иметь сталь после отпуска при определенной температуре в течение заданного времени (см. Таблицу 1).
Характеристики теплостойкости углеродистых и красностойкости быстрорежущих инструментальных сталей [2]
Второй способ охарактеризовать красностойкость основан на том, что интенсивность снижении горячей твердости можно измерить не только при высокой температуре, но и при комнатной так как кривые снижения твердости при высокой температуре и комнатной идут эквидистантно, а измерить твердость при комнатной температуре, разумеется, гораздо проще, чем при высокой. Опытами установлено, что режущие свойства теряются при твердости 50 HRC при температуре резання, что соответствует примерно 58 HRC при комнатной. Отсюда красностойкость характеризуется температурой отпуска, при которой за 4 часа твердость снижается до 58 HRC (обозначение K 4 р58).
Сопротивление разрушению
Кроме «горячих» свойств от материала для режущего инструмента требуются и высокие механические свойства; под этим подразумевается сопротивление хрупкому разрушению, так как при высокой твердости (> 60 HRC) разрушение всегда происходит по хрупкому механизму. Прочность таких высокотвердых материалов обычно определяют как сопротивление разрушению при изгибе призматических, не надрезанных образцов, при статическом (медленном) и динамическом (быстром) нагружении. Чем выше прочность, тем большее усилие может выдержать рабочая часть инструмента, тем большую подачу и глубину резания можно применить, и это увеличивает производительность процесса резания.
Принципы легирования быстрорежущих сталей
Высокая твердость мартенсита объясняется растворением углерода в α-железе. Известно, что при отпуске из мартенсита в углеродистой стали выделяются мельчайшие частицы карбида. Пока выделившиеся карбиды еще находятся в мельчайшем дисперсном рассеянии (т.е. на первой стадии выделения при отпуске до 200 °С), твердость заметно не снижается. Но если температуру отпуска поднять выше 200 °С, происходит рост карбидных выделений, и твердость падает.
Чтобы сталь устойчиво сохраняла твердость при нагреве, нужно ее легировать такими элементами, которые затрудняли бы процесс коагуляции карбидов. Если ввести в сталь какой-нибудь карбидообразующий элемент в таком количестве, что он образует специальный карбид, то красностойкость скачкообразно возрастает. Это обусловлено тем, что специальный карбид выделяется из мартенсита и коагулирует при более высоких температурах, чем карбид железа, так как для этого требуется не только диффузия углерода, но и диффузия легирующих элементов. Практически заметная коагуляция специальных карбидов хрома, вольфрама, молибдена, ванадия происходит при температурах выше 500 °С.
Таким образом, красностойкость создается легированием стали карбидообразующими элементами (вольфрамом, молибденом, хромом, ванадием) в таком количестве, при котором они связывают почти весь углерод в специальные карбиды и эти карбиды переходят в раствор при закалке. Несмотря на сильное различие в общем химическом составе, состав твердого раствора очень близок во всех сталях, атомная сумма W+Mo+V, определяющая красностойкость, равна примерно 4 % (атомн.), отсюда красностойкости и режущие свойства у разных марок быстрорежущих сталей близки. Быстрорежущая сталь, содержащая кобальт, превосходит по режущим свойствам остальные стали (он повышает красностойкость), но кобальт очень дорогой элемент.
Маркировка быстрорежущих сталей
Из истории создания и развития быстрорежущих сталей
Для обточки деталей из дерева, цветных металлов, мягкой стали резцы из обычной твердой стали были вполне пригодны, но при обработке стальных деталей резец быстро разогревался, скоро изнашивался и деталь нельзя было обтачивать со скоростью больше 5 м/мин.
Спустя сорок лет на рынке появилась быстрорежущая сталь американских инженеров Тэйлора и Уатта. Резцы из этой стали допускали скорость резания до 18 м/мин. Эта сталь стала прообразом современной быстрорежущей стали Р18.
В 70-х годах XX века, в связи с дефицитом вольфрама, быстрорежущая сталь марки Р18 была почти повсеместно заменена на сталь марки Р6М5, которую в свою очередь пытаются заменить безвольфрамовыми Р0М5Ф1 и Р0М2Ф3 [1].
Химический состав некоторых быстрорежущих сталей, %
Web-сайт “Термист” (termist.com)
Термомеханическое упрочнение арматурного проката
Отсутствие ссылки на использованный материал является нарушением заповеди «Не укради»
Что такое красностойкость быстрорежущих сталей
Определение. История. Характеристики. Применение.
Быстрорежущая сталь
Быстрорежущие стали — легированные стали, предназначенные, главным образом, для изготовления металлорежущего инструмента, работающего при высоких скоростях резания.
Быстрорежущая сталь должна обладать высоким сопротивлением разрушению, твёрдостью (в холодном и горячем состояниях) и красностойкостью.
Высоким сопротивлением разрушению и твердостью в холодном состоянии обладают и углеродистые инструментальные стали. Однако инструмент из них не в состоянии обеспечить высокоскоростные режимы резания. Легирование быстрорежущих сталей вольфрамом, молибденом, ванадием и кобальтом обеспечивает горячую твердость и красностойкость стали.
Истории создания
Для обточки деталей из дерева, цветных металлов, мягкой стали резцы из обычной твердой стали были вполне пригодны, но при обработке стальных деталей резец быстро разогревался, скоро изнашивался и деталь нельзя было обтачивать со скоростью больше 5 м/м.
Барьер этот удалось преодолеть после того, как в 1858 году Р. Мюшетт получил сталь, содержащую 1,85 % углерода, 9 % вольфрама и 2,5 % марганца. Спустя десять лет Мюшетт изготовил новую сталь, получившую название самокалки. Она содержала 2,15 % углерода, 0,38 % марганца, 5,44 % вольфрама и 0,4 % хрома. Через три года на заводе Самуэля Осберна в Шеффилде началось производство мюшеттовой стали. Она не теряла режущей способности при нагревании до 300 °C и позволяла в полтора раза увеличить скорость резания металла — 7,5 м/мин.
Спустя сорок лет на рынке появилась быстрорежущая сталь американских инженеров Тэйлора и Уатта. Резцы из этой стали допускали скорость резания до 18 м/мин. Эта сталь стала прообразом современной быстрорежущей стали Р18.
Еще через 5—6 лет появилась, сверхбыстрорежущая сталь, допускающая скорость резания до 35 м/мин. Так, благодаря вольфраму было достигнуто повышение скорости резания за 50 лет в семь раз и, следовательно, во столько же раз повысилась производительность металлорежущих станков.
Дальнейшее успешное использование вольфрама нашло себе применение в создании твердых сплавов, которые состоят из вольфрама, хрома, кобальта. Были созданы такие сплавы для резцов, как стеллит. Первый стеллит позволял повысить скорость резания до 45 м/мин при температуре 700—750 °C. Сплав вида, выпущенный Круппом в 1927 году, имел твердость по шкале Мооса 9,7—9,9 (твердость алмаза равна 10).
В 1970-х годах в связи с дефицитом вольфрама быстрорежущая сталь марки Р18 была почти повсеместно заменена на сталь марки Р6М5, которая в свою очередь вытесняется безвольфрамовыми Р0М5Ф1 и Р0М2Ф3.
Характеристики быстрорежущих сталей
Горячая твердость
Твердость инструментальных сталей при повышенных температурах
На рисунке приведены кривые, характеризующие твердость углеродистой и быстрорежущей инструментальных сталей при повышенных температурах испытаний. При нормальной температуре твердость углеродистой стали даже несколько выше твердости быстрорежущей стали. Однако, в процессе работы режущего инструмента, происходит интенсивное выделение тепла. При этом до 80 % выделившегося тепла уходит на разогрев инструмента. Вследствие повышения температуры режущей кромки начинается >отпуск материала инструмента и снижается его твердость.
После нагрева до 200 °C твердость углеродистой стали начинает быстро падать. Для этой стали недопустим режим резания, при котором инструмент нагревался бы выше 200 °C. У быстрорежущей стали высокая твердость сохраняется при нагреве до 500—600 °C. Инструмент из быстрорежущей стали более производителен, чем инструмент из углеродистой стали.
Красностойкость
Если горячая твердость характеризует то, какую температуру сталь может выдержать, то красностойкость характеризует, сколько времени сталь будет выдерживать такую температуру. То есть насколько длительное времязакаленная и отпущенная сталь будет сопротивляться разупрочнению при разогреве.
Существует несколько характеристик красностойкости. Приведем две из них.
Первая характеристика показывает, какую твердость будет иметь сталь после отпуска при определенной температуре в течение заданного времени.
Второй способ охарактеризовать красностойкость основан на том, что интенсивность снижения горячей твердости можно измерить не только при высокой температуре, но и при комнатной так как кривые снижения твердости при высокой температуре и комнатной идут эквидистантно, а измерить твердость при комнатной температуре, разумеется, гораздо проще, чем при высокой. Опытами установлено, что режущие свойства теряются при твердости 50 HRC при температуре резания, что соответствует примерно 58 HRC при комнатной. Отсюда красностойкость характеризуется температурой отпуска, при которой за 4 часа твердость снижается до 58 HRC.
Красностойкость быстрорежущих сталей это
Под быстрорежущими понимаются стали, предназначаемые для изготовления режущего инструмента, работающего при высоких скоростях резания. Быстрорежущая сталь должна в первую очередь обладать высокой горячей твердостью и красно стойкостью. Температура разогрева инструмента зависит от условий резания. Чем производительнее работает инструмент, тем больше стружки он снимает в единицу времени; чем выше сопротивление материала отделению стружки, тем сильнее разогревается его режущая часть. В наиболее нагретой части резца температура достигает 600-700°С. Если под действием этой температуры сталь инструмента не размягчается, инструмент долгое время сохраняет износостойкость и режущие свойства.
Следует отметить, что твердость в холодном состоянии не определяет режущей способности стали. Твердость углеродистой стали выше, чем быстрорежущей, но ее режущие свойства намного ниже. Высокая твердость инструментальной стали необходима во всех случаях, но для быстрорежущего инструмента требуется высокая твердость не только в холодном состоянии, но и при повышенных температурах. Иначе говоря, быстрорежущая сталь должна устойчиво сохранять твердость в нагретом состоянии, это называется красностойкостью.
Чтобы сталь устойчиво сохраняла твердость при нагреве, нужно ее легировать такими элементами, которые затрудняли бы этот процесс коагуляции карбидов. Если ввести в сталь какой-нибудь карбидообразующий элемент в таком количестве, что он образует специальный карбид, то том, что специальный карбид выделяется из мартенсита и коагулирует при более высоких температурах, чем карбид железа, так как для этого углерода, но и диффузия легирующих элементов.
Таким образом, красностойкость создается легированием стали карбидообразующими элементами (вольфрамом, молибденом, хромом, ванадием) в таком количестве, при котором они связывают почти весь углерод в специальные карбиды. Наиболее распространенной быстрорежущей сталью является сталь Р18(0, 7%С; 18%W; 4%Cr и1%V), а также сталь Р6М5 (0, 9%С; 6%W; 5%Mo; 4%Cr; 2%V). Все быстрорежущие стали обозначают буквой Р (скорость), цифры после этой буквы показывают содержание основного легирующего элемента-вольфрама, а для вольфрамомолибденовых сталей и содержание молибдена. При высоком содержании ванадия среднее содержание его также отмечается в марочном обозначении цифрой после буквы Ф, а содержание кобальта буквой К и соответствующими цифрами. Хрома во всех сталях содержится около 4%, а углерода- в соответствии с содержанием ванадия (чем больше ванадия, тем больше углерода).
Сталь Р18 – наиболее распространенная, универсальная марка быстрорежущей стали. Аналогична по назначению и близка по режущим свойствам сталь Р9. Сталь Р9 труднее, подвергается термической обработке, так как требует более точного соблюдения режима закалки, и плохо шлифуется, сталь Р18 дороже и обладает хорошими механическими свойствами.
Из-за малой теплопроводности стали нельзя помещать инструмент сразу в печь для окончательного нагрева во избежание появления трещин. Рекомендуется применять специальный подогрев. Наиболее распространен двойной подогрев: первый при 500-600°С, второй при 830-860°С.
Выдержка при температуре закалки, способствуя переводу карбидов в раствор, действует аналогично повышению температуры закалки.
Охлаждение при закалке быстрорежущей стали следует проводить в масле. В результате медленного охлаждения с высоких температур (например, на воздухе) могут выделиться карбиды, что ухудшит режущие свойства.
Весьма хорошие результаты (в смысле уменьшения закалочной деформации) дает ступенчатое охлаждение. Отпуск стали можно проводить по двум различным режимам.
Первый режим состоит в том, что инструмент подвергают трехкратному отпуску при 560°С с выдержкой при температуре отпуска каждый раз 1 час. После первого отпуска остается около 15% остаточного аустенита, после второго 3-5% и после третьего 1-2%. Твердость после такой обработки поднимается до НRС 64-65. Образование мартенсита при отпуске происходит, как указывалось выше, при охлаждении от 150 до 20°С.
Теплостойкость определяет допустимые скорости резания, т.е. производительность обработки. Теплостойкость является стандартной характеристикой быстрорежущих сталей; в соответствии с ГОСТ 19265-73 она носит название «красностойкость». Красностойкость оценивается температурой дополнительного четырехчасового нагрева, после которого сохраняется твердость 58 HRC (пример обозначения: Кр58 = 640 0C – после четырехчасовой выдержки при 640 °С твердость стали составила 58 HRC). Нагреву подвергают термически обработанный образец (закалка + трехкратный отпуск).
В зависимости от красностойкости различают стали нормальной (умеренной) и повышенной теплостойкости (производительности). Кр58 для сталей первой группы должна быть не менее 620 °С и для сталей второй группы – не менее 630 °С. Для приемочных испытаний применяется нагрев при указанных температурах, после чего проводится измерение твердости, ее значения должны соответствовать ГОСТу. Для более точного определения теплостойкости, т.е. температуры дополнительного нагрева, после которого сохраняется определенный уровень твердости, выполняются несколько отпусков при разных температурах с изотермической выдержкой в течение 4 ч, после этого измеряется твердость. Красностойкость определяется с помощью графической зависимости «температура – твердость» (так, на рис. 9.3 Кр58 = 625 °С).
К ним относятся вольфрамовые и вольфрамомолибденовые стали (табл. 9.1). Свойства сталей этой группы близки. Вольфрамовые обладают несколько большей теплостойкостью по сравнению с вольфрамомолибденовыми, но их механические свойства ниже.
Стали предназначены для обработки следующих материалов: сталей (σв до 800. 1000 МПа), чугунов (с твердостью до 250. 280 НВ) и цветных металлов и сплавов, обладающих хорошей обрабатываемостью (медные, алюминиевые, цинковые).
Отличия в свойствах сталей мало влияют на стойкость инструмента при используемых в практике режимах резания (до 30. 40 м/мин
Рис. 9.3. Определение красностойкости для 58 HRC
Состав (средний) и свойства быстрорежущих сталей нормальной теплостойкости
Характеристика быстрорежущих сталей – легированных сталей, которые предназначены для изготовления металлорежущего инструмента, работающего при высоких скоростях резания. Маркировка, химический состав, изготовление и термообработка быстрорежущих сталей.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 21.12.2011 |
Санкт-Петербургский Институт Машиностроения
Тема: «Быстрорежущие стали»
Выполнил студент группы 4551
Санкт-Петербург 2011 г.
1. Характеристики быстрорежущих сталей
1.1 Горячая твердость
1.3 Сопротивление разрушению
2. Принципы легирования быстрорежущих сталей
3. Маркировка быстрорежущих сталей
4. Из истории создания и развития быстрорежущих сталей
5. Химический состав быстрорежущих сталей
6. Изготовление и обработка быстрорежущих сталей
6.2 Порошковая технология
Быстрорежущие стали – легированные стали, предназначенные, главным образом, для изготовления металлорежущего инструмента, работающего при высоких скоростях резания.
Быстрорежущая сталь должна обладать высоким сопротивлением разрушению, твёрдостью (в холодном и горячем состояниях) и красностойкостью.
Высоким сопротивлением разрушению и твердостью в холодном состоянии обладают и углеродистые инструментальные стали. Однако инструмент из них не в состоянии обеспечить высокоскоростные режимы резания. Легирование быстрорежущих сталей вольфрамом, молибденом, ванадием и кобальтом обеспечивает горячую твердость и красностойкость стали.
1. Характеристики быстрорежущих сталей
1.1 Горячая твердость
Рис. 1. Твердость инструментальных сталей при повышенных температурах
На рис. 1 приведены кривые, характеризующие твердость углеродистой и быстрорежущей инструментальных сталей при повышенных температурах испытаний. При нормальной температуре твердость углеродистой стали даже несколько выше твердости быстрорежущей стали. Однако, в процессе работы режущего инструмента, происходит интенсивное выделение тепла. При этом до 80 % выделившегося тепла уходит на разогрев инструмента. Вследствие повышения температуры режущей кромки начинается отпуск материала инструмента и снижается его твердость.
Если горячая твердость характеризует то, какую температуру сталь может выдержать, то красностойкость характеризует, сколько времени сталь будет выдерживать такую температуру. То есть насколько длительное время закаленная и отпущенная сталь будет сопротивляться разупрочнению при разогреве.
Существует несколько характеристик красностойкости. Приведем две из них.
Первая характеристика показывает, какую твердость будет иметь сталь после отпуска при определенной температуре в течение заданного времени (см. Таблицу 1).
Второй способ охарактеризовать красностойкость основан на том, что интенсивность снижении горячей твердости можно измерить не только при высокой температуре, но и при комнатной так как кривые снижения твердости при высокой температуре и комнатной идут эквидистантно, а измерить твердость при комнатной температуре, разумеется, гораздо проще, чем при высокой. Опытами установлено, что режущие свойства теряются при твердости 50 HRC при температуре резання, что соответствует примерно 58 HRC при комнатной. Отсюда красностойкость характеризуется температурой отпуска, при которой за 4 часа твердость снижается до 58 HRC (обозначение K 4 р58).
Таблица 1. Характеристики теплостойкости углеродистых и красностойкости быстрорежущих инструментальных сталей [2]
Температура отпуска, °C
Время выдержки, час
Р6М5К5, Р9, Р9М4К8, Р18
1.3 Сопротивление разрушению
Кроме «горячих» свойств от материала для режущего инструмента требуются и высокие механические свойства; под этим подразумевается сопротивление хрупкому разрушению, так как при высокой твердости (> 60 HRC) разрушение всегда происходит по хрупкому механизму. Прочность таких высокотвердых материалов обычно определяют как сопротивление разрушению при изгибе призматических, не надрезанных образцов, при статическом (медленном) и динамическом (быстром) нагружении. Чем выше прочность, тем большее усилие может выдержать рабочая часть инструмента, тем большую подачу и глубину резания можно применить, и это увеличивает производительность процесса резания.
2. Принципы легирования быстрорежущих сталей
Чтобы сталь устойчиво сохраняла твердость при нагреве, нужно ее легировать такими элементами, которые затрудняли бы процесс коагуляции карбидов. Если ввести в сталь какой-нибудь карбидообразующий элемент в таком количестве, что он образует специальный карбид, то красностойкость скачкообразно возрастает. Это обусловлено тем, что специальный карбид выделяется из мартенсита и коагулирует при более высоких температурах, чем карбид железа, так как для этого требуется не только диффузия углерода, но и диффузия легирующих элементов. Практически заметная коагуляция специальных карбидов хрома, вольфрама, молибдена, ванадия происходит при температурах выше 500°C. Таким образом, красностойкость создается легированием стали карбидообразующими элементами (вольфрамом, молибденом, хромом, ванадием) в таком количестве, при котором они связывают почти весь углерод в специальные карбиды и эти карбиды переходят в раствор при закалке. Несмотря на сильное различие в общем химическом составе, состав твердого раствора очень близок во всех сталях, атомная сумма W+Mo+V, определяющая красностойкость, равна примерно 4 % (атомн.), отсюда красностойкости и режущие свойства у разных марок быстрорежущих сталей близки. Быстрорежущая сталь, содержащая кобальт, превосходит по режущим свойствам остальные стали (он повышает красностойкость), но кобальт очень дорогой элемент.
3. Маркировка быстрорежущих сталей
быстрорежущий легированный сталь термообработка
В советских и российских марочниках сталей марки быстрорежущих сталей обычно имеют особую систему обозначений и начинаются с буквы «Р» (рапид — скорость). Связанно это с тем, что эти стали были изобретены в Англии, где такую сталь называли «rapid steel». Цифра после буквы «Р» обозначает среднее содержание в ней вольфрама (в процентах от общей массы, буква В пропускается). Затем указывается после букв М, Ф и К содержание молибдена, ванадия и кобальта. Инструменты из быстрорежущей стали иностранного производства обычно маркируются аббревиатурой HSS (High Speed Steel).
4. Из истории создания и развития быстрорежущих сталей
Барьер этот удалось преодолеть после того, как в 1858 г. Мюшетт получил сталь, содержащую 1,85 % углерода, 9 % вольфрама и 2,5 % марганца. Спустя десять лет Мюшетт изготовил новую сталь, получившую название самокалки. Она содержала 2,15 % углерода, 0,38 % марганца, 5,44 % вольфрама и 0,4 % хрома.
Через три года на заводе Самуэля Осберна в Шеффилде началось производство мюшеттовой стали. Она не теряла режущей способности при нагревании до 300 °C и позволяла в полтора раза увеличить скорость резания металла — 7,5 м/мин. Спустя сорок лет на рынке появилась быстрорежущая сталь американских инженеров Тэйлора и Уатта. Резцы из этой стали допускали скорость резания до 18 м/мин.
Эта сталь стала прообразом современной быстрорежущей стали Р18. Еще через 5 — 6 лет появилась, сверхбыстрорежущая сталь, допускающая скорость резания до 35 м/мин. Так, благодаря вольфраму было достигнуто повышение скорости резания за 50 лет в семь раз и, следовательно, во столько же раз повысилась производительность металлорежущих станков. Дальнейшее успешное использование вольфрама нашло себе применение в создании твердых сплавов, которые состоят из вольфрама, хрома, кобальта. Были созданы такие сплавы для резцов, как стеллит.
Первый стеллит позволял повысить скорость резания до 45 м/мин при температуре 700–750 °C. Сплав видиа, выпущенный Круппом в 1927 г., имел твердость по шкале Мооса 9,7 — 9,9 (у алмаза по этой шкале твердость 10). В 70-х годах XX века, в связи с дефицитом вольфрама, быстрорежущая сталь марки Р18 была почти повсеместно заменена на сталь марки Р6М5, которая в свою очередь вытесняется безвольфрамовыми Р0М5Ф1 и Р0М2Ф3.
5. Химический состав быстрорежущих сталей
- Что такое красноречие определение
- Что такое красностойкость инструментального материала