Что такое класс итератор генератор
Итерируемый объект, итератор и генератор в Python
В некоторых источниках итератор рассматривается как частный случай итерируемого объекта, поскольку оба поддерживают операцию итерации, то есть обход циклом for. Однако for работает только с итераторами. Переданный на обработку объект должен иметь метод __iter__(), который for неявно вызывает перед обходом. Метод __iter__() должен возвращать итератор.
У итерируемого объекта, то есть объекта, который можно «превратить» в итератор, должен быть метод __iter__(), который возвращает соответствующий объект-итератор.
У итерируемого объекта нет метода __next__(), который используется при итерации:
У итератора есть метод __next__(), который извлекает из итератора очередной элемент. При этом этот элемент уже не содержится в итераторе. Таким образом, итератор в конечном итоге опустошается:
Метод __next__() исчерпанного итератора возбуждает исключение StopIteration.
У итераторов, также как у итерируемых объектов, есть метод __iter__(). Однако в данном случае он возвращает сам объект-итератор:
Здесь переменные b и c указывают на один и тот же объект.
В Python есть встроенные функции iter() и next(), которые соответственно вызывают методы __iter__() и __next__() объектов, переданных в качестве аргумента.
Внутренний механизм цикла for сначала вызывает метод __iter__() объекта. Так что, если передан итерируемый объект, создается итератор. После этого применяется метод __next__() до тех пор, пока не будет возбуждено исключение StopIteration.
Отличительной особенностью генераторов является то, что они создаются не на основе классов, а путем вызова функции, содержащей инструкцию yield, или специальным генераторным выражением по синтаксису похожим на генератор списка. Отметим, генератор списка, который является особым выражением, к генераторам, которые являются разновидностью объектов-итераторов, отношения не имеет. Подробнее можно почитать здесь.
Другими словами, если потребуется создать свой итератор, может оказаться проще определить функцию с yield или воспользоваться выражением, чем создавать класс с методами __next__() и __iter__().
Рассмотрим пример. Определим сначала собственный класс-итератор:
Пример выполнения кода:
Наш итератор выдает числа по нарастающей. При этом каждое следующее число больше предыдущего на случайную величину.
Здесь же отметим преимущество итераторов как таковых перед контейнерными типами вроде списков. В памяти компьютера не хранятся все элементы итератора, в основном лишь описание, как получить следующий элемент. Если представить, что нужны тысячи чисел или надо генерировать сложные объекты, выгода существенна.
В случае с функцией, создающей генератор, приведенный выше пример может выглядеть так:
Нам незачем самим определять методы __iter__() и __next__(), так как они неявно присутствуют у генератора.
Если логика генератора проста, вместо функции можно использовать выражение, создающее генератор:
Данный пример не идентичен приведенным выше функции и классу. Здесь целая часть каждого следующего числа больше чем у предыдущего на единицу.
Python. Урок 15. Итераторы и генераторы
Генераторы и итераторы представляют собой инструменты, которые, как правило, используются для поточной обработки данных. В уроке рассмотрим концепцию итераторов в Python, научимся создавать свои итераторы и разберемся как работать с генераторами.
Итераторы в языке Python
Во многих современных языках программирования используют такие сущности как итераторы. Основное их назначение – это упрощение навигации по элементам объекта, который, как правило, представляет собой некоторую коллекцию (список, словарь и т.п.). Язык Python, в этом случае, не исключение и в нем тоже есть поддержка итераторов. Итератор представляет собой объект перечислитель, который для данного объекта выдает следующий элемент, либо бросает исключение, если элементов больше нет.
Приведем несколько примеров, которые помогут лучше понять эту концепцию. Для начала выведем элементы произвольного списка на экран.
Как уже было сказано, объекты, элементы которых можно перебирать в цикле for, содержат в себе объект итератор, для того, чтобы его получить необходимо использовать функцию iter(), а для извлечения следующего элемента из итератора – функцию next().
Как видно из приведенного выше примера вызов функции next(itr) каждый раз возвращает следующий элемент из списка, а когда эти элементы заканчиваются, генерируется исключение StopIteration.
Создание собственных итераторов
Если нужно обойти элементы внутри объекта вашего собственного класса, необходимо построить свой итератор. Создадим класс, объект которого будет итератором, выдающим определенное количество единиц, которое пользователь задает при создании объекта. Такой класс будет содержать конструктор, принимающий на вход количество единиц и метод __next__(), без него экземпляры данного класса не будут итераторами.
В нашем примере при четвертом вызове функции next() будет выброшено исключение StopIteration. Если мы хотим, чтобы с данным объектом можно было работать в цикле for, то в класс SimpleIterator нужно добавить метод __iter__(), который возвращает итератор, в данном случае этот метод должен возвращать self.
Генераторы
Генераторы позволяют значительно упростить работу по конструированию итераторов. В предыдущих примерах, для построения итератора и работы с ним, мы создавали отдельный класс. Генератор – это функция, которая будучи вызванной в функции next() возвращает следующий объект согласно алгоритму ее работы. Вместо ключевого слова return в генераторе используется yield. Проще всего работу генератор посмотреть на примере. Напишем функцию, которая генерирует необходимое нам количество единиц.
Данная функция будет работать точно также, как класс SimpleIterator из предыдущего примера.
Ключевым моментом для понимания работы генераторов является то, при вызове yield функция не прекращает свою работу, а “замораживается” до очередной итерации, запускаемой функцией next(). Если вы в своем генераторе, где-то используете ключевое слово return, то дойдя до этого места будет выброшено исключение StopIteration, а если после ключевого слова return поместить какую-либо информацию, то она будет добавлена к описанию StopIteration.
P.S.
Если вам интересна тема анализа данных, то мы рекомендуем ознакомиться с библиотекой Pandas. На нашем сайте вы можете найти вводные уроки по этой теме. Все уроки по библиотеке Pandas собраны в книге “Pandas. Работа с данными”.
Знакомимся с продвинутыми возможностями Python: итераторы, генераторы, itertools
В Python есть много возможностей, которые привлекают математиков. Вот некоторые из них: встроенная поддержка кортежей, списков и множеств, которые записываются практически так же, как это делается в математике, list comprehensions или генераторы списков, синтаксис которых похож на генераторы множеств, и другое.
Посмотрите пример использования. В последней строке сделана попытка превратить итератор в список. Это приводит к бесконечному циклу.
И пример использования:
Рассмотрим ещё один интересный пример: генерацию последовательности Q Хофштадтера. В приведённом ниже коде итератор используется для генерации последовательности с помощью вложенных повторений.
Вот пример использования:
Генераторы
Посмотрите, как это применяется на практике.
Одно из возможных решений — получение одновременно списка и результата.
Наконец, с помощью генераторов удобно реализовывать дискретные динамические системы. Пример ниже показывает, как с помощью генераторов реализуется отображение тент.
Пример использования генератора:
Рекурсивные генераторы
Генераторные выражения
Как отмечалось выше, генераторные выражения можно передавать в функции, которые нуждаются в итераторе. Например, сумму первых десяти совершенных квадратов можно получить так:
Ниже будут другие примеры генераторных выражений.
Модуль itertools
В модуле itertools есть набор итераторов, которые упрощают работу с перестановками, комбинациями, декартовыми произведениями и другими комбинаторными структурами. Документация доступна по ссылке.
Обратите внимание, представленные ниже алгоритмы не являются оптимальными для практического использования. Примеры используются, чтобы показать возможности перестановок и комбинаций. На практике лучше избегать перечисления перестановок и комбинаций, если вы не имеете веской причины для этого, так как размер перечислений растёт по экспоненте.
Второй пример касается интересной математической задачи. С помощью генераторных выражений, itertools.combinations и itertools.permutations вычислим количество инверсий перестановки, а затем суммируем количество инверсий во всех перестановках в списке.
В статье рассмотрели особенности использования итераторов, генераторов и модуля itertools в Python. Вопросы и пожелания пишите в комментариях.
Адаптированный перевод статьи A Study of Python’s More Advanced Features Part I: Iterators, Generators, itertools by Sahand Saba. Мнение адмнистрации «Хекслета» может не совпадать с мнением автора оригинальной публикации.
Итерируемый объект, итератор и генератор
Привет, уважаемые читатели Хабрахабра. В этой статье попробуем разобраться что такое итерируемый объект, итератор и генератор. Рассмотрим как они реализованы и используются. Примеры написан на Python, но итераторы и генераторы, на мой взгляд, фундаментальные понятия, которые были актуальны 20 лет назад и еще более актуальны сейчас, при этом за это время фактически не изменились.
Итераторы
Для начала вспомним, что из себя представляет паттерн «Итератор(Iterator)».
Назначение:
Существуют два вида итераторов, внешний и внутренний.
Внешний итератор — это классический (pull-based) итератор, когда процессом обхода явно управляет клиент путем вызова метода Next.
Внутренний итератор — это push-based-итератор, которому передается callback функция, и он сам уведомляет клиента о получении следующего элемента.
Классическая диаграмма паттерна “Итератор”, как она описана в небезызвестной книги «банды четырех»:
Aggregate — составной объект, по которому может перемещаться итератор;
Iterator — определяет интерфейс итератора;
ConcreteAggregate — конкретная реализация агрегата;
ConcreteIterator — конкретная реализация итератора для определенного агрегата;
Client — использует объект Aggregate и итератор для его обхода.
Пробуем реализовать на Python классический итератор
Конкретная реализация итератора для списка:
Конкретная реализация агрегата:
Теперь мы можем создать объект коллекции и обойти все ее элементы с помощью итератора:
А так как мы реализовали метод first, который сбрасывает итератор в начальное состояние, то можно воспользоваться этим же итератором еще раз:
Реализации могут быть разные, но основная идея в том, что итератор может обходить различные структуры, вектора, деревья, хеш-таблицы и много другое, при этом имея снаружи одинаковый интерфейс.
Протокол итерирования в Python
В книге «банды четырех» о реализации итератора написано:
Минимальный интерфейс класса Iterator состоит из операций First, Next, IsDone и CurrentItem. Но если очень хочется, то этот интерфейс можно упростить, объединив операции Next, IsDone и CurrentItem в одну, которая будет переходить к следующему объекту и возвращать его. Если обход завершен, то эта операция вернет специальное значения(например, 0), обозначающее конец итерации.
Именно так и реализовано в Python, но вместо специального значения, о конце итерации говорит StopIteration. Проще просить прощения, чем разрешения.
Сначала важно определиться с терминами.
Рассмотрим итерируемый объект (Iterable). В стандартной библиотеке он объявлен как абстрактный класс collections.abc.Iterable:
У него есть абстрактный метод __iter__ который должен вернуть объект итератора. И метод __subclasshook__ который проверяет наличие у класса метод __iter__. Таким образом, получается, что итерируемый объект это любой объект который реализует метод __iter__
Но есть один момент, это функция iter(). Именно эту функцией использует например цикл for для получения итератора. Функция iter() в первую очередь для получения итератора из объекта, вызывает его метод __iter__. Если метод не реализован, то она проверяет наличие метода __getitem__ и если он реализован, то на его основе создается итератор. __getitem__ должен принимать индекс с нуля. Если не реализован ни один из этих методов, тогда будет вызвано исключение TypeError.
Итого, итерируемый объект — это любой объект, от которого встроенная функция iter() может получить итератор. Последовательности(abc.Sequence) всегда итерируемые, поскольку они реализуют метод __getitem__
Теперь посмотрим, что с итераторами в Python. Они представлены абстрактным классом collections.abc.Iterator:
__next__ Возвращает следующий доступный элемент и вызывает исключение StopIteration, когда элементов не осталось.
__iter__ Возвращает self. Это позволяет использовать итератор там, где ожидается итерируемых объект, например for.
__subclasshook__ Проверяет наличие у класса метода __iter__ и __next__
Итого, итератор в python — это любой объект, реализующий метод __next__ без аргументов, который должен вернуть следующий элемент или ошибку StopIteration. Также он реализует метод __iter__ и поэтому сам является итерируемым объектом.
Таким образом можно реализовать итерируемый объект на основе списка и его итератор:
Функция next() вызывает метод __next__. Ей можно передать второй аргумент который она будет возвращать по окончанию итерации вместо ошибки StopIteration.
Прежде чем переходить к генераторам, рассмотрим еще одну возможность встроенной функции iter(). Ее можно вызывать с двумя аргументами, что позволит создать из вызываемого объекта(функция или класс с реализованным методом __call__) итератор. Первый аргумент должен быть вызываемым объектом, а второй — неким ограничителем. Вызываемый объект вызывается на каждой итерации и итерирование завершается, когда возбуждается исключение StopIteration или возвращается значения ограничителя.
Например, из функции которая произвольно возвращает 1-6, можно сделать итератор, который будет возвращать значения пока не «выпадет» 6:
Небольшой класс ProgrammingLanguages, у которого есть кортеж c языками программирования, конструктор принимает начальное значения индекса по названию языка и функция __call__ которая перебирает кортеж.
Можем перебрать все языки начиная с C# и до последнего:
Генераторы
С точки зрения реализации, генератор в Python — это языковая конструкция, которую можно реализовать двумя способами: как функция с ключевым словом yield или как генераторное выражение. В результате вызова функции или вычисления выражения, получаем объект-генератор типа types.GeneratorType.
В объекте-генераторе определены методы __next__ и __iter__, то есть реализован протокол итератора, с этой точки зрения, в Python любой генератор является итератором.
Концептуально, итератор — это механизм поэлементного обхода данных, а генератор позволяет отложено создавать результат при итерации. Генератор может создавать результат на основе какого то алгоритма или брать элементы из источника данных(коллекция, файлы, сетевое подключения и пр) и изменять их.
Ярким пример являются функции range и enumerate:
range генерирует ограниченную арифметическую прогрессию целых чисел, не используя никакой источник данных.
enumerate генерирует двухэлементные кортежи с индексом и одним элементом из итерируемого объекта.
Yield
Для начало напишем простой генератор не используя объект-генератор. Это генератор чисел Фибоначчи:
Но используя ключевое слово yield можно сильно упростить реализацию:
Любая функция в Python, в теле которой встречается ключевое слово yield, называется генераторной функцией — при вызове она возвращает объект-генератор.
Объект-генератор реализует интерфейс итератора, соответственно с этим объектом можно работать, как с любым другим итерируемым объектом.
Рассмотрим работу yield:
Создается стейт-машина в которой при каждом вызове __next__ меняется состояния и в зависимости от него вызывается тот или иной кусок кода. Если в функции yield в цикле, то соответственно состояние стейт-машины зацикливается пока не будет выполнено условие.
Свой вариант range:
Генераторное выражение (generator expression)
Если кратко, то синтаксически более короткий способ создать генератор, не определяя и не вызывая функцию. А так как это выражение, то у него есть и ряд ограничений. В основном удобно использовать для генерации коллекций, их несложных преобразований и применений на них условий.
В языках программирования есть такие понятия, как ленивые/отложенные вычисления(lazy evaluation) и жадные вычисления(eager/greedy evaluation). Генераторы можно считать отложенным вычислением, в этом смысле списковое включение(list comprehension) очень похожи на генераторное выражение, но являются разными подходами.
Первый вариант работает схожим с нашей функцией cool_range образом и может генерировать без проблем любой диапазон. А вот второй вариант создаст сразу целый список, со всеми вытекающими от сюда проблемами.
Yield from
Для обхода ограниченно вложенных структур, традиционный подход использовать вложенные циклы. Тот же подход можно использовать когда генераторная функция должна отдавать значения, порождаемые другим генератором.
Функция похожая на itertools.chain:
Но вложенные циклы можно убрать, добавив конструкцию yield from:
Основная польза yield from в создании прямого канала между внутренним генератором и клиентом внешнего генератора. Но это уже больше тема про сопрограммы(coroutines), которые заслуживают отдельной статьи. Там же можно обсудить методы генератора: close(), throw() и send().
И в заключении еще один пример. Функция принимающая итерируемый объект, с любым уровнем вложенности другими итерируемыми объектами, и формирующая плоскую последовательность:
Что такое класс итератор генератор
Часто Data Scientist и python-программист сталкиваются с задачей чтения больших объемов данных (Big Data). Чтобы при этом компьютер не зависал, помогут специальные объекты: итератор (iterator) и генератор (generator). В этой статье рассмотрим, что это такое, зачем и как их создавать, а также каким образом они берегут оперативную память.
Iterable, iterator, generator — базовые концепты Python
Здесь в конструкторе __init__() добавляется единица, чтобы вывести еще стартовое число. Инициализируем в качестве стартового значения число 5:
После того как count станет меньше нуля, итерирование прекращается, так как возникает исключение StopIteration.
Как работает генератор: примеры кода
Как сказано в документации Python [1], генератор — это удобный способ реализовать протокол итератора, так как нет необходимости создавать классы. Представим тот же CountDown в виде генератора:
С тем же результатом:
Генераторы в классах
Подчеркнем, в классах тоже можно использовать генератор:
Так, вместо метода __next__() используется генератор. Такая запись намного короче.
Поясним, почему генераторы и итераторы так эффективны.
В чем польза генераторов Python
Вначале статьи мы упомянули, что последовательности – это iterable; а списки – это последовательности. При этом в примерах Python-кода не создавали ни списки, ни множества. Сам yield возвращал только одно число из последовательности! Отсюда и эффективность – не нужно хранить в памяти всю последовательность, достаточно лишь текущего значения.
Как мы разбирали в прошлой статье, списки в Python можно создавать в одну строчку, используя конструкцию List comprehension. С генераторами тоже можно проделывать подобное:
В отличие от List comprehension, здесь используются круглые скобки. Также можно проверить тип созданного объекта:
Теперь вы знаете, что такое итераторы и генераторы, и как они помогают эффективно читать большие данные, включая те, что не помещаются в оперативную память. Однако, стоит помнить, что прочитать их можно только один раз.
Освоить все тонкости практической работы с большими данными на Python, помогут наши специализированные курсы по Python в лицензированном учебном центре обучения и повышения квалификации ИТ-специалистов в Москве.