Что такое коммутация тока

Коммутация в машинах постоянного тока

Что такое коммутация тока. Смотреть фото Что такое коммутация тока. Смотреть картинку Что такое коммутация тока. Картинка про Что такое коммутация тока. Фото Что такое коммутация токаПод коммутацией в машинах постоянного тока понимают явления, вызванные изменением направления тока в проводниках обмотки якоря при переходе их из одной параллельной ветви в другую, т. е. при пересечении линии, по которой расположены щетки (от лат. commulatio — изменение). Рассмотрим явление коммутации на примере кольцевого якоря.

На рис. 1 показана развертка части обмотки якоря, состоящей из четырех проводников, части коллектора (две коллекторные пластины) и щетки. Проводники 2 и 3 образуют коммутируемый виток, который на рис. 1, а показан в положении, которое он занимает до коммутации, на рис. 1, в — после коммутации, а на рис. 1, б — в период коммутации. Коллектор и обмотка якоря вращаются в указанном стрелкой направлении с частотой вращения п, щетка неподвижна.

В момент времени до коммутации ток якоря Iя проходит через щетку, правую коллекторную пластину и разделяется между параллельными ветвями обмотки якоря пополам. Проводники 1, 2 и 3 и проводник 4 образуют разные параллельные ветви.

После коммутации проводники 2 и 3 перешли в другую параллельную ветвь и направление тока в них изменилось на противоположное. Это изменение произошло за время, равное периоду коммутации Тk, т. е. за время, которое требуется, чтобы щетка перешла с правой пластины на соседнюю левую (в действительности щетка перекрывает сразу несколько пластин коллектора, но в принципе это не влияет на процесс коммутации).

Что такое коммутация тока. Смотреть фото Что такое коммутация тока. Смотреть картинку Что такое коммутация тока. Картинка про Что такое коммутация тока. Фото Что такое коммутация тока

Рис. 1. Схема процесса коммутации тока

Один из моментов периода коммутации показан на рис. 1, б. Коммутируемый виток оказывается замкнутым накоротко коллекторными пластинами и щеткой. Так как за период коммутации происходит изменение направления тока в витке 2—3, то это означает, что по витку протекает переменный ток, создающий переменный магнитный поток.

Последний индуцирует в коммутируемом витке э. д. с. самоиндукции еL, или реактивную э. д. с. Согласно принципу Ленца, э. д. с. самоиндукции стремится поддержать в проводнике ток прежнего направления. Следовательно, направление еL совпадает с направлением тока в витке до коммутации.

Под действием э. д. с. самоиндукции в короткозамкнутом витке 2—3 протекает большой дополнительный ток iд, так как сопротивление контура мало. В месте контакта щетки с левой пластиной ток iд направлен противоположно току якоря, а в месте контакта щетки с правой пластиной направление этих токов совпадает.

Чем ближе к окончанию периода коммутации, тем меньше площадь контакта щетки с правой пластиной и тем больше плотность тока. По окончании периода коммутации контакт щетки с правой пластиной разрывается и образуется электрическая дуга. Чем больше ток iд, тем мощнее электрическая дуга.

Если щетки располагаются на геометрической нейтрали, то в коммутируемом витке магнитным потоком якоря индуцируется э. д. с. вращения евр. На рис. 2 в увеличенном масштабе показаны проводники коммутируемого витка, расположенные на геометрической нейтрали, и направление э. д. с. самоиндукции еL для генератора, совпадающее с направлением тока якоря в этом проводнике до коммутации.

Направление евр определяется по правилу правой руки и всегда совпадает с направлением еL. В результате iд еще больше увеличивается. Возникающая электрическая дуга между щеткой и коллекторной пластиной может разрушить поверхность коллектора, в результате чего ухудшается контакт между щеткой и коллектором.

Что такое коммутация тока. Смотреть фото Что такое коммутация тока. Смотреть картинку Что такое коммутация тока. Картинка про Что такое коммутация тока. Фото Что такое коммутация тока

Рис. 2. Направление э.д.с. в коммутирующем витке

Для улучшения условий коммутации сдвигают щетки в сторону физической нейтрали. При расположении щеток на физической нейтрали коммутируемый виток не пересекает никакого внешнего магнитного потока и э. д. с. вращения не индуцируется. Если сдвинуть щетки дальше физической нейтрали, как показано на рис. 3, то в коммутируемом витке результирующий магнитный поток будет индуцировать э. д. с. ек, направление которой противоположно направлению э. д. с. самоиндукции еL.

Таким образом, будет скомпенсирована не только э. д. с. вращения, но и э. д. с. самоиндукции (частично или полностью). Как указывалось ранее, угол сдвига физической нейтрали все время меняется и поэтому щетки обычно устанавливают со сдвигом на некоторый средний угол по отношению к ней.

Уменьшение э. д. с. в коммутируемом витке приводит к уменьшению тока iд и ослаблению электрического разряда между щеткой и коллекторной пластиной.

Улучшить условия коммутации можно установкой добавочных полюсов (Nдп и Sдn на рис. 4). Добавочный полюс располагают по геометрической нейтрали. У генераторов одноименный добавочный полюс располагается за основным полюсом по ходу вращения якоря, а у двигателя — наоборот. Обмотки добавочных полюсов включают последовательно с обмоткой якоря таким образом, чтобы создаваемый ими поток Фдп был направлен навстречу потоку якоря Фя.

Что такое коммутация тока. Смотреть фото Что такое коммутация тока. Смотреть картинку Что такое коммутация тока. Картинка про Что такое коммутация тока. Фото Что такое коммутация тока

Рис. 3. Направление э.д.с. в коммутируемом витке при сдвиге щеток за физическую нейтраль

Что такое коммутация тока. Смотреть фото Что такое коммутация тока. Смотреть картинку Что такое коммутация тока. Картинка про Что такое коммутация тока. Фото Что такое коммутация тока

Рис. 4. Схема включения обмоток добавочных полюсов

Так как оба эти потока создаются одним током (током якоря), то можно подобрать число витков обмотки добавочных полюсов и воздушный зазор между ними и якорем такими, чтобы потоки были равны по значению при любом токе якоря. Поток добавочных полюсов будет всегда компенсировать поток якоря и, таким образом, э. д. с. вращения в коммутируемом витке будет отсутствовать.

Добавочные полюсы обычно делают такими, чтобы их поток индуцировал в коммутируемом витке э. д. с, равную сумме еL + евр. Тогда в момент отрыва щетки от правой коллекторной пластины (см. рис. 1, в) электрическая дуга не возникает.

Выпускаемые промышленностью машины постоянного тока мощностью 1 кВт и выше снабжены добавочными полюсами.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Коммутация электрической цепи

Что такое коммутация тока. Смотреть фото Что такое коммутация тока. Смотреть картинку Что такое коммутация тока. Картинка про Что такое коммутация тока. Фото Что такое коммутация тока Что такое коммутация тока. Смотреть фото Что такое коммутация тока. Смотреть картинку Что такое коммутация тока. Картинка про Что такое коммутация тока. Фото Что такое коммутация тока Что такое коммутация тока. Смотреть фото Что такое коммутация тока. Смотреть картинку Что такое коммутация тока. Картинка про Что такое коммутация тока. Фото Что такое коммутация тока Что такое коммутация тока. Смотреть фото Что такое коммутация тока. Смотреть картинку Что такое коммутация тока. Картинка про Что такое коммутация тока. Фото Что такое коммутация тока

ЛЕКЦИЯ 3

2. ОСНОВНЫЕ ЭЛЕКТРОМЕХАНИЧЕСКИЕ ПРОЦЕССЫ

Коммутация электрической цепи

Коммутация электрической цепи – процесс замыкания или размыкания цепи с током.

Коммутация может происходить под воздействием внешних или внутренних для данного устройства источников напряжения или тока.

При анализе и расчёте процессов коммутации необходимо учитывать общий закон коммутации:

— При коммутации индуктивных электрических цепей не могут изменяться скачком ток цепи и магнитный поток ( Что такое коммутация тока. Смотреть фото Что такое коммутация тока. Смотреть картинку Что такое коммутация тока. Картинка про Что такое коммутация тока. Фото Что такое коммутация тока);

— При коммутации емкостных цепей не могут изменяться скачком напряжение и электрический заряд ( Что такое коммутация тока. Смотреть фото Что такое коммутация тока. Смотреть картинку Что такое коммутация тока. Картинка про Что такое коммутация тока. Фото Что такое коммутация тока).

Под глубиной коммутации понимают отношение сопротивления Rотк коммутирующего органа в отключенном состоянии к сопротивлению Rвкл во включенном состоянии

Что такое коммутация тока. Смотреть фото Что такое коммутация тока. Смотреть картинку Что такое коммутация тока. Картинка про Что такое коммутация тока. Фото Что такое коммутация тока

Контактные электрические аппараты, у которых сопротивление межконтактного промежутка в отключенном состоянии измеряется мегомами, а сопротивление замкнутых контактов – микроомами, обеспечивают глубину коммутации

Что такое коммутация тока. Смотреть фото Что такое коммутация тока. Смотреть картинку Что такое коммутация тока. Картинка про Что такое коммутация тока. Фото Что такое коммутация тока

Для бесконтактных аппаратов, которые по глубине коммутации уступают контактным аппаратам, обычно Что такое коммутация тока. Смотреть фото Что такое коммутация тока. Смотреть картинку Что такое коммутация тока. Картинка про Что такое коммутация тока. Фото Что такое коммутация тока

2.1.1 Отключение электрической цепи контактными аппаратами

Отключение цепи контактным аппаратом характеризуется воз­никновением плазмы, которая проходит разные стадии газового разряда в процессе преобразования межконтактного промежутка из проводника электрического тока в изолятор.

При токах выше 0,5-1 А возникает стадия дугового разряда (область 1)(рисунок 2.1.); при снижении тока возникает стадия тлеющего разряда у катода (область 2); следующая стадия (область 3)– таунсендовский разряд, и наконец, область 4 – стадия изоляции, в которой носители электричества – электроны и ионы – не образуются за счет ионизации, а могут поступать только из окружающей среды.

Первый участок кривой – дуговой разряд (область 1) –характе­ризуется малым падением напряжения у электродов и большой плотностью тока. С ростом тока напряжение на дуговом промежутке сначала резко падает, а затем изменяется незначительно.

Второй участок (область 2) кривой, представляющий собой область тлеющего разряда, характеризуется высоким падением напряжения у катода (250 – 300 В) и малыми токами. С ростом тока возрастет падение напряжения на разрядном промежутке.

Таунсендовский разряд (область 3) характеризуется чрезвычайно малыми значениями тока при высоких напряжениях.

Что такое коммутация тока. Смотреть фото Что такое коммутация тока. Смотреть картинку Что такое коммутация тока. Картинка про Что такое коммутация тока. Фото Что такое коммутация тока

электрического разряда в газах

Электрическая дуга сопровождается высокой температурой и связана с этой температурой. Поэтому дуга – явление не только электрическое, но и тепловое.

В обычных условиях воздух является хорошим изолятором. Так, для пробоя воздушного промежутка в 1 см требуется приложить напряжение не менее 30 кВ. Для того чтобы воздушный промежуток стал проводником, необходимо создать в нем определенную концентрацию заряженных частиц: отрицатель­ных – в основном свободных электронов, и положительных – ионов. Процесс отделения от нейтральной частицы одного или нескольких электронов с обра­зованием свободных электронов и ионов называется ионизацией.

Ионизация газа может происходить под действием света, рентгеновских лучей, высокой температуры, под влиянием электрического поля и ряда дру­гих факторов. Для дуговых процессов в электрических аппаратах наибольшее значение имеют: из процессов, происходящих у электродов, – термоэлектрон­ная и автоэлектронная эмиссии, а из процессов, происходящих в дуговом промежутке, – термическая ионизация и ионизация толчком.

2.1.2. Электрическая дуга

В коммутационных электрических аппаратах, предна­значенных для замыкания и размыкания цепи с током, при отключении возникает разряд в газе либо в виде тлеющего разряда, либо в виде дуги. Тлеющий разряд возникает тогда, когда отключаемый ток ниже 0,1 А, а напряжение на контактах достигает величины 250 – 300 В. Такой разряд встречается либо на контактах ма­ломощных реле, либо как переходная фаза к разряду в виде электрической дуги.

Основные свойства дугового разряда:

— дуговой разряд имеет место только при токах большой величины; минимальный ток дуги для металлов со­ставляет примерно 0,5 А;

Что такое коммутация тока. Смотреть фото Что такое коммутация тока. Смотреть картинку Что такое коммутация тока. Картинка про Что такое коммутация тока. Фото Что такое коммутация тока

— температура центральной части дуги очень вели­ка и в аппаратах может достигать 6000 – 18000 К;

— плотность тока на катоде чрезвычайно велика и достигает 10 2 – 10 3 А/мм 2 ;

— падение напряжения у катода составляет всего 10 – 20 В и практически не зависит от тока.

В дуговом разряде можно различить три характер­ные области: околокатодную, область столба дуги (ствол дуги) и околоанодную (рисунок 2.2.).

В каждой из этих областей процессы ионизации и деионизации протекают по-разному в зависимо­сти от условий, которые там существуют. Поскольку ре­зультирующий ток, проходящий через эти три области, одинаков, в каждой из них происходят процессы, обес­печивающие возникновение необходимого количества за­рядов.

Что такое коммутация тока. Смотреть фото Что такое коммутация тока. Смотреть картинку Что такое коммутация тока. Картинка про Что такое коммутация тока. Фото Что такое коммутация тока

Термоэлектронная эмиссия.Термоэлектронной эмиссией называется явление испускания электронов из накаленной поверхности.

При расхождении контактов резко возрастают переходное сопротивление контакта и плотность тока в последней площадке контактирования. Эта площадка нагревается до температуры плавления и образования контактного перешейка из расплавленного металла, который при дальнейшем расхождении контактов рвется. Здесь происходит испарение металла контактов. На отрицательном электроде образуется так назы­ваемое катодное пятно (раскаленная площадка), которое служит основа­нием дуги и очагом излучения элект­ронов в первый момент расхождения контактов. Плотность тока термо­электронной эмиссии зависит от тем­пературы и материала электрода. Она невелика и может быть достаточной для возникновения электрической ду­ги, но она недостаточна для ее го­рения.

Автоэлектронная эмиссия.Это –явление испускания электронов из ка­тода под воздействием сильного электрического поля.

Место разрыва электрической цепи может быть представлено как конден­сатор переменной емкости. Емкость в начальный момент равна бесконеч­ности, затем убывает по мере расхождения контактов. Через сопротивление цепи этот конденсатор заряжается, и напряжение на нем растет постепенно от нуля до напряжения сети. Одновременно увеличивается расстояние между контактами. Напряженность поля между контактами во время нарастания напряжения проходит через значения, превышающие 100 МВ/см. Такие значения напряженности электрического поля достаточны для вырывания электронов из холодного катода.

Ток автоэлектронной эмиссии также весьма мал и может служить только началом развития дугового разряда.

Таким образом, возникновение дугового разряда на расходящихся контак­тах объясняется наличием термоэлектронной и автоэлектронной эмиссий. Преобладание того или иного фактора зависит от значения отключаемого тока, материала и чистоты поверхности контактов, скорости их расхождения и от ряда других факторов.

Ионизация толчком.Если свободный электрон будет обладать достаточной скоростью, то при столкновении с нейтральной частицей (атом, а иногда и молекула) он может выбить из неё электрон. В результате получатся новый свободный электрон и положительный ион. Вновь полученный электрон может, в свою очередь, ионизировать следующую частицу. Такая ионизация носит название ионизации толчком.

Для того чтобы электрон мог ионизировать частицу газа, он должен двигаться с некоторой определенной скоростью. Скорость электрона зависит от разности потенциалов на длине его свободного пробега. Поэтому обычно указывается не скорость движения электрона, а то минимальное значение разности потенциалов, какое необходимо иметь на длине свободного пути, чтобы электрон к концу пути приобрел необходимую скорость. Эта разность потенциалов носит название потенциала ионизации.

Потенциал ионизации для газов составляет 13 – 16 В (азот, кислород, водород) и до 24,5 В (гелий), для паров металла он примерно в два раза ниже (7,7 В для паров меди).

Термическая ионизация.Это – процесс ионизации под воздействием высокой температуры. Поддержание дуги после ее возникновения, т.е. обеспечение возникшего дугового разряда достаточным числом свободных зарядов, объяс­няется основным и практически единственным видом ионизации – термической ионизацией.

Температура столба дуги с среднем равна 6000 – 10000 К, но может достигать и более высоких значений – до 18000 К. При такой температуре сильно возрастает как число быстро движущихся частиц газа, так и скорость их движения. При столкновении быстро движущихся атомов или молекул большая часть их разрушается, образуя заряженные частицы, т.е. происходит иони­зация газа. Основной характеристикой термической ионизации является сте­пень ионизации, представляющая собой отношение числа ионизированных атомов в дуговом промежутке к общему числу атомов в этом промежутке. Одновременно с процессами ионизации в дуге происходят обратные процессы, т. е. воссоединение заряженных частиц и образование нейтральных частиц. Эти процессы носят название деионизации.

Деионизация происходит главным образом за счет рекомбинации и диф­фузии.

Рекомбинация.Процесс, при котором различно заряженные частицы, при­ходя во взаимное соприкосновение, образуют нейтральные частицы, называется рекомбинацией.

В электрической дуге отрицательными частицами являются в основном электроны. Непосредственное соединение электронов с положительным ионом ввиду большой разности скоростей маловероятно. Обычно рекомбинация происходит при помощи нейтральной частицы, которую электрон заряжает. При соударении этой отрицательно заряженной частицы с положительным ионом образуется одна или две нейтральные частицы.

Диффузия.Диффузия заряженных частиц представляет собой процесс выноса заряженных частиц из дугового промежутка в окружающее пространство, что уменьшает проводимость дуги.

Диффузия обусловлена как электрическими, так и тепловыми факторами. Плотность зарядов в столбе дуги возрастает от периферии к центру. Ввиду этого создается электрическое поле, заставляющее ионы двигаться от центра к периферии и покидать область дуги. В этом же направлении действует и разность температур столба дуги и окружающего пространства. В стабилизированной и свободно горящей дуге диффузия играет ничтожно малую роль.

Падение напряжения на стационарной дуге распределяется неравномерно вдоль дуги. Картина изменения падения напряжения UД и напряжённости электрического поля (продольного градиента напряжения) ЕД = dU/dx вдоль дуги приведена на рисунке (см. рис 2.2). Под градиентом напряжения ЕД по­нимается падение напряжения на единицу длины дуги. Как видно из рисунка, ход харак­теристик UД и ЕД в приэлектродных областях резко отличается от хода характе­ристик на остальной части дуги. У электродов, в прикатодной и прианодной об­ластях, на промежутке дли­ны порядка 10 – 4 см имеет место резкое падение напря­жения, называемое катод­ным Uк и анодным Uа. Значение этого падения на­пряжения зависит от мате­риала электродов и окружа­ющего газа. Суммарное зна­чение прианодного и прикатодного падений напряжений составляет 15 – 30 В, градиент напряжения достигает 10 5 – 10 6 В/см.

В остальной части дуги, называемой столбом дуги, падение напряжения UД практически прямо пропорционально длине дуги. Градиент здесь приблизительно постоянен вдоль ствола. Он зависит от многих факторов и может изменяться в широких пределах, достигая 100 – 200 В/см.

Околоэлектродное падение напряжения UЭ не зависит от длины дуги, падение напряжения в столбе дуги пропорционально длине дуги. Таким образом, падение напряжения на дуговом промежутке

где: ЕД – напряжённость электрического поля в столбе дуги;

В заключение следует ещё раз отметить, что в стадии дугового разряда преобладает термическая ионизация – разбиение атомов на электроны и положительные ионы за счёт энергии теплового поля. При тлеющем – возникает ударная ионизация у катода за счет соударения с электронами, разгоняемыми электри­ческим полем, а при таунсендовском разряде ударная ионизация пре­обладает на всём промежутке газового разряда.

Источник

Коммутация тока

Что такое коммутация тока. Смотреть фото Что такое коммутация тока. Смотреть картинку Что такое коммутация тока. Картинка про Что такое коммутация тока. Фото Что такое коммутация токаПри вращении якоря каждая секция обмотки переключается коллектором из одной параллельной ветви в другую, оставаясь некоторое время замкнутой накоротко. Переключение секции и совокупность всех явлений, происходящих в ней при этом, называется коммутацией. Время Т, в течение которого секция остается замкнутой накоротко, называется периодом коммутации.

Коммутатор что это такое и для чего

Если при коммутации обнаруживается искрение на коллекторе, то это может привести в негодность щетки и коллектор, и машина может выйти из строя. Рассмотрим упрощенно причины плохой коммутации и способы ее улучшения.

Представим себе секцию () (рис 8-9 и 8-10) отдельно на рис. 8-14 и допустим, что секция вращается очень медленно (Т ≈ ∞), ширина щетки равна ширине коллекторной пластины и что всеми сопротивлениями, кроме сопротивления переходного слоя между щеткой и коллектором, можно пренебречь. Ток Iя переходит из щетки через сопротивление переходного слоя rп = R в коллекторную пластину 1, а затем разделится на два равных тока I = 0,5Iя, идущих: один в параллельную ветвь с проводами Зн—6в—1в и т. д., а другой — с проводами И Т. Д.

Как только щетка коснется коллекторной пластины 6, начнется коммутация, и ток в секции начнет уменьшаться.

Действительно, если при t = (Т/10)0,9 контактной поверхности щетки касается коллекторной пластины 1, а 0,1 — касается пластины 6, то ток, проходящий через коллекторную пластину 1, равен 0,9 Iя, а через пластину 6 — 0,1 Iя. Токи в параллельных ветвях при неизменном Iя по-прежнему должны быть равны по 0,5 Iя, а следовательно, ток в короткозамкнутой секции ic имеет прежнее направление и величина его равна 0,9 Iя — 0,5 Iя = 0,4 Iя. Ток другой параллельной ветви складывается из тока короткозамкнутой

Рис. 8-14. Начало коммутации (t = 0 ).

секции 0,4 Iя и тока 0,1 Iя, идущего от щетки в коллекторную пластину 6, т. е. тоже равен 0,4 Iя + 0,1 Iя = 0,5 Iя

Таким образом, ток в короткозамкнутой секции уменьшается пропорционально времени t и в положении, показанном на рис. 8-15, т. е. при t = T/2 равен нулю. Дальше ток в секции начинает нарастать, но уже в обратном направлении и к моменту t = Т, представленному на рис. 8-16, опять равен 0,5 Iя, так как секция разомкнулась и переключена в правую параллельную ветвь. Зависимость ic = f (t) показана на рис. 8-17, а и представляет прямую линию. Такой должна быть коммутация в каждой хорошо построенной ма шине.

Что такое коммутация тока. Смотреть фото Что такое коммутация тока. Смотреть картинку Что такое коммутация тока. Картинка про Что такое коммутация тока. Фото Что такое коммутация тока

Рис. 8-15. Средина времени коммутации t = T/2.

Рис. 8-16. Конец коммутации t = T.

Так происходит коммутация при Т ≈ ∞, т.е. когда скорость вращения ничтожна и в секции, замкнутой накоротко, э. д. с, не возникает. На самом деле время коммутации длится. тысячные доли секунды и, значит, ток ic в секции изменяется очень быстро. При этом, как известно, b секции возникает э. д. с. самоиндукции. Поскольку зависимость ic = f (t) — прямая линия, т. е. dic/dt = tg α = const, то величина еs = — Lc(dic/dt)постоянна. Разделив величину еs на сопротивление короткозамкнутой секции, можно получить значение добавочного тока is вызванного э. д. c. самоиндукции es:

Что такое коммутация тока. Смотреть фото Что такое коммутация тока. Смотреть картинку Что такое коммутация тока. Картинка про Что такое коммутация тока. Фото Что такое коммутация тока

Рис. 8-17. Коммутация при естественных условиях.

Для момента t = T/2 (рис. 8-15) r6 + r1 = 2R + 2R = 4R, а для t = 0 и t = Т r6 + r1 = ∞. Вычисленные на основании этих соображений значения тока is = f(t) показаны на рис. 8-17, б. Сумма токов секции ic + is при наличии э. д. с. самоиндукции, т. е. в реальных условиях, показана на рис. 8-17, а пунктиром. Коммутация в этом случае называется замедленной, ибо э. д. с. e s затягивает процесс изменения тока в секции, поддерживая его, когда он убывает, и препятствуя его нарастанию в конце периода коммутации. На рис. 8-18 показано распределение токов для момента t = T/2 при наличии э. д. с. es. При этом оказывается, что плотность тока на набегающем краю щетки уменьшается, а на сбегающем — увеличивается, вызывая дополнительный нагрев и износ щетки сверх расчетного.

Но главная опасность, вызываемая замедленной коммутацией, это, искрение между щеткой и коллектором на сбегающем краю щетки; Вызывается оно эффектом размыкания короткозамкнутой секции в конце коммутации. В. это время запасенная секцией электромагнитная энергия 1/2 Lci 2 s вы деляется в электрической дуге у сбегающего края щетки. Работа машины допустима, если при номинальном режиме работы искрение, определяемое на глаз, не превосходит следующих степеней:

Степень 1 — отсутствие искр (темная коммутация).

Степень 1 1 /4 — слабое точечное искрение под небольшой частью щетки. В этих случаях нет почернения коллектора и нагара на щетках.

Что такое коммутация тока. Смотреть фото Что такое коммутация тока. Смотреть картинку Что такое коммутация тока. Картинка про Что такое коммутация тока. Фото Что такое коммутация тока

Рис. 8-18. Распределение токов при замедленной коммутации.

Степень I 1 / 2 — слабое искрение под большой частью щетки. При этом появляются следы почернения на коллекторе, легко устраняемые протиранием поверхности коллектора тряпкой, смоченной в бензине, а также следы нагара на щетках.

Для улучшения коммутации принимается ряд мер. Чтобы уменьшить ток is, переходное сопротивление делают большим, применяя графитные щетки в машинах нормального типа и угольно-графитные или электрографитированные—в тяговых, крановых машинах и двигателях прокатных станов. В низковольтных машинах (автотракторные, электролизные и др.) применяют медно-графитные щетки. Щетки подбираются опытным путем на испытательном стенде завода и поэтому заменять изношенную щетку можно только щеткой той же марки.

Что такое коммутация тока. Смотреть фото Что такое коммутация тока. Смотреть картинку Что такое коммутация тока. Картинка про Что такое коммутация тока. Фото Что такое коммутация тока

Рис. 8-19. Дополнительные полюсы.

При работе машины двигателем, при том же направлении тока в якоре и той же полярности главных полюсов направление вращения якоря будет обратным и э. д. с. Е встречная току. Следовательно, э. д. с. ек должна совпадать с э. д. с. Е (рис. 8-19, б) и чередование полюсов для этого случая будет NnSs.

Для того чтобы компенсация э. д. с. самоиндукции происходила автоматически, при всех нагрузках, обмотка дополнительных полюсов соединяется последовательно с обмоткой якоря (рис. 8- 19, а) и полюсы делаются ненасыщенными. В этом случае ек ≡ ФдпIя. Так как esIя то она компенсируется э. д. с. ек при любой нагрузке. В действительности процесс коммутации значительно сложнее, чем был описан.

При эксплуатации машин постоянного тока необходимо считаться с возможностью возникновения «кругового огня по коллектору», который приводит к тяжелой аварии машины. Сущность явления в следующем.

Если магнитная индукция в воздушном зазоре В؏ постоянна, то, разделив напряжение машины на число коллекторных пластин, лежащих между двумя разноименными щетками, находят среднее напряжение между двумя лежащими рядом коллекторными пластинами (Uср) или, что то же, напряжение, создаваемое одной секцией (рис. 8-9). Это напряжение должно быть меньше того, которое способно поддержать электрическую дугу между пластинами, если она по каким-либо причинам возникнет.

Практически напряжение между некоторыми пластинами оказывается выше, чем Uср, особенно благодаря поперечной реакции якоря, увеличивающей индукцию под краем полюса на 30—50%. Тогда в секции, а значит и между коллекторными пластинами, к которым она при паяна, получается повышенное напряжение. Это особенно наблюдается у мощных машин, работающих с большой толчкообразной перегрузкой.

При перегрузке под сбегающим краем щетки образуется сильное искрение, ионизирующее воздух вокруг коллектора. Если напряжение между двумя коллекторными пластинами способно поддержать электрическую дугу, то она возникает, растягивается по коллекторным пластинам, может перекрыть разноименные щетки и переброситься на корпус машины. Против этого явления в машинах постоянного тока принимаются специальные конструктивные меры.

Статья на тему Коммутация тока

Похожие страницы:

Понравилась статья поделись ей

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *