Что такое коронарные разряды
В условиях резко неоднородных электромагнитных полей, на электродах с высокой кривизной наружных поверхностей, в некоторых ситуациях может начаться коронный разряд — самостоятельный электрический разряд в газе. В качестве острия, подходящей для данного явления формы, может выступать: острие, провод, угол, зубец и т. д.
Главное условие для начала разряда — вблизи острого края электрода должна присутствовать сравнительно более высокая напряженность электрического поля, чем на остальном пути между электродами, создающими разность потенциалов.
Для воздуха в нормальных условиях (при атмосферном давлении), предельное значение электрической напряженности составляет 30кВ/см, при такой напряженности на острие электрода уже появляется слабое свечение, напоминающее по форме корону. Вот почему разряд называется коронным разрядом.
Для такого разряда характерно протекание процессов ионизации только возле коронирующего электрода, при этом второй электрод может выглядеть вполне обычно, то есть без образования короны.
Коронные разряды можно наблюдать иногда и в природных условиях, например на верхушках деревьев, когда этому способствует картина распределения природного электрического поля (перед грозой или в метель).
Процесс формирования коронного разряда протекает следующим образом. Молекула воздуха случайно ионизируется, при этом вылетает электрон.
Электрон испытывает ускорение в электрическом поле возле острия, и достигает достаточной энергии, чтобы как только встретит на своем пути следующую молекулу — ионизировать и ее, и снова вылетает электрон. Число заряженных частиц, движущихся в электрическом поле возле острия, лавинообразно увеличивается.
Если острым коронирующим электродом является отрицательный электрод (катод), в этом случае корона будет называться отрицательной, и лавина электронов ионизации будет двигаться от коронирующего острия — в сторону положительного электрода. Образованию свободных электронов способствует термоэлектронная эмиссия на катоде.
Когда движущаяся от острия лавина электронов достигает той области, где напряженности электрического поля оказывается уже не достаточно для дальнейшей лавинной ионизации, электроны рекомбинируют с нейтральными молекулами воздуха, образуя отрицательные ионы, которые далее становятся носителями тока в наружной от короны области. Отрицательная корона имеет характерное ровное свечение.
В случае, когда источником короны является положительный электрод (анод), движение лавин электронов направлено к острию, а движение ионов — наружу от острия. Вторичные фотопроцессы возле положительно заряженного острия способствуют воспроизведению запускающих лавину электронов.
Вдали от острия, где напряженность электрического поля не достаточна для обеспечения лавинной ионизации, носителями тока остаются положительные ионы, движущиеся в сторону отрицательного электрода. Для положительной короны характерны стримеры, распускающиеся в разные стороны от острия, а при более высоком напряжении стримеры приобретают вид искровых каналов.
На проводах высоковольтных линий электропередач тоже возможна корона, причем здесь это явление приводит к потерям электроэнергии, которая в основном расходуется на движение заряженных частиц и частично на излучение.
Корона на проводах линий возникает в том случае, когда напряженность поля на них превосходит критическую величину.
Корона вызывает появление высших гармоник в кривой тока, которые могут резко усилить мешающее влияние линий электропередач на линии связи, и активной составляющей тока в линии, обусловленной движением и нейтрализацией объемных зарядов.
Если пренебречь падением напряжения в коронирующем слое, то можно принять, что радиус проводов, а следовательно, и емкость линии периодически увеличиваются, причем колебание этих величин происходит с частотой, в 2 раза большей, чем частота сети (период этих изменений заканчивается в течение полупериода рабочей частоты).
Так как на потерю энергии при короне в линии существенное влияние оказывают атмосферные явления, то при расчете потерь необходимо учитывать следующие основные виды погоды: хорошая погода, дождь, изморозь, снег.
Для борьбы с данным явлением, провода ЛЭП расщепляют на несколько штук, в зависимости от напряжения на линии, чтобы уменьшить локальные напряженности вблизи проводов, и предотвратить образование короны в принципе.
Благодаря расщеплению проводов уменьшается напряженность поля вследствие большей поверхности расщепленных проводов по сравнению с поверхностью одиночною провода того же сечения, причем заряд на расщепленных проводах увеличивается в меньшее число раз, чем поверхность проводов.
Меньшие радиусы проводов дают более медленный рост потерь на корону. Наименьшие потери на корону получаются, когда расстояние между проводами в фазе будет 10 — 20 см. Однако из-за опасности зарастания гололедом пучка проводов фазы, что вызовет резкое увеличение давления ветра на линию, расстояние принимают равным 40 — 50 см.
Кроме того на высоковольтных ЛЭП применяют антикоронные кольца, представляющие собой тороиды из проводящего материала, обычно металла, который прикреплен к терминалу или другой аппаратной части высоковольтного оборудования.
Роль коронирующего кольца заключается в распределении градиента электрического поля и понижении его максимальных значений ниже порога короны, таким образом коронный разряд предотвращается полностью, либо разрушительные эффекты разряда хотя бы переносятся от ценного оборудования — на кольцо.
Практическое применение коронный разряд находит в электростатических очистителях газов, а также для обнаружения трещин в изделиях. В копировальной технике — для заряда и разряда фотобарабанов, и для переноса красящего порошка на бумагу. Кроме того, при помощи коронного разряда можно определить давление внутри лампы накаливания (по размеру короны в одинаковых лампах).
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Коронный разряд и его след на изоляторе свечи
Многие автолюбители при замене свечей зажигания обнаруживают на изоляторе характерные следы в виде коричневого ободка у основания изолятора. Зачастую появление этого «налета» неправильно объясняют прорывом выхлопных газов. Разбираемся, что это такое и — главное — опасно ли это?
Прорыв выхлопных газов
Следует сразу же пояснить, что прорыв выхлопных газов — признак вышедшей из строя свечи: ее изолятор неплотно прилегает к корпусу. Последствиями прорыва газов может стать падение компрессии в цилиндре и пропуски зажигания. Такую свечу необходимо менять. Важно запомнить, что след от прорыва газов всегда черный. Фактически это такая же «копоть», которую можно найти, например, на негерметичном участке выхлопной системы, где газы точно так же прорываются наружу, оставляя черные следы.
Коричневый ободок — нечто совсем другое. Это след от так называемого коронного разряда. Если быть точнее, это мельчайшие частички масла и других отложений, «притянутые» к изолятору коронным разрядом.
Коронный разряд — самостоятельный электрический разряд в газе (в нашем случае — в воздухе), возникающий в резко неоднородных полях у электродов с большим изгибом поверхности. В случае со свечей зажигания местом испускания коронного разряда является кромка корпуса свечи, прилегающая к изолятору. Коронный разряд — нормальное явление, которое практически всегда возникает на проводниках с высоким напряжением. В условиях низкой освещенности коронный разряд можно даже увидеть: это характерное бледно-голубое сияние, «протекающее» вдоль изолятора свечи от корпуса к контактной клемме.
В условиях полной чистоты и герметичности свечного колодца след от коронного разряда практически не виден глазу. Но вокруг свечи зажигания всегда присутствует некоторое количество частиц масла, топлива и других технических жидкостей. При появлении коронного разряда происходит ионизация воздуха и частички масла притягиваются к изолятору, оставляя на нем тот самый коричневый ободок.
Коронный разряд — это ток утечки, и, например, в случае с промышленными высоковольтными линиями такая утечка может достигать высоких значений. В случае со свечами зажигания она настолько незначительна, что не влияет на работоспособность.
Используем след от «короны» для диагностики
Величина следа от коронного разряда зависит в первую очередь от плотности прилегания наконечника высоковольтного провода или наконечника индивидуальной катушки зажигания к изолятору свечи. Поэтому если при замене свечей обнаруживается значительный след от коронного разряда, очень вероятно, что наконечник потерял эластичность. В данном случае мы можем использовать след от коронного разряда на изоляторе как полезный диагностический инструмент, говорящий прежде всего об изношенности свечных наконечников.
В случае сильного износа неплотное прилегание наконечника может вызвать опасный поверхностный пробой свечи. Это разряд напряжения, возникающий между корпусом свечи и центральной клеммой. Пробой крайне нежелателен: он ослабляет искру в камере сгорания или даже полностью предотвращает ее возникновение.
Для уменьшения вероятности поверхностного пробоя корпус изолятора выполнен ребристым: это фактически увеличивает расстояние между корпусом и клеммой. Так, например, напряжение пробоя на корпусе без ребер составляет порядка 20 кВ, а с ребрами — уже 30 кВ. Но поскольку максимальное напряжение на свечах зажигания может достигать 40 кВ, без исправного свечного наконечника пробой все же может возникнуть.
Именно поэтому след от коронного разряда, возникающий при неплотном прилегании свечного наконечника, не только безвреден, но и отчасти полезен. Он помогает понять, что пора менять провода высокого напряжения или индивидуальные катушки зажигания. Иначе дело может дойти до поверхностных пробоев, которые вредны как для свечи зажигания, так и для двигателя в целом.
Следы на изоляторе свечи зажигания — весьма ценная информация. По следам от прорыва выхлопных газов, поверхностного пробоя или по следу от коронного разряда опытный специалист всегда определит, нужна ли замена свечи или катушки зажигания. Если все-таки нужна, всегда можно положиться на DENSO — в электронном каталоге компании вы найдете все необходимые запчасти и расходники.
Коронные разряды или огни святого Эльма
. Большой отряд воинов Древнего Рима находился в ночном походе. Надвигалась гроза. И вдруг над отрядом показались сотни голубоватых огоньков. Это засветились острия копий воинов. Казалось, железные копья солдат горят не сгорая!
Особенно часто такие огни наблюдали на мачтах кораблей. Римский философ и писатель Луций Сенека говорил, что во время грозы «звезды как бы нисходят с неба и садятся на мачты кораблей». Среди многочисленных рассказов об этом интересно свидетельство капитана одного английского парусника.
Случилось это в 1695 году, в Средиземном море, у Балеарских островов, во время грозы. Опасаясь бури, капитан приказал спустить паруса. И тут моряки увидели в разных местах корабля больше тридцати огней Эльма. На флюгере большой мачты огонь достиг более полуметра в высоту. Капитан послал матроса с приказом снять его. Поднявшись наверх, тот крикнул, что огонь шипит, как ракета из сырого пороха. Ему приказали снять его вместе с флюгером и принести вниз. Но как только матрос снял флюгер, огонь перескочил на конец мачты, откуда снять его было невозможно.
«Словно мириады цикад поселились в оснастке или с треском горел валежник и сухая трава. »
Огни святого Эльма разнообразны. Бывают они в виде равномерного свечения, в виде отдельных мерцающих огоньков, факелов. Иногда они настолько похожи на языки пламени, что их бросаются тушить.
Американский метеоролог Хэмфри, наблюдавший огни Эльма на своем ранчо, свидетельствует: это явление природы, «превращая каждого быка в чудище с огненными рогами, производит впечатление чего-то сверхъестественного». Это говорит человек, который по самому своему положению не способен, казалось бы, удивляться подобным вещам, а должен принимать их без лишних эмоций, опираясь только на здравый смысл.
Коронный разряд, электрическая корона, разновидность тлеющего разряда, который возникает при резко выраженной неоднородности электрического поля вблизи одного или обоих электродов. Подобные поля формируются у электродов с очень большой кривизной поверхности (острия, тонкие провода). При Коронном разряде эти электроды окружены характерным свечением, также получившим название короны, или коронирующего слоя.
Примыкающая к короне несветящаяся («тёмная») область межэлектродного пространства называется внешней зоной. Корона часто появляется на высоких остроконечных предметах (святого Эльма огни), вокруг проводов линий электропередач и т. д Коронный разряд может иметь место при различных давлениях газа в разрядном промежутке, но наиболее отчётливо он проявляется при давлениях не ниже атмосферного.
Появление коронного разряда объясняется ионной лавиной. В газе всегда есть некоторое число ионов и электронов, возникающих от случайных причин. Однако, число их настолько мало, что газ практически не проводит электричества.
Свободный электрон при соударении с нейтральной молекулой расщепляет ее на электрон и свободный положительный ион. Электроны при дальнейшем соударении с нейтральными молекулами снова расщепляет их на электроны и свободные положительные ионы и т.д.
Образовавшиеся под влиянием ударной ионизации электроны и ионы увеличивает число зарядов в газе, причем в свою очередь они приходят в движение под действием электрического поля и могут произвести ударную ионизацию новых атомов. Таким образом, процесс усиливает сам себя, и ионизация в газе быстро достигает очень большой величины. Явление аналогично снежной лавине, поэтому этот процесс был назван ионной лавиной.
Натянем на двух высоких изолирующих подставках металлическую проволоку ab, имеющую диаметр несколько десятых миллиметра, и соединим ее с отрицательным полюсом генератора, дающего напряжение несколько тысяч вольт. Второй полюс генератора отведем к Земле. Получится своеобразный конденсатор, обкладками которого являются проволока и стены комнаты, которые, конечно, сообщаются с Землей.
Поле в этом конденсаторе весьма неоднородно, и напряженность его вблизи тонкой проволоки очень велика. Повышая постепенно напряжение и наблюдая за проволокой в темноте, можно заметить, что при известном напряжении возле проволоки появляется слабое свечение (корона), охватывающее со всех сторон проволоку; оно сопровождается шипящим звуком и легким потрескиванием.
Если между проволокой и источником включен чувствительный гальванометр, то с появлением свечения гальванометр показывает заметный ток, идущий от генератора по проводам к проволоке и от нее по воздуху комнаты к стенам, между проволокой и стенами переносится ионами, образованными в комнате благодаря ударной ионизации.
Таким образом, свечение воздуха и появление тока указывает на сильную ионизацию воздуха под действием электрического поля. Коронный разряд может возникнуть не только вблизи проволоки, но и у острия и вообще вблизи любых электродов, возле которых образуется очень сильное неоднородное поле.
Применение коронного разряда
Электрическая очистка газов (электрофильтры). Сосуд, наполненный дымом, внезапно делается совершенно прозрачным, если внести в него острые металлические электроды, соединенные с электрической машиной, а все твердые и жидкие частицы будут осаждаться на электродах. Объяснение опыта заключается в следующем: как только и проволоки зажигается корона, воздух внутри трубки сильно ионизируется. Газовые ионы прилипают к частицам пыли и заряжают их. Так как внутри трубки действует сильное электрическое поле, заряженные частицы пыли движутся под действием поля к электродам, где и оседают.
Счетчики элементарных частиц
При попадании в счетчик быстро движущегося электрона последний ионизирует молекулы газа внутри счетчика, отчего напряжение, необходимое для зажигания короны, несколько понижается. В счетчике возникает разряд, а в цепи появляется слабый кратковременный ток. Чтобы обнаружить его, в цепь вводят очень большое сопротивление (несколько мегаом) и подключают параллельно с ним чувствительный электрометр. При каждом попадании быстрого электрона внутрь счетчика листка электрометра будут откланяться.
Подобные счетчики позволяют регистрировать не только быстрые электроны, но и вообще любые заряженные, быстро движущиеся частицы, способные производить ионизацию путем соударений. Современные счетчики легко обнаруживают попадание в них даже одной частицы и позволяют поэтому с полной достоверностью и очень большой наглядностью убедиться, что в природе действительно существуют элементарные заряженные частицы.
Громоотвод
Подсчитано, что в атмосфере всего земного шара происходит одновременно около 1800 гроз, которые дают в среднем около 100 молний в секунду. И хотя вероятность поражения молнией какого-либо отдельного человека ничтожно мала, тем не менее молнии причиняют немало вреда. Достаточно указать, что в настоящее время около половины всех аварий в крупных линиях электропередачи вызывается молниями. Поэтому, защита от молнии представляет собой важную задачу.
Ломоносов и Франклин не только объяснили электрическую природу молнии, но и указали, как можно построить громоотвод, защищающий от удара молнии. Громоотвод представляет собой длинную проволоку, верхний конец которой заостряется и укрепляется выше самой высокой точки защищаемого здания. Нижний конец проволоки соединяют с металлическим листом, а лист закапывают в Землю на уровне почвенных вод.
Во время грозы на Земле появляются большие индуцированные заряды и у поверхности Земли появляется большое электрическое поле. Напряженность его очень велика около острых проводников, и поэтому на конце громоотвода зажигается коронный разряд. Вследствие этого индуцированные заряды не могут накапливаться на здании и молнии не происходит. В тех же случаях, когда молния все же возникает (а такие случаи очень редки), она ударяет в громоотвод и заряды уходят в Землю, не причиняя вреда зданию.
В некоторых случаях коронный разряд с громоотвода бывает настолько сильным, что у острия возникает явно видимое свечение. Такое свечение иногда появляется и возле других заостренных предметов, например, на концах корабельных мачт, острых верхушек деревьев, и т.д. Это явление было замечено еще несколько веков тому назад и вызывало суеверный ужас мореплавателей, не понимавших истинной его сущности.
Так ли безвреден коронный разряд на свечах зажигания?
Полистал я тут свой бортжурнал и подумал, а что это у меня большая часть записей напоминают фотоотчет? Может быть стоит написать что-нибудь такое… не очевидное…
Что может быть сложного в замене свечей зажигания? Все очень просто: снять декоративную крышку, выдернуть высоковольтные провода, выкрутить старые свечи, вкрутить новые, подключить провода и поставить на место крышку. Ведь все просто, правильно?
Вот и я на крайнем ТО www.drive2.ru/l/510955424007062585/ среди прочих работ поменял свечи. Несмотря на то что на предыдущих свечах проехал всего 5 тыс. км замена свечей на новые отразилась на поведении машины – поехала она немного (но заметно) резвее. Однако уже через 200 км эта прибавленная резвость пропала. Начал думать в чем же может быть дело. Вывернул свечи, осмотрел. Нормальные такие свечи, никаких криминальных следов не заметно.
Причем в поведении машины в режиме запуска двигателя, в режиме «ползем в зоне действия знака 40», в режиме «катимся в зоне действия знака 60», а также в режиме «едем в зоне действия знака 90» ощутимо ничего не поменялось. А вот в режиме «максимально быстрый старт и набор скорости» заметна тупость. Ладно бы она была всегда, так ведь сразу после замены свечей на свежие машинка вела себя бодрее… Значит двигатель может работать эффективнее, нужно только разобраться что ему мешает и устранить эту причину
На предыдущих свечах при замене был коричневый поясок. Может быть это признак неисправности?
Начал разбираться что это за поясок. Во множестве статей пишут, что это след коронного разряда. Вот так он выглядит, этот разряд
Про него пишут в том числе производители, например, вот информация от NGK www.ngk-sparkplugs.jp/eng…echinfo/qa/q17/index.html
Изложено в том смысле что ничего страшного, не обращайте внимания, неисправностью не является. Хотя в другом месте от тех же NGK есть информация что для некоторых двигателей (Zetec) рекомендуется замена проводов
Ага, значит все-таки этот коронный разряд, наличие которого выявляется по коричневому пояску на свечах, как-то влияет на работу двигателя, раз пишут, что провода менять нужно?
Поскольку реальной, точной, внятной и полной информации в сети не нашел, сплошные мнения, которые приводятся без обосновывающих данных, решил разобраться самостоятельно, благо что я немного разбираюсь в электричестве…
Для описания взял эскиз (свеча в разрезе) и красной пунктирной линией показал два тока: ток искрообразования I1 и ток коронного разряда I2.
Оба тока I1 и I2 текут от верхнего контакта свечи (место подключения высоковольтных проводов) до корпуса свечи. Первый ток проходит через центральный электрод и далее через искровой зазор, второй ток проходит вдоль внешней поверхности изолятора и далее через коронный разряд.
Вспоминаем первый закон Кирхгофа – алгебраическая сумма токов в узле равна нулю
Ну или так: сколько тока в узел втекло, столько из него и вытекло. Значит ток, который подается от катушки зажигания разделяется на две части – первая часть проходит через центральный электрод и образует искру, вторая часть образует коронный разряд (проходит в обход искрового зазора) и в образовании искры не участвует
Значит делаю вывод что ток коронного разряда – это ток утечки
Отсюда сразу же возникает вопрос: если через коронный разряд проходит ток утечки, то почему же тогда NGK пишут, что на работу двигателя он не влияет? Ведь если есть утечка, то любому понятно, что энергия искры становится меньше, правильно?
Правильно, но не совсем. Имеет значение не только факт наличия утечки тока, но и величина этой утечки по сравнению с полезной частью тока, а точнее даже не утечки тока, а утечки энергии. Значит нужно выяснить энергетику тока искры (полезный ток) и энергетику тока коронного разряда (вредный ток) и по их соотношению сразу же станет все понятно.
Для того чтобы рассчитать энергетику необходимо найти данные описывающие процесс, данные по напряжению, току и длительности для искрового разряда и для коронного разряда
Иллюстрацию процесса искрового разряда, величины напряжений и длительности хорошо видно на осциллограмме (взял отсюда autodevice.ru/primary.htm)
Это осциллограмма первичного напряжения катушки зажигания двигателя УАЗ Патриот работающего на холостом ходу. На осциллограмме интерес представляет участок резкого роста напряжения «зона С» – это период, когда происходит пробой искрового промежутка (емкостная фаза искрообразования) и почти горизонтальный участок «зона D» – это период горения искры (индуктивная фаза искрообразования).
Для перевода показанных на осциллограмме значений первичного напряжения во вторичное необходимо найти значение коэффициента трансформации катушки зажигания. Для катушки двигателя ЗМЗ-409 он составляет 80. Значит вторичное напряжение в зоне С составит 17,6 кВ, в зоне D – 2 кВ. Длительность зоны С составляет 0,04 мс, длительность зоны D – 1,35 мс. Среднее значение тока в зоне С – 10 мкА, в зоне D – 40 мА. Данных для расчета искрового разряда достаточно.
Для расчета коронного разряда нужна информация о величине тока в зависимости от напряжения. Эта зависимость видна на вольт-амперной характеристике коронного разряда (взято отсюда www.ngpedia.ru/pg078lBZs9a0S0q8P4F1s00001515758/)
При напряжении 17,6 кВ (зона С) по вольт-амперной характеристике для разряда с отрицательного электрода и концентрации воздуха 100% ток коронного разряда составит 28 мкА. При напряжении 2,0 кВ (зона D) коронный разряд пропадет и его ток составит ноль.
По найденным данным получается вот такой энергетический расчет
Из расчета видно, что величина потерь энергии на коронном разряде составляет не более 0,029% от энергии искры – энергия потерь в три тысячи четыреста раз меньше полезной энергии. Любому понятно, что настолько малыми потерями запросто можно пренебречь и считать их равными нулю
Теперь то понятно почему NGK публикуют информацию что коронный разряд не является неисправностью, правильно?
ДА! Правильно! Для режима холостого хода. А что же будет в других режимах?
Возьму для рассмотрения осциллограмму первичного напряжения катушки зажигания двигателя ВАЗ-2114 в режиме пуска
Энергетический расчет для этого случая
По этому расчету получается, что потери на коронном разряде составляют уже 0,142%, т.е. в 7 раз больше чем в предыдущем примере. Но величина потерь все равно сильно меньше полезной части (в 700 раз), значит тоже можно пренебречь
А возможны ли вообще какие-то режимы работы двигателя в которых утечка тока через коронный разряд начнет оказывать заметное влияние?
При росте напряжения на свече потери через коронный разряд растут
При максимальном для автомобильных систем зажигания напряжении 40 кВ величина потерь составит 0,33 мДж. На фоне среднего значения энергии искры в 100 мДж это составит 0,33%. Такими потерями так же вполне можно пренебречь.
Вывод: утверждение NGK что коронный разряд не влияет на работоспособность свечей зажигания очень похож на правду и подтверждается расчетами