Что такое конвективное тепло
КОНВЕКТИВНЫЙ ТЕПЛООБМЕН
— необратимый процесс переноса теплоты в движущихся средах с неоднородным полем темп-ры, обусловленный совместным действием конвекции и молекулярного движения.
где — коэф. молекулярной теплопроводности, Т— темп-pa среды. Если характеризует физ. свойства среды, то градиент темп-ры формируется под действием конвективного движения среды. Чем интенсивнее конвекция, тем больше градиент темп-ры. Определение градиента темп-ры у стенки обычно является предметом теоретич. или эксперим. исследования. В зависимости от вида конвективного движения различают К. т. при вынужденной, свободной и капиллярной конвекциях. Могут существовать и смешанные виды К. т.
Теоретич. описание процесса К. т. строится на основе ур-ния сохранения энергии в среде:
К. т. может осложняться протеканием в среде или на поверхности раздела разных физ.-хим. превращений (кипение, плавление, конденсация, диссоциация, ионизация и т. п.). В этих случаях для теоретич. описания К. т. используются дополнит. ур-ния, отражающие кинетику отд. физ.-хим. процессов или условия термодинамич. равновесия, напр. законы действующих масс для разл. хим. реакций. Если при этом отд. физ.-хим. превращения протекают на поверхности раздела и имеет место суммарный расход массы через эту поверхность, то вместо ур-ния (1) для описания плотности теплового потока к поверхности раздела используется более общее ур-ние:
Подходящий к поверхности раздела конвективный тепловой поток удобно представлять в виде закона Ньютона:
Помимо перечисленных основных определяющих критериев на К. т. при вынужденной конвекции могут оказывать влияние и др. факторы. В частности, при больших скоростях полёта тела в атмосфере важную роль играет Маха число.
конвективная теплота
3.1 конвективная теплота: Тепловая энергия, передаваемая от поверхности с более высокой температурой к слою менее нагретому, вследствие теплопроводности материала одежды
Смотреть что такое «конвективная теплота» в других словарях:
ГОСТ 12.4.221-2002: Система стандартов безопасности труда. Одежда специальная для защиты от повышенных температур теплового излучения, конвективной теплоты. Общие технические требования — Терминология ГОСТ 12.4.221 2002: Система стандартов безопасности труда. Одежда специальная для защиты от повышенных температур теплового излучения, конвективной теплоты. Общие технические требования оригинал документа: 3.4 защитная способность:… … Словарь-справочник терминов нормативно-технической документации
ГОСТ 23172-78: Котлы стационарные. Термины и определения — Терминология ГОСТ 23172 78: Котлы стационарные. Термины и определения оригинал документа: 47. Барабан стационарного котла Барабан D. Trommel E. Drum F. Reservoir Элемент стационарного котла, предназначенный для сбора и раздачи рабочей среды, для… … Словарь-справочник терминов нормативно-технической документации
Котёл (техника) — У этого термина существуют и другие значения, см. Котёл (значения). В этой статье не рассматриваются атомные реакторы и парогенераторы АЭС. Котёл конструктивно объединенный в одно целое комплекс устройств для передачи некоторому… … Википедия
АЭРОДИНАМИЧЕСКИЙ НАГРЕВ — нагрев тел, движущихся с большой скоростью в воздухе или др. газе. А. н. результат того, что налетающие на тело молекулы воздуха тормозятся вблизи тела. Если полёт совершается со сверхзвук. скоростью, торможение происходит прежде всего в ударной… … Физическая энциклопедия
Конвективный теплообмен
Конвекция – это перемещение тепла за счет перемещения конкретных макроскопических объемов жидкости или газа. Конвекция всегда сопровождается передачей тепла посредством теплопроводности.
Под конвективным теплообменом понимают процесс распространения тепла в жидкости (или газе) от поверхности твердого тела или к поверхности его одновременно конвекцией и теплопроводностью. Такой случай распространения тепла называют также теплоотдачей соприкосновением или просто теплоотдачей.
Перенос тепла конвекцией тем интенсивнее, чем более турбулентно движется вся масса жидкости и чем энергичней осуществляется перемешивание ее частиц. Т. о. Конвекция связана с механическим переносом тепла и сильно зависит от гидродинамических условий течения жидкости.
По природе возникновение различают два вида характера движение жидкости:
1. Свободное движение жидкости (т. е. естественная конвекция) – возникает вследствие разности плотностей нагретых и холодных частиц жидкости и определяется физическими свойствами жидкости, ее объемом и разностями температур нагретых и холодных частиц.
2. Вынужденное (принудительное) движение жидкости (принудительная конвекция) возникает под действием какого-либо постороннего возбудителя, например насоса, вентилятора. Оно определяется физическими свойствами жидкости, ее скоростью, формой и размерами канала, в котором осуществляется движение.
В общем случае наряду с вынужденным движением одновременно может развиваться и свободное. Процессы теплоотдачи неразрывно связаны с условиями движения жидкости. Как известно, имеются два основных режима течения: ламинарный и турбулентный. При ламинарном режиме течение имеет спокойный, струйчатый характер. При турбулентном – движение неупорядоченное, вихревое. Для процессов теплоотдачи режим движения рабочей жидкости имеет очень большое значение, так как им определяется механизм переноса тепла.
Механизм передачи тепла конвекцией
Рассмотрим процесс передачи тепла конвекцией и теплопроводностью от поверхности твердого тела к омывающему ее потоку жидкости (или газа) либо, наоборот, от потока к твердому телу, например стенке теплообменного аппарата.
В ядре потока перенос тепла осуществляется одновременно теплопроводностью и конвекцией. Механизм переноса тепла в ядре потока при турбулентном движении среды характеризуется интенсивным перемешиванием за счет турбулентных пульсаций, которое приводит к выравниванию температур в ядре до некоторого среднего значения tср (tср1 или tср2). Соответственно перенос тепла в ядре определяется, прежде всего характером движения теплоносителя, но зависит также от его тепловых свойств. По мере приближения к стенке интенсивность теплоотдачи падает. Это объясняется тем, что вблизи стенки образуется тепловой пограничный слой, подобный гидродинамическому пограничному слою. Т. о. по мере приближения к стенке все большее значение приобретает теплопроводность, а в непосредственной близости от стенки (в весьма тонком ламинарном тепловом подслое) перенос тепла осуществляется только теплопроводностью.
Тепловым пограничным подслоем считается пристенный слой, в котором влияние турбулентных пульсаций на перенос тепла становится пренебрежимо малым.
Следует отличать, что интенсивность т/отдачи определяется, в основном, термическим сопротивлением пристенного подслоя, которое по сравнению с термическим сопротивлением ядра оказывается определяющим.
При турбулентном движении жидкости теплообмен происходит значительно интенсивнее, чем при ламинарном. С повышением турбулентности потока перемешивание усиливается, что приводит к уменьшению толщины пограничного слоя и увеличению количества передаваемого тепла.
Одной из практических задач в технике является развитие турбулентности при движении теплоносителей.
Цель развития турбулентности в теплообменной аппаратуре – снижение толщины теплового пограничного подслоя, в этом случае процесс лимитируется только конвекцией.
Количество тепла, переносимого молекулярной теплопроводностью определяется по закону Фурье:
(1)
t – температура на границе
Тепло, переносимое конвекцией определяют по закону Ньютона или закону теплоотдачи:
(2)
Количество тепла, передаваемое поверхностью F, имеющей температуру tст окружающей среде с температурой tср прямопропорционально поверхности теплообмена и разности температур м/у tст и tср окружающей среды.
За счет турбулентных пульсаций идет выравнивание температур и можно приравнять .
Приравняв (1) и (2) уравнение получим:
, но величина трудноопределимая.
коэффициент теплоотдачи, [Вт/м 2 ·К] – показывает, какое количество тепла передается от 1 м 2 поверхности стенки к жидкости при разности температур между стенкой и жидкостью в один градус.
Величина характеризует интенсивность переноса тепла между поверхностью тела, например твердой стенки и окружающей средой (капельной жидкостью или газом).
Процесс теплоотдачи является сложным процессом, а коэффициент теплоотдачи является сложной функцией различных величин, характеризующих этот процесс.
Коэффициент теплоотдачи зависит от следующих факторов:
— скорости жидкости , ее плотности и вязкости , т. е. переменных, определяющих режим течения жидкости;
— тепловых свойств жидкости (уд. теплоемкости Ср, теплопроводности ), а также коэффициента объемного расширения ;
— геометрических параметров – формы и определяющих размеров стенки (для труб – их диаметр d и длина L), а также шероховатости стенки.
Т. о. .
ЛУЧЕИСПУСКАНИЕ
А. или тепловое излучение свойственно всем телам, температура которых отлична от 0 0 К.
Длины волн теплового излучения лежат в инфракрасной части спектра и имеют длину 0,8 ÷ 40 мкм. И поскольку отличаются от других электромагнитных волн только длиной, то и подчиняются законам квантовой механики.
Интенсивность теплового излучения возрастает с повышением температуры тела, и при высоких температурах (примерно, при t 600 0 C) лучистый теплообмен м/у телами приобретает доминирующее значение
Дата добавления: 2017-08-01 ; просмотров: 5618 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Конвективный теплообмен
Полезное
Смотреть что такое «Конвективный теплообмен» в других словарях:
КОНВЕКТИВНЫЙ ТЕПЛООБМЕН — перенос теплоты (точнее, передача энергии в форме теплоты) в неравномерно нагретой жидкой, газообразной или сыпучей среде, обусловленный конвективным движением среды и ее теплопроводностью. В невесомости конвективный теплообмен отсутствует … Большой Энциклопедический словарь
КОНВЕКТИВНЫЙ ТЕПЛООБМЕН — необратимый процесс переноса теплоты в движущихся средах с неоднородным полем темп ры, обусловленный совместным действием конвекции и молекулярного движения. Наиб. важный для практики случай К. т. между движущейся средой и поверхностью её раздела … Физическая энциклопедия
конвективный теплообмен — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN convective heat transfer … Справочник технического переводчика
конвективный теплообмен — перенос теплоты (точнее, передача энергии в форме теплоты) в неравномерно нагретой жидкой, газообразной или сыпучей среде, обусловленный конвективным движением среды и её теплопроводностью. * * * КОНВЕКТИВНЫЙ ТЕПЛООБМЕН КОНВЕКТИВНЫЙ ТЕПЛООБМЕН,… … Энциклопедический словарь
КОНВЕКТИВНЫЙ ТЕПЛООБМЕН — процесс передачи энергии в форме теплоты в неравномерно нагретой жидкой, газообразной или сыпучей среде, осуществляющийся вследствие движения среды и ее теплопроводности. Конвективный теплообмен, протекающий на границе раздела двух фаз.,… … Металлургический словарь
Конвективный теплообмен — 1.4. Конвективный теплообмен Источник: ТСН 301 23 2000 ЯО: Теплозащита зданий жилищно гражданского назначения 1.5. Конвективный теплообмен Источник … Словарь-справочник терминов нормативно-технической документации
конвективный теплообмен — Теплообмен, обусловленный совместным действием конвективного и молекулярного переноса теплоты … Политехнический терминологический толковый словарь
КОНВЕКТИВНЫЙ ТЕПЛООБМЕН — процесс теплообмена в неравномерно нагретой жидкой, газообразной или сыпучей среде, осуществляющийся вследствие движения среды и её теплопроводности. К. т., протекающий на границе раздела двух фаз, называется конвективной теплоотдачей. К. т.… … Большой энциклопедический политехнический словарь
КОНВЕКТИВНЫЙ ТЕПЛООБМЕН — перенос теп лоты (точнее, передача энергии в форме теплоты) в неравномерно нагретой жидкой, газообразной или сыпучей среде, обусловленный конвективным движением среды и её теплопроводностью … Естествознание. Энциклопедический словарь
конвективный теплообмен — перенос теплоты с поверхности (на поверхность) ограждающей конструкции омывающим ее воздухом или жидкостью. (Смотри: МГСН 2.01 99. Энергосбережение в зданиях. Нормативы по теплозащите и тепловодоэлектроснабжению.) Источник: Дом: Строительная… … Строительный словарь
Что такое конвекторное отопление – устройство, принцип работы, правила установки
Среди преимуществ конвекторного отопления можно выделить простоту проектировки, а также отсутствие нужды в трубах и дорогостоящих котлах. Основой этого обогрева жилищ является самопроизвольная циркуляция воздуха в помещении.
Конвектором называют находящийся в стальном корпусе нагреватель. Воздух, двигаясь по ребрам прибора, постепенно поднимается вверх. В нижнюю часть корпуса, вместо ушедших теплых потоков, поступают холодные массы. Подобная конструкция прибора способствует возникновению циркуляции. Верхняя часть корпуса оснащена решеткой, через которую выходит нагретый воздух (в отдельных моделях имеются жалюзи, позволяющие регулировать восходящие потоки).
Основные разновидности
Для работы конвекционного отопления частного дома могут использоваться различные энергоносители, однако большая часть бытовых устройств этого типа комплектуется электрическими нагревателями. Также встречаются газовые конвекторы, работающих на газу. Большая популярность электрических моделей для обогрева помещения объясняется компактностью их габаритов. В тех случаях, когда конвективное отопление выступает в роли основного (что часто бывает в загородных домах и на дачах), более выгодно использовать газовые модификации, т.к. газ на порядок дешевле.
Исходя из способа монтажа, конвекторы бывают:
Особенности конструкции
Любой конвектор состоит из трех основных узлов:
Корпус
Чаще всего для изготовления современных конвекторов используется сталь. Дизайн корпуса может быть самым разнообразным, так что с выбором обогревателя под конкретную стилистику помещения проблем обычно не бывает. На корпусе настенных модификаций имеются специальные крепления (кронштейны): они дают возможность время от времени снимать прибор для проведения обслуживающих мероприятий.
В некоторых случаях защитный стальной короб конвектора по бокам оснащается регулировочными жалюзи: меняя их угол, можно корректировать направление движения воздушных потоков. Подобное конструктивное решение позволяет объемно распределять тепло в помещении, что делает его обогрев более равномерным. Во избежание недогрева при выборе конвектора рекомендуется оставлять некоторый запас по мощности (особенно, если он будет установлен в угловой комнате).
Нагревательный элемент
Конвекторы электрического типа комплектуются различными нагревательными элементами. Самое недорогое решение – стальные изделия, встречающиеся в самых дешевых приборах. Высокая температура накала спирали (до +160 градусов) позволяет помещению быстро прогреваться. Однако спирали этого типа имеют низкую степень безопасности: такие явления, как скапливание пыли или случайно попавшая вода могут спровоцировать возгорание устройства. Популярность спиральных конвекторов объясняется, прежде всего, их дешевизной. Отдельные производители дополнительно оснащают корпус приборов специальными вентиляторами, что в комбинации с высокотемпературной спиралью увеличивает интенсивность обогрева.
Более дорогие модели комплектуются безопасными низкотемпературными спиралями, нагревающимися лишь до +100 градусов. Элементы данного типа имеют вид рассеивающих радиаторов из алюминия с вмонтированной стальной трубой. Специальная нагревающая нить находится внутри этой трубки. Благодаря алюминиевому корпусу эффективность обогрева заметно увеличивается. В отдельных моделях вместо одной используется две трубки, что позволяет осуществлять регулировку работы нагревательного блока.
Разная степень расширения, которую демонстрируют алюминий и сталь, провоцирует постепенное уменьшение надежности соединения нагревательной трубки и корпуса. В итоге это может привести к полному разрушению связи между ними. Вследствие этого возникает опасность локального перегревания трубки и поломки нагревательного элемента. Производителями конвекционного оборудования ведется постоянный поиск решения этой проблемы.
Особой уникальности отличаются нагревательные приборы RX-Silence, разработанные и запатентованные фирмой NOIROT (Франция). Инновационность конструкции этих конвекторных котлов заключается в полной герметичности силуминового корпуса, где для уплотнения нихромовой нити нагрева используется порошковая засыпка магнезии. Коэффициент расширения используемых материалов имеет весьма схожие значения, что дает возможность заметно уменьшить расход электроэнергии и увеличить продолжительность эксплуатации конвектора до 15-17 лет.
Блок управления конвекторным отоплением
Наиболее простым вариантом блока управления для конвекционного отопления является термостат, устанавливаемый внутрь корпуса обогревателя. Термостаты делятся на электромеханические и электронные. Электромеханические устройства более дешевые, что сказывается на их точности работы (погрешность иногда достигает 2С0). Также стоит выделить возникающий шум от щелчков биметаллического датчика при включении прибора. Для установки требуемого температурного режима в электромеханических моделях имеется ручка с маркировкой условных значений мощности конвектора.
Электронные термостаты отличаются большей точностью: их погрешность редко превышает значение 0,1 С0. К тому же, конвекторы этого типа полностью бесшумны. Целый ряд моделей дают возможность осуществлять программирование электронного блока управления на включение различных режимов и мощности работы, в зависимости от времени суток и дня недели. При этом электронные термостаты имеют функцию дистанционного управления нагревательным элементом с помощью внешнего контролирующего устройства.
В результате появляется возможность следить за работой значительного количества обогревателей, расположенных в разных частях жилища. Блок конвекторной системы отопления допускает применение встроенных программ режима работы отдельно для каждой комнаты, или для всего дома в комплексе. Первенствует на рынке «интеллектуальных» конвекторов французский производитель NOIROT и немецкая корпорация Siemens. Их продукция предусматривает возможность управления температурой в дистанционном режиме, через телефон. Эта позволяет хорошо прогревать жилище перед своим приходом.
Основные параметры
Наличествующие на сегодняшний день в продаже электроконвекторы разделены на три группы:
Благодаря своим параметрам обогреватели высокого типа способны обеспечивать значительный уровень конвекции. Плинтусные модели комплектуются менее мощными нагревательными элементами. Для поддержания должного уровня эффективности им придается большая длина (до 2,5м).
Газовые конвекторы
Наряду с электрическими конвекторами, выпускаются также приборы на газу, с очень схожим принципом работы. В этом случае в работе устройств вместо спиралей используются газовые горелки. Они имеют вид специальных камер, стенки которых по мере нагрева транслируют тепло на батарею. Нагревание окружающего пространства осуществляется непосредственно радиатором.
Плюсы и минусы конвекторного отопления на газу:
Установка в частном доме
Простота монтажа электрических конвекторов позволяет реализовывать эту процедуру самостоятельно.
Перед тем, как сделать конвекторное отопление своими руками, необходимо заготовить следующие инструменты:
Устанавливается настенный электроконвектор в следующей очередности операций:
Используя электрические приборы важно понимать, что такое конвекторное отопление дома заметно увеличит нагрузку на сеть, поэтому следует заранее просчитать, выдержит ли это старая проводка. Для обеспечения безопасности обогрева рекомендуется оснащать устройства данного типа отдельными кабельными линиями.