Что такое кольцевая шина процессора

Железный сайт

Совсем недавно компания AMD предложила систему команд SSE5. Однако Intel решили создать свою собственную реализацию SSE5, которая получила название AVX (Advanced Vector Extensions).

Данные инструкции представляют собой дальнейшее развитие SSE и используют те же операции SIMD (Single Instruction, Multiple Data), ведущих свое начало с системы команд MMX. Только в AVX для ускорения обработки данных увеличена разрядность операций. Система команд AVX добавляет 12 новых инструкций и увеличивает размер регистров XMM со 128 бит до 256 бит.

Для обмена данными между внутренними компонентами CPU в архитектуре Sandy Bridge предусмотрена кольцевая шина. Упрощенно ее можно описать следующим образом. Когда компонент хочет «общаться» с другим компонентом, он помещает информацию в кольцевую шину, а она перемещает эту информацию адресату. Компоненты не «говорят» непосредственно друг с другом, они должны использовать кольцо. Кольцевая шина используется для общения между ключевыми компонентами процессора. Это ядра CPU, кэш-память L3 (теперь называется кеш-память последнего уровня или LLC), а также System Agent (в него входят интегрированный контроллер памяти, контроллер PCI Express, блок управления питанием и дисплей) и графическое ядро.

На рисунке ниже Вы можете видеть схему кольцевой шины (черный овал) с ее «остановками» (красные прямоугольники). Доступ к кешу L3 имеют не только процессорные ядра, но также графическое ядро и system agent. Каждое процессорное ядро имеет прямой доступ к своему сегменту кеша L3. Все сегменты кеша L3 имеют контроллер доступа к кольцевой шине.

Кроме того, ядра CPU не привязаны в определенному сегменту кеша. Любое ядро может использовать любой из кешей. На рисунке ниже изображен четырехъядерный CPU с четырьмя сегментами L3. Так, например, Core 1 может обращаться не только к кешу 1, а к любому. То есть любое ядро процессора может получить доступ данным, которые хранятся в любом из кешей.

Что такое кольцевая шина процессора. Смотреть фото Что такое кольцевая шина процессора. Смотреть картинку Что такое кольцевая шина процессора. Картинка про Что такое кольцевая шина процессора. Фото Что такое кольцевая шина процессора

Кольцевая шина включает фактически четыре 32-х байт колец: шина данных (Data Ring), шина запросов (Request Ring), шина подтверждения (Acknowledge Ring) и шина мониторинга (Snoop Ring). Все они работают на тактовой частоте процессора. Передача данных между ними основана на протоколе QPI (QuickPath Interconnect), который используется в CPU LGA 1366 для обмена данными с чипсетом.

Каждый компонент решает, нужно ли ему использовать кольцевую шину, если она свободна. Кольцо всегда выбирает кратчайший путь к месту назначения.

Источник

Что такое кольцевая шина процессора

Ещё в марте компания Intel показала изображение 28-ядерного кристалла процессора Skylake-SP. Тогда мы обратили внимание, что расположение ядер и интерфейсов претерпели значительные изменения. Вчера в компании Intel на одном из домашних мероприятий пояснили, с чем связаны эти перемены в дизайне. Как выяснилось, в дальнейшем Intel откажется (и уже отказалась для процессоров Skylake в версиях Xeon и настольных решений высшей производительности) от внутрипроцессорной кольцевой шины.

реклама

Кольцевая шина (ring bus) была представлена в 2008 году вместе с архитектурой Nehalem и процессорами Westmere-EX. Она была необходима в связи с увеличением числа ядер на кристалле. Разработчики Intel использовали три варианта дизайна процессоров (в зависимости от максимального числа ядер на кристалле) с тремя вариантами кольцевой шины. В самом сложном случае процессор внутри разделялся на два кластера, каждый из которых обслуживался двумя кольцевыми шинами. Между собой шины соединялись двунаправленными коммутаторами с буферизацией (на диаграмме выше обозначены серым цветом).

По мере роста числа ядер кольцевая шина стала препятствием на пути увеличения пропускной способности и снижения задержек. Точнее, она стала слишком много потреблять, чтобы её можно было масштабировать в сторону увеличения скорости по обмену данными. Поэтому в процессорах Skylake-SP разработчики Intel решили применить иную структуру для связи ядер друг с другом — хорошо опробованную в архитектуре Intel Xeon Phi (Knights Landing) ячеистую сеть.

Каждое ядро в новой архитектуре имеет свой коммутатор с буфером и связано с любым другим ядром в составе процессора только через два узла — исходящий и входящий. Это позволяет ячеистой шине работать на относительно небольших частотах и существенно снизить общее потребление интерфейса без ухудшения пропускной способности и увеличения задержек. К тому же подобная структура коммуникаций очень хорошо масштабируется, позволяя Intel в будущем наращивать число ядер на кристалле без заметного увеличения энергетических затрат на внутреннюю транспортировку данных.

Источник

Процессоры Intel Sandy Bridge — все секреты

Оглавление

В скобках указаны значения для Nehalem (если есть отличие).

КэшL0m (новый)L1IL1DL2L3
Размер1536 мопов32 КБ256 КБ1–20 (2–30) МБ
Ассоциативность88 (4)888, 12, 16, 20 (12, 16, 24)
Размер строки6 мопов64 байта
Задержка, тактов3?44–7 (4)11–12 (10)≈26–31 (≈35–40)
Число портов213 (2)11 на банк, 2–8 банков
(2 на кэш, 1–10 банков)
Разрядность портов4 мопа16 байт64 байта64? (32) байта
Частота
(f — частота ядра)
ff/2Максимум всех f
(2,13–2,66 ГГц)
Политика работыВключающаяВключающая
Свободная
Только чтениеОтложенная запись
Общий для …Потоков ядраВсех ядер, включая ГП

Сразу скажем, что кэши L1I и L2 почти не изменились — у первого ассоциативность снова (как и до Nehalem) стала 8, а у второго чуть увеличилась задержка. Самое главное изменение в ядрах, касаемое кэшей, кроется в доступе к L1D, который теперь стал 3-портовым: к раздельным портам чтения и записи добавили ещё один для чтения. Кроме того, как уже было указано, в планировщике Nehalem 2-й порт вычисляет адрес чтения и исполняет само чтение, 3-й вычисляет адрес записи (только), а 4-й — исполняет саму запись. В SB же порты 2 и 3 могут и вычислить любой адрес, и исполнить чтение.

Внимательный Читатель сразу найдёт подвох: портов L1D — 3, а адресных генераторов — 2. При не более чем 16-байтовых обменах их устоявшийся максимальный темп составит 32 байта/такт (либо два чтения, либо чтение и запись). 32-байтовые операции каждым портом обслуживаются за два такта, причём вычисление адреса для конкретной команды происходит в течение первого из них. Так что для двух чтений и одной записи требуется три адреса в течение двух тактов — тогда при потоковых обменах один из трёх нужных адресов можно вычислить заранее в течение второго такта предыдущей 32-байтовой операции. Только так мы получим искомый максимум в 48 байт/такт.

Возникает довольно странный компромисс: три 16-байтовые операции за такт в потоке сделать нельзя. С другой стороны, за такт можно вычислить адреса для двух 32-байтовых обменов, но даже одно 32-байтовое чтение за такт не запустишь, потому что порты чтения не объединяются. Т. е. либо нам не будет хватать числа AGU (тех, что в портах 2 и 3), либо ширины портов, либо возможности их объединения.

Как мы знаем из теории, многопортовость в кэшах чаще всего делается не явная, а мнимая, с помощью многобанковости. Однако Nehalem нарушил это правило, внедрив 8-транзисторные битовые ячейки для всех кэшей ядра. Помимо большей экономии (об этом подробно рассказывалось в статье о микроархитектуре Intel Atom, который тоже применяет такую схему), это также даёт возможность получить истинную 2-портовость (чтение + запись), что и было использовано в L1D — никаких конфликтов по адресам в имеющихся 8 банках не было. В SB банков по-прежнему 8, а портов уже 3. Очевидно, конфликты неизбежны, но только среди адресов портов чтения.

Каждый банк L1D имеет ширину в 8 байт, вместе составляя строку, поэтому каждый из 16-байтовых портов использует 1–2 банка при выровненном доступе и 2–3 при невыровненном. Например, 8-байтовое чтение, пересекающее 8-байтовую границу, использует 2 банка, как и выровненное 16-байтовое. В SB конфликт происходит, если хоть один из банков, нужных одному чтению, также нужен и второму, причём для доступа к другой строке. Последнее означает, что если оба чтения требуют не только одинаковый(ые) банк(и), но и одинаковые номера строк в нём (них), то конфликта не будет, т. к. фактический доступ произойдёт один, и он обслужит оба обращения. В Nehalem, с его единственным чтением за такт, такого, очевидно, быть не могло.

Упомянув о невыровненном доступе, скажем и о более «грешных» делах — пересечении строки кэша, что обойдётся 5-тактным штрафом, и границы страницы виртуальной памяти (чаще всего — 4 КБ), что наказывается в среднем 24 тактами (ситуация требует сериализации конвейера). Причём последняя цифра малообъяснима, т. к. TLB, как мы увидим ниже, способны на одновременную обработку обеих смежных страниц — но даже при последовательном доступе двухзначной цифры получиться не может…

Изменений в LSU (контроллере L1D, который Intel упорно называет MOB) не меньше, чем в само́м кэше. Начнём с того, что очередь чтения удлинилась с 48 до 64 ячеек, а записи — с 32 до 36. Каждая ячейка привязана к одному мопу, а очередь записи хранит ещё и 32 байта данных (было 16). Очередь чтения хранит все команды считываний, но в каждый момент не более 32 могут обрабатываться на разных стадиях. Фактически, это отдельные диспетчер и планировщик, «ROB» которых хранит 64 мопа, а «резервация» — 32. Когда чтение завершено, моп удаляется из этой резервации, но остаётся в очереди чтения до отставки. Очередь записи хранит информацию до отставки предыдущих команд, когда ясно, что адрес, данные и сам факт исполнения команды верны, а значит её можно попытаться записать в кэш. Если попытка успешна — моп записи уходит в отставку, освобождая место и в очереди, и в ROB. При промахе или других проблемах запись задержится.

Как и все современные кэши, L1D является неблокирующим — после промаха он может принимать дальнейшие запросы одновременно с заполнением себя подгруженными данными. Кэш может выдержать даже 3 промаха/такт. Одновременно удерживается столько промахов, сколько имеется буферов заполнения. В SB, как и в его предшественнике, у L1D таковых 10, а у L2 — 16. Политика отложенной записи в L1D и L2 означает, что модифицированная строка остаётся в кэше до вытеснения, однако информация о факте её модификации (если до этого данные были «свежие») отправляется в теги соответствующей строки в L3.

Внеочерёдный доступ

Внеочерёдный движок получил любопытное дополнение: предсказание адресов, на основе которого порядок обращений в кэш может быть переставлен, делается не отдельными адресами, а целыми диапазонами — предсказывается верхнее и нижнее значения адреса, в пределах которых, как предполагается, произойдёт запись. Если точно известный адрес чтения не попадает ни в один диапазон ещё не исполненных записей — чтение можно запустить заранее. Такой вариант срабатывает чаще имевшегося ранее, который разрешал внеочерёдную загрузку, только если есть высокая вероятность несовпадения с конкретным адресом записи. Сама вероятность рассчитывается, как в предсказателе переходов — в LSU, видимо, есть некий аналог таблицы BHT со счётчиком вероятности в каждой ячейке. Когда адрес записи становится известен, счётчик увеличивается при несовпадении адресов и уменьшается при конфликте.

Однако предсказатель оперирует только выровненными на 16 байт чтениями размером до 16 байт, а также выровненными 32-байтовыми — остальные будут ждать вычисления адресов всех предыдущих записей. Ещё одна проблема нового движка в том, что он предсказывает лишь младшие 12 бит адресов: если у записи и чтения они равны (даже если они не предсказаны, а точно известны), то чтение считается зависимым от записи. Т. е. фактически предсказывается лишь 8 бит адреса — с 5-го по 12-й. Возможно, ложная зависимость обусловлена тем, что в ячейках таблицы счётчиков нет поля, хранящего старшую часть адреса.

Ясно, что STLF не может работать одновременно с внеочерёдной загрузкой: адреса записей должны быть известны точно, а не только 8 битами.

Источник

Intel Sandy Bridge. Микроархитектура

Обзор микроархитектуры процессоров Intel Sandy Bridge (обновлено)

Кольцевая шина

В системах предыдущего поколения обмен данными между различными функциональными частями системы происходил через специализированные шины данных — QPI и DMI. В случае Sandy Bridge, где графическая часть и системная логика интегрированы в процессор, вместо внешних шин QPI и DMI используется внутренняя кольцевая шина (Ring Interconnect):

Что такое кольцевая шина процессора. Смотреть фото Что такое кольцевая шина процессора. Смотреть картинку Что такое кольцевая шина процессора. Картинка про Что такое кольцевая шина процессора. Фото Что такое кольцевая шина процессора

Кольцевая шина объединила каждое ядро процессора, графическое ядро, кэш последнего уровня (LLC) и системный агент, в котором находится управляющая логика.

По сути, кольцевая шина — это протокол, который включает в себя комбинацию протокола QPI и протокола коррекции ошибок.

Кольцевая шина Sandy Bridge — это общее понятие, а сам обмен данными происходит посредством четырех функциональных шин шириной по 32 байта:

Все четыре используются на разных фазах транзакции, поэтому для полного доступа к кольцевой шине необходимо четыре такта. Организация кольцевой шины позволяет любому из компонентов, которые она объединяет, обращаться друг к другу напрямую. Таким образом, в одно и то же время кеш может использоваться как ядрами, так и графической системой.

Если в ядре Westmere EX кольцевая шина имела общую точку доступа ядрам процессора, то организация индивидуальных точек доступа (Cache Box) дала серьезный задел для масштабируемости. В четырехядерных процессорах скорость доступа ядер к кешу последнего уровня возросла с 96 Gb/s у Westmere EX до 384 Gb/s у Sandy Bridge.
Задержка доступа к кешу сократилось с примерно 36 циклов у Westmere до 26-31 циклов в Sandy Bridge.

Кольцевая шина имеет общее питание и частоту с ядрами процессора и кэшем последнего уровня. При увеличении нагрузки на процессор, увеличивается частота ядер, а вместе с ней — тактовая частота кольцевой шины и кеша последнего уровня. Такая реализация позволяет добиться реальной масштабируемости пропускной способности системы и энергопотребления. Однако лично мне пока не ясно, как скажется такая реализация на производительности графической системы при условии нагрузки только на графическую часть, когда кольцевая шина и LCC будут работать вместе с простаивающими ядрами на пониженной частоте.

Источник

Как разогнать процессор Intel на примере Intel Core i9-9900K

Что такое кольцевая шина процессора. Смотреть фото Что такое кольцевая шина процессора. Смотреть картинку Что такое кольцевая шина процессора. Картинка про Что такое кольцевая шина процессора. Фото Что такое кольцевая шина процессора

Что такое кольцевая шина процессора. Смотреть фото Что такое кольцевая шина процессора. Смотреть картинку Что такое кольцевая шина процессора. Картинка про Что такое кольцевая шина процессора. Фото Что такое кольцевая шина процессора

Содержание

Содержание

Разгон процессоров от компании Intel в первую очередь связан с выбором процессора с индексом K или KF (К — означает разблокированный множитель) и материнской платы на Z-чипсете (Z490–170). А также от выбора системы охлаждения.

Чтобы понять весь смыл разгона, нужно определиться, что вы хотите получить от разгона. Стабильной работы и быть уверенным, что не вылезет синий экран смерти? Или же вам нужно перед друзьями пощеголять заветной частотой 5000–5500 MHz?

Сегодня будет рассмотрен именно первый вариант. Стабильный разгон на все случаи жизни, однако и тем, кто выбрал второй вариант, будет полезно к прочтению.

Выбор материнской платы

К разгону нужно подходить очень ответственно и не пытаться разогнать Core i9-9900K на материнских платах, которые не рассчитаны на данный процессор (это, к примеру, ASRock Z390 Phantom Gaming 4, Gigabyte Z390 UD, Asus Prime Z390-P, MSI Z390-A Pro и так далее), так как удел этих материнских плат — процессоры Core i5 и, возможно, Core i7 в умеренном разгоне. Intel Core i9-9900K в результате разгона и при серьезной постоянной нагрузке потребляет от 220 до 300 Ватт, что неминуемо вызовет перегрев цепей питания материнских плат начального уровня и, как следствие, выключение компьютера, либо сброс частоты процессора. И хорошо, если просто к перегреву, а не прогару элементов цепей питания.

Выбор материнской платы для разгона — это одно из самых важных занятий. Ведь именно функционал платы ее настройки и качество элементной базы и отвечают за стабильность и успех в разгоне. Ознакомиться со списком пригодных материнских плат можно по ссылке.

Все материнские платы разделены на 4 группы: от начального уровня до продукта для энтузиастов. По большому счету, материнские платы второй и, с большой натяжкой, третьей группы хорошо справятся с разгоном процессора i9-9900K.

Выбор системы охлаждения

Немаловажным фактором успешного разгона является выбор системы охлаждения. Как я уже говорил, если вы будете разгонять на кулере который для этого не предназначен, у вас ничего хорошего не получится. Нам нужна либо качественная башня, способная реально отводить 220–250 TDP, либо жидкостная система охлаждения подобного уровня. Здесь все зависит только от бюджета.

Из воздушных систем охлаждения обратить внимание стоит на Noctua NH-D15 и be quiet! DARK ROCK PRO 4.

Силиконовая лотерея

И третий элемент, который участвует в разгоне — это сам процессор. Разгон является лотереей, и нельзя со 100% уверенностью сказать, что любой процессор с индексом К получится разогнать до частоты 5000 MHz, не говоря уже о 5300–5500 MHz (имеется в виду именно стабильный разгон). Оценить шансы на выигрыш в лотерее можно, пройдя по ссылке, где собрана статистика по разгону различных процессоров.

Что такое кольцевая шина процессора. Смотреть фото Что такое кольцевая шина процессора. Смотреть картинку Что такое кольцевая шина процессора. Картинка про Что такое кольцевая шина процессора. Фото Что такое кольцевая шина процессора

Приступаем к разгону

Примером в процессе разгона будет выступать материнская плата ASUS ROG MAXIMUS XI HERO и процессор Intel Core i9-9900K. За охлаждение процессора отвечает топовый воздушный кулер Noctua NH-D15.

Первым делом нам потребуется обновить BIOS материнской платы. Сделать это можно как напрямую, из специального раздела BIOS с подгрузкой из интернета, так и через USB-накопитель, предварительно скачав последнюю версию c сайта производителя. Это необходимо, потому как в новых версиях BIOS уменьшается количество багов. BIOS, что прошит в материнской плате при покупке, скорее всего, имеет одну из самых ранних версий.

Тактовая частота процессора формируется из частоты шины BCLK и коэффициента множителя Core Ratio.

Что такое кольцевая шина процессора. Смотреть фото Что такое кольцевая шина процессора. Смотреть картинку Что такое кольцевая шина процессора. Картинка про Что такое кольцевая шина процессора. Фото Что такое кольцевая шина процессора

Как уже было сказано, разгон будет осуществляться изменением множителя процессора.

Заходим в BIOS и выбираем вкладку Extreme Tweaker. Именно тут и будет происходить вся магия разгона.

Что такое кольцевая шина процессора. Смотреть фото Что такое кольцевая шина процессора. Смотреть картинку Что такое кольцевая шина процессора. Картинка про Что такое кольцевая шина процессора. Фото Что такое кольцевая шина процессора

Первым делом меняем значение параметра Ai Overclocker Tuner с Auto в Manual. У нас сразу становятся доступны вкладки, отвечающие за частоту шины BCLK Frequency и CPU Core Ratio, отвечающая за возможность настройки множителя процессора.

ASUS MultiCore Enhancement какой-либо роли, когда Ai Overclocker Tuner в режиме Manual, не играет, можно либо не трогать, либо выключить, чтобы глаза не мозолило. Одна из уникальных функций Asus, расширяет лимиты TDP от Intel.

SVID Behavior — обеспечивает взаимосвязь между процессором и контроллером напряжения материнской платы, данный параметр используется при выставлении адаптивного напряжения или при смещении напряжения (Offset voltages). Начать разгон в любом случае лучше с фиксированного напряжения, чтобы понять, что может конкретно ваш экземпляр процессора, ведь все они уникальны. Если используется фиксация напряжения, значение этого параметра просто игнорируется. Установить Best Case Scenario. Но к этому мы еще вернемся чуть позже.

AVX Instruction Core Ratio Negative Offset — устанавливает отрицательный коэффициент при выполнении AVX-инструкций. Программы, использующие AVX-инструкции, создают сильную нагрузку на процессор, и, чтобы не лишаться заветных мегагерц в более простых задачах, придумана эта настройка. Несмотря на все большее распространение AVX-инструкции, в программах и играх они встречаются все еще редко. Все сугубо индивидуально и зависит от задач пользователя. Я использую значение 1.

Наример, если нужно, чтобы частота процессора при исполнении AVX инструкций была не 5100 MHz, а 5000 MHz, нужно указать 1 (51-1=50).

Далее нас интересует пункт CPU Core Ratio. Для процессоров с индексом K/KF выбираем Sync All Cores (для всех ядер).

1-Core Ratio Limit — именно тут и задается множитель для ядер процессора. Начать лучше с 49–50 для 9 серии и 47–48 для 8 серии процессоров Intel соответственно, с учетом шины BCLK 100 мы как раз получаем 4900–5000 MHz и 4700–4800 MHz.

Что такое кольцевая шина процессора. Смотреть фото Что такое кольцевая шина процессора. Смотреть картинку Что такое кольцевая шина процессора. Картинка про Что такое кольцевая шина процессора. Фото Что такое кольцевая шина процессора

DRAM Frequency — отвечает за установку частоты оперативной памяти. Но это уже совсем другая история.

CPU SVID Support — данный параметр необходим процессору для взаимодействия с регулятором напряжения материнской платы. Блок управления питанием внутри процессора использует SVID для связи с ШИМ-контроллером, который управляет регулятором напряжения. Это позволяет процессору выбирать оптимальное напряжение в зависимости от текущих условий работы. В адаптивном режиме установить в Auto или Enabled. При отключении пропадет мониторинг значений VID и потребляемой мощности.

CPU Core/Cache Current Limit Max — лимит по току в амперах (A) для процессорных ядер и кэша. Выставляем 210–220 A. Этого должно хватить всем даже для 9900к на частоте 5100MHz. Максимальное значение 255.75.

Min/Max CPU Cache Ratio — множитель кольцевой шины или просто частота кэша. Для установки данного параметра есть неофициальное правило, множитель кольцевой шины примерно на два–три пункта меньше, чем множитель для ядер.

Например, если множитель для ядер 51, то искать стабильность кэша нужно от 47. Все очень индивидуально. Начать лучше с разгона только ядер. Если ядро стабильно, можно постепенно повышать частоту кэша на 1 пункт.

Разгон кольцевой шины в значении 1 к 1 с частотой ядер это идеальный вариант, но встречается такое очень редко на частоте 5000 MHz.

Заходим в раздел Internal CPU Power Management для установки лимитов по энергопотреблению.

Что такое кольцевая шина процессора. Смотреть фото Что такое кольцевая шина процессора. Смотреть картинку Что такое кольцевая шина процессора. Картинка про Что такое кольцевая шина процессора. Фото Что такое кольцевая шина процессора

SpeedStep — во время разгона, выключаем. На мой взгляд, совершенно бесполезная функция в десктопных компьютерах.

Long Duration Packet Power Limit — задает максимальное энергопотребление процессора в ватах (W) во время долгосрочных нагрузок. Выставляем максимум — 4095/6 в зависимости от версии Bios и производителя.

Short Duration Package Power Limit — задает максимальное возможное энергопотребление процессором в ваттах (W) при очень кратковременных нагрузках. Устанавливаем максимум — 4095/6.

Package Power Time Window — максимальное время, в котором процессору разрешено выходить за установленные лимиты. Устанавливаем максимальное значение 127.

Установка максимальных значений у данных параметров отключает все лимиты.

IA AC Load Line/IA DC Load Line — данные параметры используются в адаптивном режиме установки напряжения, они задают точность работы по VID. Установка этих двух значений на 0,01 приведет ближе к тому напряжению, которое установил пользователь, при этом минимизируются пики. Если компьютер, после установки параметра IA DC Load line в значение 0,01, уходит в «синьку», рекомендуется повысить значение до 0,25. Фиксированное напряжение будет игнорировать значения VID процессора, так что установка IA AC Load Line/IA DC Load Line в значение 0,01 не будет иметь никакого влияния на установку ручного напряжения, только при работе с VID. На материских платах от Gigabyte эти параметры необходимо устанавливать в значение 1.

Возвращаемся в меню Extrime Tweaker для выставления напряжения.

Что такое кольцевая шина процессора. Смотреть фото Что такое кольцевая шина процессора. Смотреть картинку Что такое кольцевая шина процессора. Картинка про Что такое кольцевая шина процессора. Фото Что такое кольцевая шина процессора

BCLK Aware Adaptive Voltage — если разгоняете с изменением значения шины BCLK, — включить.

CPU Core/Cache Voltage (VCore) — отвечает за установку напряжения для ядер и кэша. В зависимости от того, какой режим установки напряжения вы выберете, дальнейшие настройки могут отличаться.

Существует три варианта установки напряжения: адаптивный, фиксированный и смещение. На эту тему много мнений, однако, в моем случае, адаптивный режим получается холоднее. Зачастую для 9 поколения процессоров Intel оптимальным напряжением для использования 24/7 является 1.350–1.375V. Подобное напряжение имеет место выставлять для 9900К при наличии эффективного охлаждения.

Поднимать напряжение выше 1.4V для 8–9 серии процессоров Intel совершенно нецелесообразно и опасно. Рост потребления и температуры не соразмерен с ростом производительности, которую вы получите в результате такого разгона.

Offset mode Sign — устанавливает, в какую сторону будет происходить смещение напряжения, позволяет добавлять (+) или уменьшать (-) значения к выставленному вольтажу.

Additional Turbo Mode CPU Core Voltage — устанавливает максимальное напряжение для процессора в адаптивном режиме. Я использую 1.350V, данное напряжение является некой золотой серединой по соотношению температура/безопасность.

Offset Voltage — величина смещения напряжения. У меня используется 0.001V, все очень индивидуально и подбирается во время тестирования.

DRAM Voltage — устанавливает напряжение для оперативной памяти. Условно безопасное значение при наличии радиаторов на оперативной памяти составляет 1.4–1.45V, без радиаторов до 1.4V.

CPU VCCIO Voltage (VCCIO) — устанавливает напряжение на IMC и IO.

CPU System Agent Voltage (VCCSA) — напряжение кольцевой шины и контроллера кольцевой шины.

Таблица с соотношением частоты оперативной памяти и напряжениями VCCIO и VCCSA:

Что такое кольцевая шина процессора. Смотреть фото Что такое кольцевая шина процессора. Смотреть картинку Что такое кольцевая шина процессора. Картинка про Что такое кольцевая шина процессора. Фото Что такое кольцевая шина процессора

Однако, по личному опыту, даже для частоты 4000 MHz требуется напряжение примерно 1.15V для VCCIO и 1.2V для VCCSA. На мой взгляд, разумным пределом является для VCCIO 1.20V и VCCSA 1.25V. Все что выше, должно быть оправдано либо частотой разгона оперативной памяти за 4000MHz +, либо желанием получить максимум на свой страх и риск.

Часто при использовании XMP профиля оперативной памяти параметры VCCIO и VCCSA остаются в значении Auto, тем самым могут повыситься до критических показателей, это, в свою очередь, чревато деградацией контроллера памяти с последующим выхода процессора из строя.

Установка LLC

LLC (Load-Line Calibration) В зависимости от степени нагрузки на процессор, напряжение проседает, это называется Vdroop. LLC компенсирует просадку напряжения (vCore) при высокой нагрузке. Но есть определенные особенности работы с LLC.

Например, мы установили фиксированное напряжение в BIOS для ядер 1.35V. После старта компьютера на рабочем столе мы видим уже не 1.35V, а 1.32V. Но, если запустим более требовательное к ресурсам процессора приложение, например Linx, напряжение может провалиться до 1.15V, и мы получим синий экран или «невязки», ошибки или выпадение ядер.

Чтобы напряжение проседало не так сильно и придумана функция LLC c разным уровнем компенсации просадки. Не стоит сразу гнаться за установкой самого высокого/сильного уровня компенсации. В этом нет никакого смысла. Это может быть даже опасно ввиду чрезвычайно завышенного напряжения (overshoot) в момент запуска и прекращения ресурсоемкой нагрузки перед и после Vdroop. Нужно оптимально подобрать выставленное напряжение с уровнем LLC. Напряжение под нагрузкой и должно проседать, но должна оставаться стабильность. Конкретно у меня в BIOS материнской платы стоит 1.35V c LLC 5. Под нагрузкой напряжение опускается до 1.19–1.21V, при этом процессор остается абсолютно стабильным под длительной и серьезной нагрузкой. Завышенное напряжение выливается в большем потреблении и, как следствие, более высоких температурах.

Например, при установке LCC 6 с напряжением 1.35V во время серьезной нагрузки напряжение проседает до 1.26V, при этом справиться с энергопотреблением и температурой с использованием воздушной системы охлаждения уже нет возможности.

Чтобы наглядно изучить процесс работы LLC и то, какое влияние оказывает завышенный LLC на Overshoot’ы, предлагаю ознакомиться с работами elmora, более подробно здесь.

Идеальным вариантом, с точки зрения Overshoot’ов, является использование LLC в значении 1 (самое слабое на платах Asus), однако добиться стабильности с таким режимом работы LLC во время серьезной нагрузки будет сложно, как выход, существенное завышенное напряжение в BIOS. Что тоже не очень хорошо.

Что такое кольцевая шина процессора. Смотреть фото Что такое кольцевая шина процессора. Смотреть картинку Что такое кольцевая шина процессора. Картинка про Что такое кольцевая шина процессора. Фото Что такое кольцевая шина процессора

Пример использовании LLC в значении 8 (самое сильно на платах Asus)

Что такое кольцевая шина процессора. Смотреть фото Что такое кольцевая шина процессора. Смотреть картинку Что такое кольцевая шина процессора. Картинка про Что такое кольцевая шина процессора. Фото Что такое кольцевая шина процессора

При появлении нагрузки на процессоре напряжение просело, но потом в работу включается LLC и компенсирует просадку, причем делая это настолько агрессивно, что напряжение на мгновение стало даже выше установленного в BIOS.

В момент прекращения нагрузки мы видим еще больший скачок напряжения (Overshoot), а потом спад, работа LLC прекратилась. Вот именно эти Overshoot’ы, которые значительно превышают установленное напряжение в BIOS, опасны для процессора. Какого-либо вреда на процессор Undershoot и Vdroop не оказывают, они лишь являются виновниками нестабильности работы процессора при слишком сильных просадках.

Что такое кольцевая шина процессора. Смотреть фото Что такое кольцевая шина процессора. Смотреть картинку Что такое кольцевая шина процессора. Картинка про Что такое кольцевая шина процессора. Фото Что такое кольцевая шина процессора

CPU Current Capability — увеличивает допустимое значение максимального тока, подаваемого на процессор. Сильно не увлекайтесь, с увеличением растет так же и температура. Оптимально на 130–140%

VRM Spread Spectrum — лучше выключить и кактус у компьютера поставить, незначительное уменьшение излучения за счет ухудшения сигналов да и шина BLCK скакать не будет.

Все остальные настройки нужны исключительно для любителей выжимать максимум из своих систем любой ценой.

Проверка стабильности

После внесения всех изменений, если компьютер не загружается, необходимо повысить напряжение на ядре или понизить частоту. Когда все же удалось загрузить Windows, открываем программу HWinfo или HWMonitor для мониторинга за состоянием температуры процессора и запускаем Linx или любую другую программу для проверки стабильности и проверяем, стабильны ли произведенные настройки. Автор пользуется для проверки стабильности разгона процессора программами Linx с AVX и Prime95 Version 29.8 build 6.

Если вдруг выявилась нестабильность, то повышаем напряжение в пределах разумного и пробуем снова. Если стабильности не удается добиться, понижаем частоту. Все значения частоты и напряжения сугубо индивидуальны, и дать на 100 % верные и подходящие всем значения нельзя. Как уже писалось, разгон — это всегда лотерея, однако, купив более качественный продукт, шанс выиграть всегда будет несколько выше.

Что такое кольцевая шина процессора. Смотреть фото Что такое кольцевая шина процессора. Смотреть картинку Что такое кольцевая шина процессора. Картинка про Что такое кольцевая шина процессора. Фото Что такое кольцевая шина процессора

Резюмируем все выше сказанное

Максимально допустимое напряжение на процессор составляет до 1.4V. Оптимально в пределах 1.35V, со всем что выше, возникают трудности с температурой под нагрузкой.

Существует 3 способа установки напряжения:

Adaptive mode — это предпочтительный способ для установки напряжения.
Он работает с таблицей значений VID вашего процессора и позволяет снижать напряжение в простое.

Оптимально найти стабильное напряжение в фиксированном режиме, потом выставить адаптивный режим и вбить это знание для адаптивного режима, далее выставить величину смещения по необходимости.

При разгоне оперативной памяти и использовании XMP профиля, необходимо контролировать напряжение на CPU VCCIO Voltage (VCCIO) и CPU System Agent Voltage (VCCSA).

Подобрать оптимальный уровень работы LLC, VDROOP ДОЛЖЕН БЫТЬ.

Название и принцип работы LLC у разных производителей

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *