Что такое коэффициент стьюдента
Библиотека постов MEDSTATISTIC об анализе медицинских данных
Ещё больше полезной информации в нашем блоге в Инстаграм @medstatistic
Критерии и методы
t-КРИТЕРИЙ СТЬЮДЕНТА ДЛЯ НЕЗАВИСИМЫХ СОВОКУПНОСТЕЙ
– общее название для класса методов статистической проверки гипотез (статистических критериев), основанных на распределении Стьюдента. Наиболее частые случаи применения t-критерия связаны с проверкой равенства средних значений в двух выборках.
Уильям Госсет
1. История разработки t-критерия
Данный критерий был разработан Уильямом Сили Госсетом для оценки качества пива в компании Гиннесс. В связи с обязательствами перед компанией по неразглашению коммерческой тайны, статья Госсета вышла в 1908 году в журнале «Биометрика» под псевдонимом «Student» (Студент).
2. Для чего используется t-критерий Стьюдента?
t-критерий Стьюдента используется для определения статистической значимости различий средних величин. Может применяться как в случаях сравнения независимых выборок (например, группы больных сахарным диабетом и группы здоровых), так и при сравнении связанных совокупностей (например, средняя частота пульса у одних и тех же пациентов до и после приема антиаритмического препарата). В последнем случае рассчитывается парный t-критерий Стьюдента
3. В каких случаях можно использовать t-критерий Стьюдента?
Для применения t-критерия Стьюдента необходимо, чтобы исходные данные имели нормальное распределение. Также имеет значение равенство дисперсий (распределения) сравниваемых групп (гомоскедастичность). При неравных дисперсиях применяется t-критерий в модификации Уэлча (Welch’s t).
При отсутствии нормального распределения сравниваемых выборок вместо t-критерия Стьюдента используются аналогичные методы непараметрической статистики, среди которых наиболее известными является U-критерий Манна — Уитни.
4. Как рассчитать t-критерий Стьюдента?
Для сравнения средних величин t-критерий Стьюдента рассчитывается по следующей формуле:
5. Как интерпретировать значение t-критерия Стьюдента?
Полученное значение t-критерия Стьюдента необходимо правильно интерпретировать. Для этого нам необходимо знать количество исследуемых в каждой группе (n1 и n2). Находим число степеней свободы f по следующей формуле:
После этого определяем критическое значение t-критерия Стьюдента для требуемого уровня значимости (например, p=0,05) и при данном числе степеней свободы f по таблице (см. ниже).
Сравниваем критическое и рассчитанное значения критерия:
6. Пример расчета t-критерия Стьюдента
Решение: Для оценки значимости различий используем t-критерий Стьюдента, рассчитываемый как разность средних значений, поделенная на сумму квадратов ошибок:
Что такое коэффициент стьюдента
Для уменьшения влияния случайных ошибок необходимо произвести измерение данной величины несколько раз. Предположим, что мы измеряем некоторую величину x. В результате проведенных измерений мы получили значений величины :
Так как оценочные значения результата измерений и ошибки Δx не являются точными, запись (3) результата измерений должна сопровождаться указанием его надежности P. Под надежностью или доверительной вероятностью понимают вероятность того, что истинное значение измеряемой величины заключено в интервале, указанном записью (3). Сам этот интервал называется доверительным интервалом.
Например, измеряя длину некоторого отрезка, окончательный результат мы записали в виде
Таким образом, задача заключается в том, чтобы, имея выборку (2), найти оценку результата измерений , его ошибку Δx и надежность P.
Эта задача может быть решена с помощью теории вероятностей и математической статистики.
В большинстве случаев случайные ошибки подчиняются нормальному закону распределения, установленного Гауссом. Нормальный закон распределения ошибок выражается формулой
где Δx отклонение от величины истинного значения;
σ истинная среднеквадратичная ошибка;
σ 2 дисперсия, величина которой характеризует разброс случайных величин.
Поскольку кривая распределена симметрично относительно оси ординат, можно утверждать, что равные по величине, но противоположные по знаку ошибки равновероятны. А это дает возможность в качестве оценки результатов измерений взять среднее значение всех элементов выборки (2)
где n число измерений.
Итак, если в одних и тех же условиях проделано n измерений, то наиболее вероятным значением измеряемой величины будет ее среднее значение (арифметическое). Величина стремится к истинному значению μ измеряемой величины при n → ∞.
Средней квадратичной ошибкой отдельного результата измерения называется величина
Она характеризует ошибку каждого отдельного измерения. При n → ∞ S стремится к постоянному пределу σ
С увеличением σ увеличивается разброс отсчетов, т.е. становится ниже точность измерений.
Среднеквадратичной ошибкой среднего арифметического называется величина
Это фундаментальный закон возрастания точности при росте числа измерений.
Ошибка характеризует точность, с которой получено среднее значение измеренной величины . Результат записывается в виде:
Эта методика расчета ошибок дает хорошие результаты (с надежностью 0.68) только в том случае, когда одна и та же величина измерялась не менее 30 50 раз.
В 1908 году Стьюдент показал, что статистических подход справедлив и при малом числе измерений. Распределение Стьюдента при числе измерений n → ∞ переходит в распределение Гаусса, а при малом числе отличается от него.
Для расчета абсолютной ошибки при малом количестве измерений вводится специальный коэффициент, зависящий от надежности P и числа измерений n, называемый коэффициентом
Стьюдента t.
Опуская теоретические обоснования его введения, заметим, что
где Δx абсолютная ошибка для данной доверительной вероятности;
среднеквадратичная ошибка среднего арифметического.
Для этого удобнее воспользоваться таблицей 3, в которой интервалы заданы в долях величины σ, являющейся мерой точности данного опыта по отношению к случайным ошибкам.
Таблица 2
n | Значения Р | ||||
0.6 | 0.8 | 0.95 | 0.99 | 0.999 | |
2 | 1.376 | 3.078 | 12.706 | 63.657 | 636.61 |
3 | 1.061 | 1.886 | 4.303 | 9.925 | 31.598 |
4 | 0.978 | 1.638 | 3.182 | 5.841 | 12.941 |
5 | 0.941 | 1.533 | 2.776 | 4.604 | 8.610 |
6 | 0.920 | 1.476 | 2.571 | 4.032 | 6.859 |
7 | 0.906 | 1.440 | 2.447 | 3.707 | 5.959 |
8 | 0.896 | 1.415 | 2.365 | 3.499 | 5.405 |
9 | 0.889 | 1.397 | 2.306 | 3.355 | 5.041 |
10 | 0.883 | 1.383 | 2.262 | 3.250 | 4.781 |
11 | 0.879 | 1.372 | 2.228 | 3.169 | 4.587 |
12 | 0.876 | 1.363 | 2.201 | 3.106 | 4.437 |
13 | 0.873 | 1.356 | 2.179 | 3.055 | 4.318 |
14 | 0.870 | 1.350 | 2.160 | 3.012 | 4.221 |
15 | 0.868 | 1.345 | 2.145 | 2.977 | 4.140 |
16 | 0.866 | 1.341 | 2.131 | 2.947 | 4.073 |
17 | 0.865 | 1.337 | 2.120 | 2.921 | 4.015 |
18 | 0.863 | 1.333 | 2.110 | 2.898 | 3.965 |
19 | 0.862 | 1.330 | 2.101 | 2.878 | 3.922 |
20 | 0.861 | 1.328 | 2.093 | 2.861 | 3.883 |
21 | 0.860 | 1.325 | 2.086 | 2.845 | 3.850 |
22 | 0.859 | 1.323 | 2.080 | 2.831 | 3.819 |
23 | 0.858 | 1.321 | 2.074 | 2.819 | 3.792 |
24 | 0.858 | 1.319 | 2.069 | 2.807 | 3.767 |
25 | 0.857 | 1.318 | 2.064 | 2.797 | 3.745 |
26 | 0.856 | 1.316 | 2.060 | 2.787 | 3.725 |
27 | 0.856 | 1.315 | 2.056 | 2.779 | 3.707 |
28 | 0.855 | 1.314 | 2.052 | 2.771 | 3.690 |
29 | 0.855 | 1.313 | 2.048 | 2.763 | 3.674 |
30 | 0.854 | 1.311 | 2.045 | 2.756 | 3.659 |
31 | 0.854 | 1.310 | 2.042 | 2.750 | 3.646 |
40 | 0.851 | 1.303 | 2.021 | 2.704 | 3.551 |
60 | 0.848 | 1.296 | 2.000 | 2.660 | 3.460 |
120 | 0.845 | 1.289 | 1.980 | 2.617 | 3.373 |
∞ | 0.842 | 1.282 | 1.960 | 2.576 | 3.291 |
Таблица 3
Δ = Δx/σ | Значения Р | |||||
0.5 | 0.7 | 0.9 | 0.95 | 0.99 | 0.999 | |
1.0 | 2 | 3 | 5 | 7 | 11 | 17 |
0.5 | 3 | 6 | 13 | 18 | 31 | 50 |
0.4 | 4 | 8 | 19 | 27 | 46 | 74 |
0.3 | 6 | 13 | 32 | 46 | 78 | 127 |
0.2 | 13 | 29 | 70 | 99 | 171 | 277 |
0.1 | 47 | 169 | 273 | 387 | 668 | 1089 |
При обработке результатов прямых измерений предлагается следующий порядок операций:
Рассмотрим на числовом примере применение приведенных выше формул.
Пример. Измерялся микрометром диаметр d стержня (систематическая ошибка измерения равна 0.005 мм ). Результаты измерений заносим во вторую графу таблицы, находим и в третью графу этой таблицы записываем разности , а в четвертую их квадраты (таблица 4).
Таблица 4
Задавшись надежностью P = 0.95, по таблице коэффициентов Стьюдента для шести измерений найдем t = 2.57. Абсолютная ошибка найдется по формуле (10).
Сравним случайную и систематическую ошибки:
следовательно, δ = 0.005 мм можно отбросить.
Основные статистики и t-критерий Стьюдента
В ходе рассмотрения примера мы будем использовать вымышленные сведения, чтобы читатель мог провести необходимые преобразования самостоятельно.
Так, допустим, в ходе исследований изучали влияние препарата А на содержание вещества В (в ммоль/г) в ткани С и концентрацию вещества D в крови (в ммоль/л) у пациентов, разделенных по какому-то признаку Е на 3 группы равного объема (n = 10). Результаты такого выдуманного исследования приведены в таблице:
Содержание вещества B, ммоль/г |
---|
two-tailed test | 1-0.9/2 | 1-0.8/2 | 1-0.7/2 | 1-0.6/2 | 1-0.5/2 | 1-0.4/2 | 1-0.3/2 | 1-0.2/2 | 1-0.1/2 | 1-0.05/2 | 1-0.02/2 |
---|---|---|---|---|---|---|---|---|---|---|---|
one-tailed test | 1-0.9 | 1-0.8 | 1-0.7 | 1-0.6 | 1-0.5 | 1-0.4 | 1-0.3 | 1-0.2 | 1-0.1 | 1-0.05 | 1-0.02 |
1 | 0.1584 | 0.3249 | 0.5095 | 0.7265 | 1.0000 | 1.3764 | 1.9626 | 3.0777 | 6.3138 | 12.7062 | 31.8205 |
2 | 0.1421 | 0.2887 | 0.4447 | 0.6172 | 0.8165 | 1.0607 | 1.3862 | 1.8856 | 2.9200 | 4.3027 | 6.9646 |
3 | 0.1366 | 0.2767 | 0.4242 | 0.5844 | 0.7649 | 0.9785 | 1.2498 | 1.6377 | 2.3534 | 3.1824 | 4.5407 |
4 | 0.1338 | 0.2707 | 0.4142 | 0.5686 | 0.7407 | 0.9410 | 1.1896 | 1.5332 | 2.1318 | 2.7764 | 3.7469 |
5 | 0.1322 | 0.2672 | 0.4082 | 0.5594 | 0.7267 | 0.9195 | 1.1558 | 1.4759 | 2.0150 | 2.5706 | 3.3649 |
6 | 0.1311 | 0.2648 | 0.4043 | 0.5534 | 0.7176 | 0.9057 | 1.1342 | 1.4398 | 1.9432 | 2.4469 | 3.1427 |
7 | 0.1303 | 0.2632 | 0.4015 | 0.5491 | 0.7111 | 0.8960 | 1.1192 | 1.4149 | 1.8946 | 2.3646 | 2.9980 |
8 | 0.1297 | 0.2619 | 0.3995 | 0.5459 | 0.7064 | 0.8889 | 1.1081 | 1.3968 | 1.8595 | 2.3060 | 2.8965 |
9 | 0.1293 | 0.2610 | 0.3979 | 0.5435 | 0.7027 | 0.8834 | 1.0997 | 1.3830 | 1.8331 | 2.2622 | 2.8214 |
10 | 0.1289 | 0.2602 | 0.3966 | 0.5415 | 0.6998 | 0.8791 | 1.0931 | 1.3722 | 1.8125 | 2.2281 | 2.7638 |
11 | 0.1286 | 0.2596 | 0.3956 | 0.5399 | 0.6974 | 0.8755 | 1.0877 | 1.3634 | 1.7959 | 2.2010 | 2.7181 |
12 | 0.1283 | 0.2590 | 0.3947 | 0.5386 | 0.6955 | 0.8726 | 1.0832 | 1.3562 | 1.7823 | 2.1788 | 2.6810 |
13 | 0.1281 | 0.2586 | 0.3940 | 0.5375 | 0.6938 | 0.8702 | 1.0795 | 1.3502 | 1.7709 | 2.1604 | 2.6503 |
14 | 0.1280 | 0.2582 | 0.3933 | 0.5366 | 0.6924 | 0.8681 | 1.0763 | 1.3450 | 1.7613 | 2.1448 | 2.6245 |
15 | 0.1278 | 0.2579 | 0.3928 | 0.5357 | 0.6912 | 0.8662 | 1.0735 | 1.3406 | 1.7531 | 2.1314 | 2.6025 |
16 | 0.1277 | 0.2576 | 0.3923 | 0.5350 | 0.6901 | 0.8647 | 1.0711 | 1.3368 | 1.7459 | 2.1199 | 2.5835 |
17 | 0.1276 | 0.2573 | 0.3919 | 0.5344 | 0.6892 | 0.8633 | 1.0690 | 1.3334 | 1.7396 | 2.1098 | 2.5669 |
18 | 0.1274 | 0.2571 | 0.3915 | 0.5338 | 0.6884 | 0.8620 | 1.0672 | 1.3304 | 1.7341 | 2.1009 | 2.5524 |
19 | 0.1274 | 0.2569 | 0.3912 | 0.5333 | 0.6876 | 0.8610 | 1.0655 | 1.3277 | 1.7291 | 2.0930 | 2.5395 |
20 | 0.1273 | 0.2567 | 0.3909 | 0.5329 | 0.6870 | 0.8600 | 1.0640 | 1.3253 | 1.7247 | 2.0860 | 2.5280 |
21 | 0.1272 | 0.2566 | 0.3906 | 0.5325 | 0.6864 | 0.8591 | 1.0627 | 1.3232 | 1.7207 | 2.0796 | 2.5176 |
22 | 0.1271 | 0.2564 | 0.3904 | 0.5321 | 0.6858 | 0.8583 | 1.0614 | 1.3212 | 1.7171 | 2.0739 | 2.5083 |
23 | 0.1271 | 0.2563 | 0.3902 | 0.5317 | 0.6853 | 0.8575 | 1.0603 | 1.3195 | 1.7139 | 2.0687 | 2.4999 |
24 | 0.1270 | 0.2562 | 0.3900 | 0.5314 | 0.6848 | 0.8569 | 1.0593 | 1.3178 | 1.7109 | 2.0639 | 2.4922 |
25 | 0.1269 | 0.2561 | 0.3898 | 0.5312 | 0.6844 | 0.8562 | 1.0584 | 1.3163 | 1.7081 | 2.0595 | 2.4851 |
26 | 0.1269 | 0.2560 | 0.3896 | 0.5309 | 0.6840 | 0.8557 | 1.0575 | 1.3150 | 1.7056 | 2.0555 | 2.4786 |
27 | 0.1268 | 0.2559 | 0.3894 | 0.5306 | 0.6837 | 0.8551 | 1.0567 | 1.3137 | 1.7033 | 2.0518 | 2.4727 |
28 | 0.1268 | 0.2558 | 0.3893 | 0.5304 | 0.6834 | 0.8546 | 1.0560 | 1.3125 | 1.7011 | 2.0484 | 2.4671 |
29 | 0.1268 | 0.2557 | 0.3892 | 0.5302 | 0.6830 | 0.8542 | 1.0553 | 1.3114 | 1.6991 | 2.0452 | 2.4620 |
30 | 0.1267 | 0.2556 | 0.3890 | 0.5300 | 0.6828 | 0.8538 | 1.0547 | 1.3104 | 1.6973 | 2.0423 | 2.4573 |
31 | 0.1267 | 0.2555 | 0.3889 | 0.5298 | 0.6825 | 0.8534 | 1.0541 | 1.3095 | 1.6955 | 2.0395 | 2.4528 |
32 | 0.1267 | 0.2555 | 0.3888 | 0.5297 | 0.6822 | 0.8530 | 1.0535 | 1.3086 | 1.6939 | 2.0369 | 2.4487 |
33 | 0.1266 | 0.2554 | 0.3887 | 0.5295 | 0.6820 | 0.8526 | 1.0530 | 1.3077 | 1.6924 | 2.0345 | 2.4448 |
34 | 0.1266 | 0.2553 | 0.3886 | 0.5294 | 0.6818 | 0.8523 | 1.0525 | 1.3070 | 1.6909 | 2.0322 | 2.4411 |
35 | 0.1266 | 0.2553 | 0.3885 | 0.5292 | 0.6816 | 0.8520 | 1.0520 | 1.3062 | 1.6896 | 2.0301 | 2.4377 |
36 | 0.1266 | 0.2552 | 0.3884 | 0.5291 | 0.6814 | 0.8517 | 1.0516 | 1.3055 | 1.6883 | 2.0281 | 2.4345 |
37 | 0.1265 | 0.2552 | 0.3883 | 0.5289 | 0.6812 | 0.8514 | 1.0512 | 1.3049 | 1.6871 | 2.0262 | 2.4314 |
38 | 0.1265 | 0.2551 | 0.3882 | 0.5288 | 0.6810 | 0.8512 | 1.0508 | 1.3042 | 1.6860 | 2.0244 | 2.4286 |
39 | 0.1265 | 0.2551 | 0.3882 | 0.5287 | 0.6808 | 0.8509 | 1.0504 | 1.3036 | 1.6849 | 2.0227 | 2.4258 |
40 | 0.1265 | 0.2550 | 0.3881 | 0.5286 | 0.6807 | 0.8507 | 1.0500 | 1.3031 | 1.6839 | 2.0211 | 2.4233 |
41 | 0.1264 | 0.2550 | 0.3880 | 0.5285 | 0.6805 | 0.8505 | 1.0497 | 1.3025 | 1.6829 | 2.0195 | 2.4208 |
42 | 0.1264 | 0.2550 | 0.3880 | 0.5284 | 0.6804 | 0.8503 | 1.0494 | 1.3020 | 1.6820 | 2.0181 | 2.4185 |
43 | 0.1264 | 0.2549 | 0.3879 | 0.5283 | 0.6802 | 0.8501 | 1.0491 | 1.3016 | 1.6811 | 2.0167 | 2.4163 |
44 | 0.1264 | 0.2549 | 0.3878 | 0.5282 | 0.6801 | 0.8499 | 1.0488 | 1.3011 | 1.6802 | 2.0154 | 2.4141 |
45 | 0.1264 | 0.2549 | 0.3878 | 0.5281 | 0.6800 | 0.8497 | 1.0485 | 1.3006 | 1.6794 | 2.0141 | 2.4121 |
46 | 0.1264 | 0.2548 | 0.3877 | 0.5281 | 0.6799 | 0.8495 | 1.0483 | 1.3002 | 1.6787 | 2.0129 | 2.4102 |
47 | 0.1263 | 0.2548 | 0.3877 | 0.5280 | 0.6797 | 0.8493 | 1.0480 | 1.2998 | 1.6779 | 2.0117 | 2.4083 |
48 | 0.1263 | 0.2548 | 0.3876 | 0.5279 | 0.6796 | 0.8492 | 1.0478 | 1.2994 | 1.6772 | 2.0106 | 2.4066 |
49 | 0.1263 | 0.2547 | 0.3876 | 0.5278 | 0.6795 | 0.8490 | 1.0475 | 1.2991 | 1.6766 | 2.0096 | 2.4049 |
50 | 0.1263 | 0.2547 | 0.3875 | 0.5278 | 0.6794 | 0.8489 | 1.0473 | 1.2987 | 1.6759 | 2.0086 | 2.4033 |
100 | 0.1260 | 0.2540 | 0.3864 | 0.5261 | 0.6770 | 0.8452 | 1.0418 | 1.2901 | 1.6602 | 1.9840 | 2.3642 |
1000 | 0.1257 | 0.2534 | 0.3854 | 0.5246 | 0.6747 | 0.8420 | 1.0370 | 1.2824 | 1.6464 | 1.9623 | 2.3301 |
Полезное
Смотреть что такое «Коэффициенты Стьюдента» в других словарях:
Процентили распределения Стьюдента — Квантили (процентили) распределения Стьюдента (коэффициенты Стьюдента) числовые характеристики, широко используемые в задачах математической статистики таких как построение доверительных интервалов и проверка статистических гипотез. Содержание 1 … Википедия
Квантили распределения Стьюдента — Квантили (процентили) распределения Стьюдента (коэффициенты Стьюдента) числовые характеристики, широко используемые в задачах математической статистики таких как построение доверительных интервалов и проверка статистических гипотез.… … Википедия
Коэффициент корреляции — (Correlation coefficient) Коэффициент корреляции это статистический показатель зависимости двух случайных величин Определение коэффициента корреляции, виды коэффициентов корреляции, свойства коэффициента корреляции, вычисление и применение… … Энциклопедия инвестора
Корреляция — (Correlation) Корреляция это статистическая взаимосвязь двух или нескольких случайных величин Понятие корреляции, виды корреляции, коэффициент корреляции, корреляционный анализ, корреляция цен, корреляция валютных пар на Форекс Содержание… … Энциклопедия инвестора
Наименьших квадратов метод — один из методов ошибок теории (См. Ошибок теория) для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Н. к. м. применяется также для приближённого представления заданной функции другими (более простыми)… … Большая советская энциклопедия
Математи́ческие ме́тоды — в медицине совокупность методов количественного изучения и анализа состояния и (или) поведения объектов и систем, относящихся к медицине и здравоохранению. В биологии, медицине и здравоохранении в круг явлений, изучаемых с помощью М.м., входят… … Медицинская энциклопедия
НАИМЕНЬШИХ КВАДРАТОВ МЕТОД — один из методов ошибок теории для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Н. к. м. применяется также для приближенного представления заданной функции другими (более простыми) функциями и часто оказывается … Математическая энциклопедия
РДМУ 109-77: Методические указания. Методика выбора и оптимизации контролируемых параметров технологических процессов — Терминология РДМУ 109 77: Методические указания. Методика выбора и оптимизации контролируемых параметров технологических процессов: 73. Адекватность модели Соответствие модели с экспериментальными данными по выбранному параметру оптимизации с… … Словарь-справочник терминов нормативно-технической документации
ГОСТ Р 50779.10-2000: Статистические методы. Вероятность и основы статистики. Термины и определения — Терминология ГОСТ Р 50779.10 2000: Статистические методы. Вероятность и основы статистики. Термины и определения оригинал документа: 2.3. (генеральная) совокупность Множество всех рассматриваемых единиц. Примечание Для случайной величины… … Словарь-справочник терминов нормативно-технической документации
Нахождение дисперсии ошибки определения коэффициента регрессии — 3.9.3. Нахождение дисперсии ошибки определения коэффициента регрессии При равном числе параллельных опытов (m0) во всех точках плана матрицы дисперсию ошибки определения коэффициента регрессии определяют по формуле… … Словарь-справочник терминов нормативно-технической документации
- Что такое коэффициент стоячей волны
- Что такое коэффициент сцепления колеса с дорогой