Что такое когерентность простыми словами
Значение слова когерентность
Словарь лингвистических терминов
1. (лат. cohaerens находящийся в связи)
Согласованное протекание во времени нескольких процессов.
2. Глобальная связность в тексте (Н.А. Николина).
Термины и понятия лингвистики: Лексика. Лексикология. Фразеология
(лат. cohaerens находящийся в связи)
Согласованное протекание во времени нескольких процессов.
Философский словарь (Конт-Спонвиль)
Связность (co-haerens), но не столько физическая, сколько логическая. Когерентным называют то, что непротиворечиво. Нетрудно заметить, что когерентность не может служить доказательством, вернее, служит доказательством только самой себя. Связная и непротиворечивая ошибка еще не становится истиной.
Толковый переводоведческий словарь
согласованное протекание во времени нескольких процессов.
Термины и понятия: Методы исследования и анализа текста. Словарь-справочник
Глобальная связность в тексте (Н.А. Николина).
Энциклопедический словарь
Большая Советская Энциклопедия
(от латинского cohaerens ≈ находящийся в связи), согласованное протекание во времени нескольких колебательных или волновых процессов, проявляющееся при их сложении. Колебания называются когерентными, если разность их фаз остаётся постоянной во времени и при сложении колебаний определяет амплитуду суммарного колебания. Два гармонических (синусоидальных) колебания одной частоты всегда когерентны. Гармоническое колебание описывается выражением: х = A cos (2pvt + j), (
где х ≈ колеблющаяся величина (например, смещение маятника от положения равновесия, напряжённость электрического и магнитного полей и т.д.). Частота гармонического колебания, его амплитуда А и фаза j постоянны во времени. При сложении двух гармонических колебаний с одинаковой частотой v, но разными амплитудами A1 и А2 и фазами j1 и j2, образуется гармоническое колебание той же частоты. Амплитуда результирующего колебания:
может изменяться в пределах от A1 + А2 до А1 ≈ А2 в зависимости от разности фаз j1 ≈ j2 (). Интенсивность результирующего колебания, пропорциональная Ар2 также зависит от разности фаз.
Если же фазы колебаний j1 и j2 изменяются, но их разность j1 ≈ j2 остается постоянной, то интенсивность суммарного колебания, как в случае идеально гармонических колебаний, определяется разностью фаз складываемых колебаний, то есть имеет место К. Если разность фаз двух колебаний изменяется очень медленно, то говорят, что колебания остаются когерентными в течение некоторого времени, пока их разность фаз не успела измениться на величину, сравнимую с p.
Можно сравнить фазы одного и того же колебания в разные моменты времени t1 и t2, разделённые интервалом t. Если негармоничность колебания проявляется в беспорядочном, случайном изменении во времени его фазы, то при достаточно большом t изменение фазы колебания может превысить p. Это означает, что через время t гармоническое колебание «забывает» свою первоначальную фазу и становится некогерентным «само себе». Время t называется временем К. негармонического колебания, или продолжительностью гармонического цуга. По истечении одного гармонического цуга он как бы заменяется другим с той же частотой, но др. фазой.
При распространении плоской монохроматической электромагнитной волны в однородной среде напряжённость электрического поля Е вдоль направления распространения этой волны ох в момент времени t равна:
где l = сТ≈ длина волны, с ≈ скорость её распространения, Т ≈ период колебаний. Фаза колебаний в какой-нибудь определённой точке пространства сохраняется только в течение времени К. т. За это время волна распространится на расстояние сt и колебания Е в точках, удалённых друг от друга на расстояние сt, вдоль направления распространения волны, оказываются некогерентными. Расстояние, равное сt вдоль направления распространения плоской волны на котором случайные изменения фазы колебаний достигают величины, сравнимой с p, называют длиной К., или длиной цуга.
Видимый солнечный свет, занимающий на шкале частот электромагнитных волн диапазон от 4Ч1014 до 8Ч1014гц, можно рассматривать как гармоническую волну с быстро меняющимися амплитудой, частотой и фазой. При этом длина цуга
Всё сказанное справедливо для плоской волны. Однако идеально плоская волна так же неосуществима, как и идеально гармоническое колебание (см. Волны ). В реальных волновых процессах амплитуды и фаза колебаний изменяются не только вдоль направления распространения волны, но и в плоскости, перпендикулярной этому направлению. Случайные изменения разности фаз в двух точках, расположенных в этой плоскости, увеличиваются с увеличением расстояния между ними. К. колебаний в этих точках ослабевает и на некотором расстоянии l, когда случайные изменения разности фаз становятся сравнимыми с p, исчезают. Для описания когерентных свойств волны, в плоскости, перпендикулярной направлению ее распространения, применяют термин пространственная К., в отличие от временной К., связанной со степенью монохроматичности волны. Все пространство, занимаемое волной, можно разбить на области, в каждой из которых волна сохраняет К. Объём такой области (объём К.) приблизительно равен произведению длины цуга сt на площадь круга диаметром / (размер пространственной К.).
Нарушение пространственной К. связано с особенностями процессов излучения и формирования волн. Например, пространственная К. световой волны, излучаемой протяжённым нагретым телом, исчезает на расстоянии от его поверхности всего в несколько длин волн, т.к. разные части нагретого тела излучают независимо друг от друга (см. Спонтанное излучение ). В результате вместо одной плоской волны источник излучает совокупность плоских волн, распространяющихся по всем возможным направлениям. По мере удаления от теплового источника (конечных размеров), волна все больше и больше приближается к плоской. Размер пространственной К. l растет пропорционально l ═≈ где R ≈ расстояние до источника, r ≈ размеры источника. Это позволяет наблюдать интерференцию света звёзд, несмотря на то, что они являются тепловыми источниками огромных размеров. Измеряя / для света от ближайших звёзд, удаётся определить их размеры r. Величину l/r называют углом К. С удалением от источника интенсивность света убывает как 1/R2. Поэтому с помощью нагретого тела нельзя получить интенсивное излучение, обладающее большой пространственной К.
В оптике наиболее распространённым способом получения двух когерентных волн является расщепление волны, излучаемой одним немонохроматическим источником, на две волны, распространяющиеся по разным путям, но, в конце концов, встречающихся в одной точке, где и происходит их сложение (рис. 2). Если запаздывание одной волны по отношению к другой, связанное с разностью пройденных ими путей, меньше продолжительности цуга, то колебания в точке сложения будут когерентными и будет наблюдаться интерференция света. Когда разность путей двух волн приближается к длине цуга, К. лучей ослабевает. Колебания освещённости экрана уменьшаются, освещённость I стремится к постоянной величине, равной сумме интенсивностей двух волн, падающих на экран. В случае неточечного (протяжённого) теплового источника два луча, пришедшие в точки А и В, могут оказаться некогерентными из-за пространственной некогерентности излучаемой волны. В этом случае интерференция не наблюдается, так как интерференционные полосы от разных точек источника смещены относительно друг друга на расстояние, большее ширины полосы.
Понятие К., возникшее первоначально в классической теории колебаний и волн, применяется также по отношению к объектам и процессам, описываемым квантовой механикой (атомные частицы, твёрдые тела и т.д.).
Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957; Горелик Г. С., Колебания и волны, 2 изд., М., 1959; Фабрикант В. А., Новое о когерентности, «Физика в школе», 1968, ╧ 1; Франсон М., Сланский С., Когерентность в оптике, пер. с франц., М., 1968; Мартинсен В., Шпиллер Е., Что такое когерентность, «Природа», 1968, ╧ 10.
Квантовая азбука: «Когерентность»
Можно ли потревожить квантовую систему чуть-чуть, а потом вернуть все обратно?
Что такое когерентность? Есть ли какие-то хорошие аналогии из классической физики?
Понятие когерентности впервые возникает именно в классической физике, когда речь идет про колебания. Классическая когерентность — это постоянство относительной фазы между двумя или более волновыми процессами одной частоты. Когда говорят о когерентности всегда вспоминают интерференцию — эффект, при котором суммарный поток энергии от нескольких когерентных источников в некоторой точке пространства получается не непосредственным сложением потоков энергии от каждого источника, а чуть сложнее. Говоря формально, нужно сложить комплексные амплитуды, которые описывают приходящую от каждого источника волну, потом взять модуль полученного комплексного числа и возвести его в квадрат (с некоторым коэффициентом, чтоб с размерностями все было хорошо).
За счет суммирования комплексных амплитуд, а не интенсивностей, в пространственном профиле интенсивности образуется хорошо знакомая интерференционная картинка. Именно отличие результирующей интенсивности волнового процесса от суммы интенсивностей его составляющих и есть признак интерференции.
Теперь к квантовой механике. Одним из основных положений квантовой механики является то, что микроскопические частицы в своем поведении проявляют волновые свойства. Но если в классической физике мы говорили, например, о волнах напряженности электромагнитного поля, то для микроскопических частиц речь идет волнах вероятности, описывающимися комплексными «амплитудами вероятности», известными также под названием «волновая функция». Именно эта идея заложена в уравнение Шрёдингера.
Для волн вероятности, как и любых других волн, также характерны все те же эффекты, связанные с возможностью наложения волн друг на друга. В квантовой механике такое наложение называют (когерентной) суперпозицией. Именно суперпозиция приводит к «квантовым» эффектам дифракции и интерференции.
Квантовые системы могут находиться в когерентной суперпозиции состояний, даже если это суперпозиция (с классической точки зрения) взаимоисключающих состояний. Прямое применение квантовых законов к классическому миру ведет к парадоксальным ситуациям, одна из наиболее известных — кошка Шрёдингера. Да, в ящик Шрёдингер хотел посадить именно кошку (die Katze), а не кота.
Почему когерентность необходима для квантовых вычислений?
Квантовая когерентность позволяет реализовать квантовый параллелизм. Архитектура квантовых компьютеров отличается от архитектуры классический вычислений в нескольких важных аспектах (про это в квантовой азбуке уже говорилось, но напомнить основы будет не лишним).
Система битов заменяется на систему кубитов, которая находится в некотором начальном состоянии. Логические операции выполняются не классическими логическими элементами, а их квантовыми аналогами. Таким образом, в квантовом компьютере через квантовый логический элемент («гейт») может проходить сразу целый набор (когерентная суперпозиция) входных сигналов, дающих суперпозицию соответствующих выходных сигналов. Это и обеспечивает преимущество квантовых вычислений над классическими в некоторых классах задач, например, в задаче факторизации.
Правда тут есть тонкость: после того как квантовый компьютер закончит вычисления, ответы к задачам, которые он решал, будут также находиться в состоянии суперпозиции. Как только мы попытаемся выяснить, каковы эти ответы, мы получим только один, случайно выбранный ответ. Но проделав вычисления много раз, мы можем говорить об ответе с достаточной степенью вероятности.
Квантовый компьютер имеет преимущество над классическим в определенных классах задач. С одной стороны, это ограничивает его применения и свидетельствует о том, что он, возможно, не заменит нам классический персональный компьютер. Хотя, высказывая подобные предположения стоит помнить о том, что на заре компьютерной эры миру приписывали необходимость всего в пяти компьютерах.
Кроме того, класс задач, с которым квантовый компьютер справляется лучше классического, лежит в основе современных представлений о криптографии и информационной безопасности. Так что возможное появление квантового компьютера уже меняет правила в информационных технологиях.
Что такое декогеренция, какие процессы могут к ней приводить?
В классической физике явление декогеренции также существует. Декогеренция — нарушение когерентности — это исчезновение когерентных свойств, связанное с потерей постоянства относительной фазы между источниками, что, например, приводит к разрушению интерференционной картины, о которой мы говорили выше.
В квантовой механике все сложнее и намного интереснее. Декогеренция представляет собой взаимодействие квантовой системы с окружающей средой, при котором квантовое состояние системы неконтролируемо изменяется. С точки зрения теории квантовой информации декогеренции соответствует возникновение запутанности между степенями свободы квантового состояния и степеняими свободы окружения.
При этом в окружение попадает часть информации о квантовом объекте, в то время, как в квантовую систему попадает часть информации об окружении. Декогеренция происходит из-за того, что хаос неопределенности состояния окружения врывается в состояние квантовой системы, изменяя его неконтролируемым образом.
Если рассматривать поведение всех, в том числе и макроскопических, объектов с точки зрения квантовой механики, то декогеренции соответствует возникновение запутанности между конкретным квантовым объектом и окружением. По причине декогеренции мы не видим кошек, одновременно бегущих в противоположных направлениях.
Как определить, что произошла декогеренция?
Декогеренцию можно обнаружить, например, по исчезновению интерференционной картины. Есть такой простой эксперимент «Welcher Weg» («который путь»). В нем, фактически, мы просто посылаем фотоны на светоделитель, через который фотон либо проходит (назовем это «путь 1»), либо отражается (назовем это «путь 2»). Затем с использованием зеркал мы сводим два пути в другой светоделитель, на каждом из выходов которого стоит детектор одиночных фотонов.
К примеру, если в этом эксперименте интерферометр (т.е. соотношение между длинами путей) изначально был настроен на то, что все фотоны выходят строго в одном из двух направлений выходного светоделителя. При декогеренции, т.е. разрушения состояния когеретной суперпозиции между путями, они будут выходить с вероятностью 1/2 в каждом из двух направлений.
Предположим, квантовый компьютер выполнял некую операцию и произошла декогеренция (например, на середине исполнения алгоритма Шора, или каких-либо более простых операций). Каков будет результат вычисления, чем он будет отличаться от вычисления на полностью когерентных кубитах?
Декогеренция будет приводит к искаженному результату вычислений (который, возможно, еще и будет меняться от запуска к запуску) в выходном квантовом регистре. Например, в результате выполнения алгоритма Шора для числа 15 мы будем получать не стабильно 3 и 5, а с какой-то вероятностью 3 и 5, и с какой-то вероятностью всевозможные иные результаты (2 и 4, 3 и 6 и т.д.)
Как бороться с декогеренцией? Можете ли Вы привести какие-то примеры? Сложнее ли сохранять когерентность в многокубитных системах?
Для борьбы с декогеренцией нужен контроль окружения, поскольку даже малейшее воздействие окружения может привести к декогеренции. Таким образом, нужно чтобы изучать квантовые суперпозиции, необходимо тщательно изолировать их от окружающей среды.
Интересно, что последнее обстоятельство породило концепцию квантового сенсора: раз квантовые состояния так чувствительны к внешним воздействиям, значит с их помощью можно проводить сверхчувствительные измерения. Недавно с помощью квантового сенсора на NV-центрах было проведено измерение сигнала от отдельного нейрона.
На практике для борьбы с декогеренцией используются низкие температуры и различные компенсационные схемы для медленно меняющихся флуктуаций в параметрах окружающей среды. Например, ученые научились обращать декогеренцию вспять в экспериментах с «спиновым эхо» (о нем чуть ниже).
В многокубитных системах сложнее балансировать между необходимостью заставить кубиты «слышать» друга друга и «разговаривать» между собой, и при этом «не слышать» окружение. Принципиальных физических ограничений для этого нет, но на пути к решению такой задачи есть ряд технологический затруднений.
Как долго сохраняется когерентность в современных кубитах?
Недавно ученые Мэрилендского университета построили устройство из пяти кубитов на основе ионов иттербия в электромагнитных ловушках (о ней N+1 писал). В частности, в этой работе, являющейся одной из самых свежих, это времена порядка секунд.
Насколько эта величина соответствует требованиям, предъявляемым концепцией квантовых компьютеров?
Нужно чтобы время когерентности превосходило время, за которое происходит вычисление и коррекция ошибок. Таким образом, достижимое время когерентности является достаточным чтобы проводить вычисления. Однако этого пока недостаточно, чтобы сделать полноценный и универсальный квантовый компьютер, поскольку для этого требуется долговременная память и другие элементы, в которых время когерентности должно быть больше. Другой интересный подход состоит в развитии топологических квантовых вычислений, которые являются устойчивыми к ошибкам.
Как связана декогеренция и коллапс волновой функции? Это про одно и то же?
Это «добрый полицейский» и «злой полицейский».
Суть обоих этих процессов состоит в утечке информации о состоянии квантовой системы в окружающую среду. Когда говорят о декогеренции, данный процесс представляется относительно плавным и растянутым во времени — как допрос доброго полицейского. В случае коллапса он подразумевается практически мгновенным и интенсивным — злому полицейскому нужны ответы сразу. И неважно что там с дальше будет с нашей квантовой системой.
Часто говорят о коллапсе волновой функции в момент измерения, хотя фактически измерение есть срежессированная версия декогеренции, при которой роль окружения берет на себя измерительный прибор, транслирующий информацию о квантовой системе на макроскопический уровень (условно говоря, на отклонение стрелки). Можно сказать, также, что коллапс волновой функции представляет собой предельный случай декогеренции.
А можно декогеренцию чуть-чуть сломать, а потом вернуть на место?
Исходя из природы процесса декогеренции понятно, что для обращения декогеренции требуется вернуть информацию, известную окружению о квантовой системе, обратно в квантовую систему, т.е. макроскопическому окружению требуется её «забыть». В общем, это очень сложно, поскольку процесс утечки информации является необратимым из-за того, что степеней свободы, в которых эта информация может храниться чрезвычайно много, и все они быстро обмениваются ей между собой. Поэтому чтобы вернуть все на свои места нужно достаточно хорошо контролировать окружение. Все как у людей, в общем.
Однако принципиально трюк по обращению декогеренции возможен, например, в эксперименте под названием «спиновое эхо». Его суть состоит в том, что время эволюции квантовой системы (например, ядерного спина) было гораздо меньше, чем время характерного изменения внешних условий (магнитного поля). Применяя специальную последовательность операций, можно обращать процесс утечке информации о квантовой системы вспять.
Подготовили материал Владимир Королев и Андрей Коняев
Когерентность
Когере́нтность (от лат. cohaerens — «находящийся в связи»)
Содержание
В физике
В физике когерентностью называется скоррелированность (согласованность) нескольких колебательных или волновых процессов во времени, проявляющаяся при их сложении. Колебания когерентны, если разность их фаз постоянна во времени и при сложении колебаний получается колебание той же частоты.
Классический пример двух когерентных колебаний — это два синусоидальных колебания одинаковой частоты.
Когерентность волны означает, что в различных точках волны осцилляции происходят синхронно, то есть разность фаз между двумя точками не зависит от времени. Отсутствие когерентности, следовательно — ситуация, когда разность фаз между двумя точками не постоянна, а меняется со временем. Такая ситуация может иметь место, если волна была сгенерирована не единым излучателем, а совокупностью одинаковых, но независимых (то есть нескоррелированных) излучателей.
Изучение когерентности световых волн приводит к понятиям временно́й и пространственной когерентности. При распространении электромагнитных волн в волноводах могут иметь место фазовые сингулярности. В случае волн на воде когерентность волны определяет так называемая вторая периодичность.
Без когерентности невозможно наблюдать такое явление, как интерференция.
Радиус когерентности — расстояние, при смещении на которое вдоль псевдоволновой поверхности, случайное изменение фазы достигает значения порядка π.
Декогеренция
Процесс декогеренции — нарушение когерентности, вызываемое взаимодействием частиц с окружающей средой.
В лингвистике
Примечания
См. также
Полезное
Смотреть что такое «Когерентность» в других словарях:
КОГЕРЕНТНОСТЬ — (от лат. cohaerens находящийся в связи), согласованное протекание во времени и в пр ве неск. колебат. или волн. процессов, проявляющееся при их сложении. Колебания наз. когерентными, если разность их фаз остаётся постоянной (или закономерно… … Физическая энциклопедия
Когерентность — Когерентность. Сложение двух гармонических колебаний (пунктир) с амплитудами А1 и А2 при различных разностях фаз. Результирующее колебание сплошная линия. КОГЕРЕНТНОСТЬ (от латинского cohaerens, родительный падеж cohaerentis пребывающий во… … Иллюстрированный энциклопедический словарь
КОГЕРЕНТНОСТЬ — (от лат. cohaerere быть связанным) – взаимосвязь. Принцип когерентности заключается в утверждении, что все существующее находится во взаимосвязи; когерентные законы онтологии выражают связь в том плане, в каком она существует между категориями… … Философская энциклопедия
Когерентность — Когерентность ♦ Cohérence Связность (co haerens), но не столько физическая, сколько логическая. Когерентным называют то, что непротиворечиво. Нетрудно заметить, что когерентность не может служить доказательством, вернее, служит… … Философский словарь Спонвиля
КОГЕРЕНТНОСТЬ — (от лат. cohaerens находящийся в связи) согласованное протекание во времени нескольких колебательных или волновых процессов. Если разность фаз 2 колебаний остается постоянной во времени или меняется по строго определенному закону, то Колебания… … Большой Энциклопедический словарь
КОГЕРЕНТНОСТЬ — КОГЕРЕНТНОСТЬ, в физике свойство ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ, которое заключается в том, что между двумя или более множествами волн имеется постоянное соотношение фаз. Если пики и спады одной волны всегда находятся на одном и том же расстоянии от … Научно-технический энциклопедический словарь
когерентность — сущ., кол во синонимов: 2 • согласованность (32) • соотнесенность (6) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
когерентность — и, ж. cohérence f. связь, соединение, соотношение. Физ. Постоянное во времени соотношение между фазами световых волн, дающее возможность получать интерференционные явления. Когерентные лучи получают от одного и того же источника. Лучи, взятые от… … Исторический словарь галлицизмов русского языка
когерентность — Согласованное протекание во времени нескольких колебательных процессов, проявляющееся при их сложении. [Гипертекстовый энциклопедический словарь по информатике Э. Якубайтиса] [http://www.morepc.ru/dict/] Тематики информационные технологии в целом … Справочник технического переводчика
КОГЕРЕНТНОСТЬ — согласованное протекание во времени нескольких колебательных или волновых процессов, проявляющееся при их сложении. Простейший случай К. два гармонических колебания с одинаковыми частотами и постоянной разностью фаз. К. колебаний является… … Большая политехническая энциклопедия
КОГЕРЕНТНОСТЬ
Смотреть что такое «КОГЕРЕНТНОСТЬ» в других словарях:
КОГЕРЕНТНОСТЬ — (от лат. cohaerens находящийся в связи), согласованное протекание во времени и в пр ве неск. колебат. или волн. процессов, проявляющееся при их сложении. Колебания наз. когерентными, если разность их фаз остаётся постоянной (или закономерно… … Физическая энциклопедия
Когерентность — Когерентность. Сложение двух гармонических колебаний (пунктир) с амплитудами А1 и А2 при различных разностях фаз. Результирующее колебание сплошная линия. КОГЕРЕНТНОСТЬ (от латинского cohaerens, родительный падеж cohaerentis пребывающий во… … Иллюстрированный энциклопедический словарь
Когерентность — Когерентность ♦ Cohérence Связность (co haerens), но не столько физическая, сколько логическая. Когерентным называют то, что непротиворечиво. Нетрудно заметить, что когерентность не может служить доказательством, вернее, служит… … Философский словарь Спонвиля
КОГЕРЕНТНОСТЬ — (от лат. cohaerens находящийся в связи) согласованное протекание во времени нескольких колебательных или волновых процессов. Если разность фаз 2 колебаний остается постоянной во времени или меняется по строго определенному закону, то Колебания… … Большой Энциклопедический словарь
КОГЕРЕНТНОСТЬ — КОГЕРЕНТНОСТЬ, в физике свойство ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ, которое заключается в том, что между двумя или более множествами волн имеется постоянное соотношение фаз. Если пики и спады одной волны всегда находятся на одном и том же расстоянии от … Научно-технический энциклопедический словарь
когерентность — сущ., кол во синонимов: 2 • согласованность (32) • соотнесенность (6) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
когерентность — и, ж. cohérence f. связь, соединение, соотношение. Физ. Постоянное во времени соотношение между фазами световых волн, дающее возможность получать интерференционные явления. Когерентные лучи получают от одного и того же источника. Лучи, взятые от… … Исторический словарь галлицизмов русского языка
когерентность — Согласованное протекание во времени нескольких колебательных процессов, проявляющееся при их сложении. [Гипертекстовый энциклопедический словарь по информатике Э. Якубайтиса] [http://www.morepc.ru/dict/] Тематики информационные технологии в целом … Справочник технического переводчика
КОГЕРЕНТНОСТЬ — согласованное протекание во времени нескольких колебательных или волновых процессов, проявляющееся при их сложении. Простейший случай К. два гармонических колебания с одинаковыми частотами и постоянной разностью фаз. К. колебаний является… … Большая политехническая энциклопедия
Когерентность — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия