Что такое константа диссоциации
Электролитическая диссоциация
Материалы портала onx.distant.ru
Примеры решения задач
Задачи для самостоятельного решения
Степень диссоциации
Вещества, которые в растворах или расплавах полностью или частично распадаются на ионы, называются электролитами.
Степень диссоциации α — это отношение числа молекул, распавшихся на ионы N′ к общему числу растворенных молекул N:
α = N′/N
Степень диссоциации выражают в процентах или в долях единицы. Если α =0, то диссоциация отсутствует и вещество не является электролитом. В случае если α =1, то электролит полностью распадается на ионы.
Классификация электролитов
Ассоциированные электролиты подразделяются на три типа:
При таком подходе один и тот же электролит может относиться к различным типам в зависимости от концентрации раствора, вида растворителя и температуры. Подтверждением этому являются данные, приведенные в таблице.
Таблица. Характеристика растворов KI в различных растворителях
Концентрация электролита, С, моль/л | Температура t, о С | Растворитель | Тип электролита |
0,01 | 25 | Н2О | Неассоциированный (сильный) |
5 | 25 | Н2О | Ионный ассоциат |
0,001 | 25 | С6Н6 | Ассоциированный (слабый) |
Приближенно, для качественных рассуждений можно пользоваться устаревшим делением электролитов на сильные и слабые. Выделение группы электролитов “средней силы” не имеет смысла. Эти электролиты являются ассоциированными. К слабым электролитам обычно относят электролиты, степень диссоцииации которых мала α
Таким образом, к сильным электролитам относятся разбавленные водные растворы почти всех хорошо растворимых в воде солей, многие разбавленные водные растворы минеральных кислот (НСl, HBr, НNО3, НСlO4 и др.), разбавленные водные растворы гидроксидов щелочных металлов. К слабым электролитам принадлежат все органические кислоты в водных растворах, некоторые водные растворы неорганических кислот, например, H2S, HCN, H2CO3, HNO2, HСlO и др. К слабым электролитам относится и вода.
Диссоциация электролитов
Уравнение реакции диссоциации сильного электролита можно представить следующим образом. Между правой и левой частями уравнения реакции диссоциации сильного электролита ставится стрелка или знак равенства:
HCl → H + + Cl —
Допускается также ставить знак обратимости, однако в этом случае указывается направление, в котором смещается равновесие диссоциации, или указывается, что α≈1. Например:
NaOH → Na + + OH —
Диссоциация кислых и основных солей в разбавленных водных растворах протекает следующим образом:
NaHSO3 → Na + + HSO3 —
Анион кислой соли будет диссоциировать в незначительной степени, поскольку является ассоциированным электролитом:
HSO3 — → H + + SO3 2-
Аналогичным образом происходит диссоциация основных солей:
Mg(OH)Cl → MgOH + + Cl —
Катион основной соли подвергается дальнейшей диссоциации как слабый электролит:
MgOH + → Mg 2+ + OH —
Двойные соли в разбавленных водных растворах рассматриваются как неассоциированные электролиты:
Комплексные соединения в разбавленных водных растворах практически полностью диссоциируют на внешнюю и внутреннюю сферы:
В свою очередь, комплексный ион в незначительной степени подвергается дальнейшей диссоциации:
[Fe(CN)6] 3- → Fe 3+ + 6CN —
Константа диссоциации
При растворении слабого электролита К А в растворе установится равновесие:
КА ↔ К + + А —
которое количественно описывается величиной константы равновесия Кд, называемой константой диссоциации :
Kд = [К + ] · [А — ] /[КА] (2)
Для слабых I-I электролитов (HCN, HNO2, CH3COOH) величина константы диссоциации Кд связана со степенью диссоциации α и концентрацией электролита c уравнением Оствальда:
Кд = (α 2· с)/(1-α) (3)
Для практических расчетов при условии, что α
Кд = α 2· с (4)
Поскольку процесс диссоциации слабого электролита обратим, то к нему применим принцип Ле Шателье. В частности, добавление CH3COONa к водному раствору CH3COOH вызовет подавление собственной диссоциации уксусной кислоты и уменьшение концентрации протонов. Таким образом, добавление в раствор ассоциированного электролита веществ, содержащих одноименные ионы, уменьшает его степень диссоциации.
Следует отметить, что константа диссоциации слабого электролита связана с изменением энергии Гиббса в процессе диссоциации этого электролита соотношением:
ΔGT 0 = — RTlnKд (5)
Уравнение (5) используется для расчета констант диссоциации слабых электролитов по термодинамическим данным.
Примеры решения задач
Задача 1. Определите концентрацию ионов калия и фосфат-ионов в 0,025 М растворе K3PO4.
Решение. K3PO4 – сильный электролит и в водном растворе диссоциирует полностью:
Следовательно, концентрации ионов К + и РО4 3- равны соответственно 0,075М и 0,025М.
Решение. Уравнение диссоциации электролита:
Kд = αС · αС /(1 — αС)
Кд ≈ α 2 С
α = √( Кд / С) = √(1,76× 10 — 5 / 0,03 ) = 0,024 или 2,4 %
Задача 3. Определите константу диссоциации уксусной кислоты, если степень диссоциации CH3CОOH в 0,002 М растворе равна 9,4 %.
Решение. Уравнение диссоциации кислоты:
α = [Н + ] / Сисх(CH3CОOH)
Kд = [Н + ] 2 / Сисх(CH3CОOH)
Решение.
Задача 5. На основе справочных данных рассчитайте константу диссоциации муравьиной кислоты при 298 К.
Решение. Уравнение диссоциации муравьиной кислоты
В “Кратком справочнике физико–химических величин” под редакцией А.А. Равделя и А.М. Пономаревой приведены значения энергий Гиббса образований ионов в растворе, а также гипотетически недиссоциированных молекул. Значения энергий Гиббса для муравьиной кислоты и ионов Н + и СООН — в водном растворе приведены ниже:
Изменение энергии Гиббса процесса диссоциации равно:
ΔGT 0 = — 351,5- (- 373,0) = 21,5 кДж/моль.
Для расчета константы диссоциации используем уравнение (5). Из этого уравнения получаем:
lnKд = — Δ GT 0 /RT= — 21500/(8,31 298) = — 8,68
Задачи для самостоятельного решения
1. К сильным электролитам в разбавленных водных растворах относятся:
13.2. К слабым электролитам в водных растворах относятся:
3. Определите концентрацию ионов NH4 + в 0,03 М растворе (NH4)2Fe(SO4)2;
4. Определите концентрацию ионов водорода в 6 мас.% растворе H2SO4, плотность которого составляет 1,038 г/мл. Принять степень диссоциации кислоты по первой и второй ступеням равной 100 %.
5. Определите концентрацию гидроксид-ионов в 0,15 М растворе Ba(OH)2.
6. Степень диссоциации муравьиной кислоты в 0,1 М растворе равна 4 %. Рассчитайте Концентрацию ионов водорода в этом растворе и константу диссоциации НСООН.
7. Степень диссоциации муравьиной кислоты в водном растворе увеличится при:
а) уменьшении концентрации HCOOH;
б) увеличении концентрации HCOOH;
в) добавлении в раствор муравьиной кислоты HCOONa;
г) добавлении в раствор муравьиной кислоты НCl.
Степень электролитической диссоциации
Степень диссоциации отношение числа продиссоциировавших молекул электролита в растворе к общему числу его молекул α = (Nд/N)·100% |
Степень диссоциации является количетсвенной характеристикой процесса электролитической диссоциации.
Например, выражение «степень диссоциации уксусной кислоты в 0,1М растворе равна 2%» означает, что из каждых ста молекул уксусной кислоты только две (каждая пятидесятая) распадаются на ионы.
От чего зависит величина степени диссоциации:
Все растворы, в зависимости от значения степени диссоциации, принято делить на три категории:
В отличие от степени диссоциации константа диссоциации (для слабого электролита) не зависит от концентрации раствора.
Для слабых электролитов константа диссоциации мала, поэтому, ею можно пренебречь:
Для сильных электролитов константа диссоциации является переменной величиной, зависящей от концентрации раствора.
Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:
Код кнопки:
Политика конфиденциальности Об авторе
Константа диссоциации
Константа диссоциации — вид константы равновесия, которая показывает склонность большого объекта диссоциировать (разделяться) обратимым образом на маленькие объекты, как например когда комплекс распадается на составляющие молекулы, или когда соль разделяется в водном растворе на ионы. Константа диссоциации обычно обозначается и обратна константе ассоциации. В случае с солями, константу диссоциации иногда называют константой ионизации.
где комплекс разбивается на x единиц A и y единиц B, константа диссоциации определяется так:
Содержание
Определение
Электролитическая диссоциация слабых электролитов, согласно теории Аррениуса, является обратимой реакцией, то есть схематически её можно представить уравнениями (для одновалентных ионов:):
Константу равновесия такой реакции можно выразить уравнением:
, | (1) |
Константу равновесия применительно к реакции диссоциации называют константой диссоциации.
Диссоциация электролитов с многовалентными ионами
В случае диссоциации электролитов с многовалентными ионами, диссоциация происходит по ступеням, причём для каждой ступени существует собственное значение константы диссоциации.
Первая степень диссоциации для таких электролитов всегда много больше последующих, что означает, что диссоциация таких соединений идёт главным образом по первой стадии.
Связь константы диссоциации и степени диссоциации
Исходя из определения степени диссоциации, для электролита КА в реакции диссоциации [A − ] = [K + ] = α·c, [KA] = c — α·c = c·(1 — α), где α — степени диссоциации электролита.
, | (2) |
Это выражение называют законом разбавления Оствальда. При очень малых α (α Отличие экспериментальных результатов от модели Аррениуса, вывод константы диссоциации через активности
Вышеприведённые выкладки базируются на теории Аррениуса, которая является слишком грубой, не учитывающей факторы электростатического взаимодействия ионов. Отклонения от идеального состояния в растворах электролитов возникают при очень малых концентрациях, так как межионные силы обратно пропорциональны квадрату расстояния между центрами ионов, в то время как межмолекулярные силы обратно пропорциональны седьмой степени расстояния, то есть межионные силы даже в разведённых растворах оказываются намного больше межмолекулярных.
Льюис показал, что для реальных растворов можно сохранить простые уравнения (см. выше), если вместо концентраций ионов вводить её функцию, так называемую активность. Активность (a) соотносится с концентрацией (c) через поправочный коэффициент γ, называемый коэффициентом активности:
Таким образом, выражение для константы равновесия, по Аррениусу описываемое уравнением (1), по Льюису будет выглядеть:
В теории Льюиса связь между константой и степенью диссоциации (в теории Аррениуса записываемая уравнением (2) выражается соотношением:
Если никаких других влияний, отклоняющих раствор от идеального состояния нет, то недиссоциированные молекулы ведут себя как идеальные газы и γKA = 1, а истинное выражение закона разбавления Оствальда примет вид:
При c→0 и γ→1 вышеприведённое уравнение закона разбавления Оствальда принимает вид (2). Чем сильнее диссоциирует электролит, тем быстрее значение коэффициента активности γ отклоняется от единицы, и тем быстрее наступает нарушение классического закона разведения.
Константа диссоциации сильных электролитов
Сильные электролиты диссоциируют практически нацело (реакция необратимая), поэтому в знаменателе выражения для константы диссоциации стоит ноль, и всё выражение стремится к бесконечности. Таким образом, для сильных электролитов термин «константа диссоциации» лишён смысла.
Примеры расчётов
Диссоциация воды
Вода представляет собой слабый электролит, диссоциирующий в соответствии с уравнением
Константа диссоциации воды при 25 °C составляет
Считая, что в большинстве растворов вода находится в молекулярном виде (концентрация ионов H + и OH − мала), и учитывая, что молярная масса воды составляет 18,0153 г/моль, а плотность при температуре 25 °C — 997,07 г/л, чистой воде соответствует концентрация [H2O] = 55,346 моль/л. Поэтому предыдущее уравнение можно переписать в виде
Эта величина называется ионным произведением воды. Так как для чистой воды [H + ] = [OH − ], можно записать
Водородный показатель воды, таким образом, равен
Диссоциация слабой кислоты
Найдём pH и степень диссоциации 0,01M раствора плавиковой кислоты HF. Её константа диссоциации равна
Обозначим степень диссоциации через α. Тогда [H + ] = [F − ] = Cα, [HF] = C(1-α). Подставив эти выражения в формулу для константы диссоциации, получим
Откуда следует квадратное уравнение относительно α:
Решая его по стандартной формуле, получим
Применение приближённой формулы даёт ошибку около 15 %:
Исходя из найденного значения степени диссоциации, найдём pH раствора:
См. также
Полезное
Смотреть что такое «Константа диссоциации» в других словарях:
константа диссоциации — – константа равновесия реакций диссоциации. Словарь по аналитической химии [3] см. также константа ионизации … Химические термины
константа диссоциации — disociacijos konstanta statusas T sritis Standartizacija ir metrologija apibrėžtis Disociacijos reakcijos pusiausvyros konstanta. atitikmenys: angl. dissociation constant vok. Dissoziationskonstante, f rus. константа диссоциации, f; постоянная… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
константа диссоциации — disociacijos konstanta statusas T sritis chemija apibrėžtis Disociacijos reakcijos pusiausvyros konstanta. atitikmenys: angl. dissociation constant rus. константа диссоциации … Chemijos terminų aiškinamasis žodynas
константа диссоциации — [dissociation constant] отношение концентрованных ионов, образованных в результате распада молекул соединения, к концентрации этого соединения; Смотри также: Константа константа скорости химической реакции константа равновесия … Энциклопедический словарь по металлургии
Константа диссоциации кислоты — У этого термина существуют и другие значения, см. Константа. Константа диссоциации кислоты (Ka) константа равновесия реакции диссоциации кислоты на ион водорода и анион кислотного остатка. Для многоосновных кислот, диссоциация которых… … Википедия
константа диссоциации кислоты — см. константа кислотности … Химические термины
Константа кислотности — Константа диссоциации кислоты (Ka) константа равновесия реакции диссоциации кислоты на ион водорода и анион кислотного остатка. Для многоосновных кислот, диссоциация которых проходит в несколько стадий, оперируют отдельными константами для разных … Википедия
константа ионизации — (константа диссоциации) – константа равновесия для процесса диссоциации. Общая химия : учебник / А. В. Жолнин [1] … Химические термины
Константа — Константа: Постоянная Математическая Физическая Константа (в программировании) Константа диссоциации кислоты Константа равновесия Константа скорости реакции Константа (Остаться в живых) См. также Констанция Констанций Константин Констант… … Википедия
константа — • константа диссоциации константа нестойкости комплекса константа равновесия константа скорости реакции … Химические термины
Растворы электролитов. Степень диссоциации. Константа диссоциации
» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>
Растворы электролитов.
Примерами растворов электролитов могут служить растворы щелочей, солей и неорганических кислот в воде, растворы ряда солей и жидком аммиаке и некоторых органических растворителях, например ацетонитриле.
Растворы электролитов являются ионными проводниками (проводниками второго рода). В них наблюдаются отклонения от законом Рауля и Вант-Гоффа. Например, согласно закона Рауля, при введении 0,1 моль вещества на 1000 г воды температура замерзания должна снижаться на 0,186 К, а фактически снижается на 0,318 К у NaCl и 0,52 К-у MgCl2. Вант-Гофф ввел поправочный коэффициент i, называемый изотоническим коэффициентом и позволяющий использовать это уравнение для любых разбавленных растворов:
Изотонический коэффициент характеризует отклонение от законов идеальных растворов вследствие электролитической диссоциации электролитов.
7.3.1. Степень диссоциации электролитов.
В растворах некоторых электролитов диссоциирует лишь часть молекул. Для количественной характеристики электролитической диссоциации было введено понятие степени диссоциации. Отношение числа молекул, диссоциированных на ионы, к общему числу молекул растворенного электролита называется степенью диссоциации а. По степени диссоциации в растворах все электролиты делятся на две группы. К первой относят электролиты, степень диссоциации которых в растворах равна единице и почти не зависит от концентрации раствора. Их называют сильными электролитами. К сильным электролитам в водных растворах принадлежит подавляющее большинство солей, щелочей, в также некоторые кислоты.
Электролиты, степень диссоциации которых в растворах меньше единицы и уменьшается с ростом концентрации, называют слабыми электролитами. К ним относят воду, ряд кислот, основания р-, d- и f-элементов. Между этими двумя группами нет четкой границы, одно и то же вещество в одном растворителе проявляет свойства сильного, а в другом — слабого электролита. Например, хлорид лития и иодид натрия, имеющие ионную кристаллическую решетку,
при растворении в воде ведут себя как типичные сильные электролиты,
при растворении же в ацетоне или уксусной кислоте эти вещества
являются слабыми электролитами со степенью диссоциации в раствоpax меньше единицы.
7.3.2. Слабые электролиты. Константа диссоциации.
В растворах слабых электролитов процесс диссоциации протекает обратимо и, следовательно, к нему может быть применен закон действующих масс. Так, для процесса диссоциации кислоты
константа равновесия КС равна
Константа равновесия для процесса диссоциации называется константой диссоциации КД. Например, константа диссоциации уксусной кислоты СН3СООН равна
Константа диссоциации зависит от природы диссоциирующего вещества и растворителя, а также от температурь и не зависит от концентрации раствора. С повышением температуры константа диссоциации обычно уменьшается, что в соответствии с принципом Ле Шателье свидетельствует об экзотермическим характере реакции.
Константа диссоциации указывает на прочность молекул в данном растворе. Чем меньше константа диссоциации в данном растворителе, тем слабее диссоциирует электролит и тем, следовательно, устойчивее его молекулы.
Степень диссоциации изменяется с концентрацией раствора. Рассмотрим зависимость степени диссоциации от концентрации слабого электролита на примере уксусной кислоты:
Концентрация кислоты, оставшейся в недиссоциированном состоянии, будет равна с – ас 2 = с (1 – а). Подставив значения равновесных концентраций ионов и кислоты в уравнение (1), получим:
Уравнение (1) было получено Оствальдом и называется законом Оствальда. Если а « 1, то уравнение упрощается:
Уравнение (2а, 2б) называется законом разбавления Оствальда. Из него следует, что степень диссоциации уменьшается с увеличением концентрации слабого электролита. Аналогичное уравнение можно получить для слабого основания.
Многоосновные слабые кислоты и основания диссоциируют ступенчато, причем константа диссоциации по каждой последующей ступени всегда на несколько порядков ниже, чем по предыдущей.
7.3.3.Сильные электролиты.
Многие свойства растворов, такие, как осмотическое давление, температура кипения и замерзания, давление насыщенного пара, зависят как от концентрации раствора, т. е. от числа растворенных в нем частиц, так и от взаимного влияния этих частиц друг на друга. Степень взаимодействия частиц в растворе тем выше, чем больше плотность их зарядов и чем меньше среднее расстояние между ними.
В растворах слабых электролитов взаимодействие ионов друг с другом относительно невелико вследствие их незначительной концентрации. Сильные электролиты в растворах диссоциированы практически полностью. Поэтому в уравнении диссоциации электролита стрелка указывает только на прямой процесс, например:
В растворах сильных электролитов из-за полной их диссоциации концентрация ионов велика. Поэтому свойства таких растворов существенно зависят от степени взаимодействия входящих в их состав ионов как друг с другом, так и с полярными молекулами растворителя. Взаимодействие ионов в растворах сильных электролитов приводит к тому, что катионы и анионы испытывают взаимное притяжение, а ионы одного знака заряда будут отталкиваться друг от друга. Поэтому в растворе каждый произвольно выбранный ион окружен в среднем во времени преимущественно противоположно заряженными ионами, как, например, в ионных кристаллах. Однако энергия теплового движения ионов в жидких растворах и значительно выше, чем в кристаллах. Поэтому ионы, взаимодействующие с выбранным центральным ионом, располагаются вокруг него не в виде кристаллической решетки, а в виде сферы, которая, согласно П. Дюбая и Э. Хюккеля, называется ионной атмосферой. В состав ионной атмосферы входят катионы и анионы. Однако преобладают ионы, противоположные по знаку заряда центральному иону. Суммарный заряд ионной атмосферы равен по величине заряду центрального иона и противоположен ему по знаку. Все ионы в растворе равноправны, поэтому каждый из них является центральным ионом и одновременно входит в состав ионной атмосферы другого иона. За счет теплового движения ионы, входящие в состав ионной атмосферы, постоянно меняются местами с ионами, находящимися за ее пределами, т. е. ионная атмосфера имеет статистический характер.
Законы Рауля и Вант – Гоффа соблюдаются лишь в разбавленных растворах неэлектролитов. По мере повышения концентрации растворенного вещества возрастают отклонения от законов идеальных растворов. Эти отклонения обусловлены различного рода взаимодействиями между частицами растворенного вещества, а также растворенного вещества и растворителя. Учет влияния на свойства растворов этих взаимодействий очень сложен. Поэтому было предложено сохранить для описания свойств растворов все общие закономерности, применимые к идеальным растворам, но вместо входящих в них концентраций компонентов ввести активности. Активность а связана с концентрацией следующим соотношением:
где γ – коэффициент активности, который формально учитывает все виды взаимодействия частиц в данном растворе, приводящие к отклонению от свойств идеального раствора.
Коэффициенты активности зависят от природы растворителя и растворенного вещества, от концентрации раствора, а также от температуры (табл. 18).
Таблица 18. Коэффициенты активности некоторых электролитов в растворах при 298 К