Что такое качество измерений

Качество измерений и способы его достижения

Что такое качество измерений. Смотреть фото Что такое качество измерений. Смотреть картинку Что такое качество измерений. Картинка про Что такое качество измерений. Фото Что такое качество измерений Что такое качество измерений. Смотреть фото Что такое качество измерений. Смотреть картинку Что такое качество измерений. Картинка про Что такое качество измерений. Фото Что такое качество измерений Что такое качество измерений. Смотреть фото Что такое качество измерений. Смотреть картинку Что такое качество измерений. Картинка про Что такое качество измерений. Фото Что такое качество измерений Что такое качество измерений. Смотреть фото Что такое качество измерений. Смотреть картинку Что такое качество измерений. Картинка про Что такое качество измерений. Фото Что такое качество измерений

Что такое качество измерений. Смотреть фото Что такое качество измерений. Смотреть картинку Что такое качество измерений. Картинка про Что такое качество измерений. Фото Что такое качество измерений

Что такое качество измерений. Смотреть фото Что такое качество измерений. Смотреть картинку Что такое качество измерений. Картинка про Что такое качество измерений. Фото Что такое качество измерений

ОСНОВЫ МЕТРОЛОГИИ И ИЗМЕРЕНИЙ

Понятие, предмет и задачи метрологии

Метрология – наука об измерениях, методах и средствах обеспечения их единства к требуемой точности.

Современная метрология включает три составляющие: законодательную метрологию, фундаментальную (научную) и практическую (прикладную) метрологию. Из прикладной метрологии для нужд машиностроения выделяют технические измерения. В настоящее время к техническим измерениям, рассматриваемым во взаимной связи с точностью и взаимозаменяемостью в машиностроении, относят измерения линейных, угловых и радиусных величин. Результаты измерений выражают в узаконенных величинах.

Главная задача метрологии – обеспечение единства измерений, которая может быть решена при соблюдении двух условий:

1) выражение результатов измерений в единых узаконенных единицах;

2) установление допускаемых погрешностей результатов измерений и пределов, за которые они не должны выходить при заданной вероятности.

Основные задачи метрологии:

1) установление единиц физических величин, государственных эталонов и образцовых средств измерений, контроля и испытаний;

2) обеспечение единства измерений и единообразных средств измерений;

3) разработка методов оценки погрешностей состояния средств измерения, контроля и испытаний;

4) передача размеров единиц от эталонов или образцовых средств измерений рабочим средством измерений.

Нормативно-правовой основой метрологического обеспечения точности измерений является Государственная служба обеспечения единства измерений (ГСИ). Основные нормативные документы ГСИ − государственные стандарты. Принята Международная система единиц (СИ), на основе которой для обязательного применения разработан ГОСТ 8.417-2002.

Главными единицами физических величин в СИ являются семь основных единиц и свыше 50 производных, имеющих специальные названия.

Основные единицы: метр − м (длина), килограмм − кг (масса), секунда − с (время), ампер − А (сила тока), кельвин − К (термодинамическая температура), моль (количество вещества) и кандела − кд (сила света).

Кратные и дольные единицы образуются умножением на степень числа 10. Им присвоены определенные названия и обозначения; мега – М (10 6 ), кило– к (10 3 ), милли – м (10 –3 ), микро – мк (10 –6 ) и др. Единство измерений поддерживают путем передачи единиц величин от элемента к рабочим средствам измерений, осуществляемой по ступенькам образцовых мер и измерительных приборов. Точность указанных мер понижается от ступеньки к ступеньке в 2–4 раза.

Средства измерений (СИ) в соответствии с поверочной схемой периодически подвергаются поверке, которая заключается в определении метрологическим органом погрешности средств измерений и установлении его пригодности к применению. Сеть метрологических органов называетсяметрологической службой. Деятельность этих органов направлена на обеспечение единства измерений и единообразия средств измерений путем проведения поверки, ревизии и экспертизы средств измерений.

Единообразие средств измерений – их состояние, характеризующееся тем, что они проградуированы в узаконенных единицах, а их метрологические свойства соответствуют нормам.

Качество измерений и способы его достижения

Качество измерений– совокупность свойств, обусловливающих получение результатов с требуемыми точностными характеристиками, в необходимом виде и в установленные сроки.

Качество измерений характеризуется такими показателями, как точность, правильность и достоверность. Эти показатели должны определяться по оценкам, к которым предъявляются требования состоятельности, несмещенности и эффективности.

Истинное значение измеряемой величины отличается от среднего значения на величину систематической погрешности. Оценку х‘ числовой характеристики закона распределения х, изображаемую точкой на числовой оси, называют точечной оценкой. В отличие от числовых характеристик оценки являются случайными величинами, причем их значение зависит от числа наблюдений.

Состоятельная оценка– оценка, которая сводится по вероятности к оцениваемой величине.

Что такое качество измерений. Смотреть фото Что такое качество измерений. Смотреть картинку Что такое качество измерений. Картинка про Что такое качество измерений. Фото Что такое качество измерений

Несмещенная оценка – оценка, математическое ожидание которой равно оцениваемой величине.

Эффективная оценка – оценка, которая имеет наименьшую дисперсию.

Перечисленным требованиям удовлетворяет среднее арифметическое x результатов n наблюдений. Таким образом, результат отдельного измерения является случайной величиной.

Точность измерений – близость результатов измерений к истинному значению измеряемой величины. Если систематические составляющие погрешности исключены, то точность результата измерений х характеризуется степенью рассеяния его значения, т. е. дисперсией.

Правильность измеренияопределяется близостью к нулю систематической погрешности.

Достоверность измеренийзависит от степени доверия к результату и характеризуется вероятностью того, что истинное значение измеряемой величины лежит в указанных окрестностях действительного. Эти вероятности называют доверительными вероятностями, а границы (окрестности) – доверительными границами, т. е. достоверность измерения – это близость к нулю случайной (или неисключенной) систематической погрешности.

Для количественной оценки качества измеренийрассматривают влияние параметров измерений на погрешность их результатов. При планировании измерений и оценке их результатов задаются определенной моделью погрешностей: предполагают наличие тех или иных составляющих погрешности, закон их распределения, корреляционные связи и др.

Наряду с такими показателями, как точность, достоверность и правильность, качество измерительных операций характеризуется также сходимостью ивоспроизводимостью результатов. Эти показатели наиболее распространены при оценке качества испытаний и характеризуют точность испытаний.

Два испытания одного и того же объекта одинаковым методом не дают идентичных результатов. Объективной мерой их могут служить статистически обоснованные оценки ожидаемой близости двух или более числа результатов, полученных при строгом соблюдении методики испытаний.

Сходимость – это близость результатов двух испытаний, полученных одним методом, на идентичных установках, в одной лаборатории.

Воспроизводимость отличается от сходимости тем, что оба результата должны быть получены в разных лабораториях.

Источник

Электронная библиотека

Качество измерений – это совокупность свойств состояния измерений, обусловливающих получение результатов измерений с требуемыми точностными характеристиками, в необходимом виде и в установленный срок.

К основным свойствам состояния измерений относятся:

точность результатов измерений – одна из характеристик качества измерения, отражающая близость к нулю погрешности результата измерения; считают, что чем меньше погрешность измерения, тем больше его точность; она характеризуется погрешностями средств и методов измерений;

сходимость результатов измерений – это близость друг к другу результатов измерений одной и той же величины, выполненных повторно одними и теми же средствами, одним и тем же методом в одинаковых условиях и с одинаковой тщательностью; сходимость измерений двух групп многократных измерений может характеризоваться размахом, средней квадратической или средней арифметической погрешностью;

воспроизводимость результатов измерений – это близость результатов измерений одной и той же величины, полученных в разных местах, разными методами, разными средствами, разными операторами, в разное время, но приведенных к одним и тем же условиям измерений (температуре, давлению, влажности и др.); воспроизводимость измерений может характеризоваться средними квадратическими погрешностями сравниваемых рядов измерений;

быстрота получения результатов – это свойство измерений, которое зависит от рационально составленной методики измерений, уровня автоматизации измерений и обработки полученных данных;

единство измерений – это состояние измерений, характеризующееся тем, что их результаты выражаются в узаконенных единицах, размеры которых в установленных пределах равны размерам единиц, воспроизводимых первичными эталонами, а погрешности результатов измерений известны и с заданной вероятностью не выходят за установленные пределы.

Таким образом, единство измерений основано на четырех основных принципах:

— результаты выражены в узаконенных единицах;

— размер единиц, хранимых средствами измерений, равен размерам единиц, воспроизводимых первичными эталонами;

— погрешности результатов измерений известны;

— погрешности измерений не выходят за установленные пределы.

Без выполнения этих условий невозможно добиться единства измерений. Наиболее важным условием обеспечения единства измерений является «привязка» измерений к государственным эталонам, что в соответствии со стандартами ИСО серии 9000 является обязательным в обеспечении качества продукции.

Качество измерений также зависит от средств измерений; эргономических показателей, характеризующих систему «человек – объект измерения – средство измерения»; экологических показателей, характеризующих уровень вредных воздействий на окружающую среду при проведении измерений, безопасности обслуживающего персонала, осуществляющего измерения.

Все перечисленные свойства прямо или косвенно влияют на точность, своевременность и объем получаемой измерительной информации.

Что такое качество измерений. Смотреть фото Что такое качество измерений. Смотреть картинку Что такое качество измерений. Картинка про Что такое качество измерений. Фото Что такое качество измерений

Только при наличии надежных средств измерений, правильном их выборе и применении можно обеспечить высокое качество измерений.

Задания к разделу 9: Ответить на вопросы по своему варианту (номер варианта соответствует последней цифре номера зачетной книжки).

Что понимают под качеством измерений?

Перечислите свойства, определяющие качество измерений.

Что такое точность результатов измерений?

Что такое сходимость результатов измерений?

Что такое воспроизводимость результатов измерений?

Что такое быстрота получения результатов измерений?

Что такое единство измерений?

Перечислите четыре основных принципа единства измерений.

Что является обязательным в обеспечении качества продукции?

От чего зависит качество измерений?

Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00

Источник

Критерии качества измерений

Качество измерений характеризуется точностью, достоверностью, правильностью, сходимостью, воспроизводимостью и погрешностью измерений.

Точность – это качество измерений, отражающее близость их результатов к истинному значению измеряемой величины. Высокая точность измерений соответсвует малым погрешностям как систематическим, так и случайным. Точность количественно оценивают обратной величиной модуля относительной погрешности. Напремер, если погрешность измерений равна 0,05%, то точность будет равна 1/0,0005 = 2000.

Достоверность измерений характеризует степень доверия к результатам измерений. Достоверность оценки погрешностей определяют на основе законов теории вероятностей и математической статистики. Это дает возможность для каждого конкретного случая выбирать средства и методы измерений, обеспечивающие получение результата, погрешности которого не превышают заданных границ.

Правильность измерений – качество измерений, отражающее близость к нулю систематических погрешностей в результатах измерений.

Сходимость – качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в одинаковых условиях. Сходимость измерений отражает влияние случайных погрешностей.

Воспроизводимость – это такое качество измерений, которое отражает близость друг к другу результатов измерений, выполняемых в различных условиях (в различное время, в различных местах, разными методами и средствами).

Погрешность измерения – отклонение результата измерения от истинного (действительного) значения измеряемой величины. Погрешность измерений представляет собой сумму ряда составляющих, каждая из которых имеет свою причину. Можно выделить слудующие группы причин возникновения погрешностей:

Анализируя причины возникновения погрешностей, необходимо в первую очередь выявить те из них, которые оказывают существенное влияние на резульат измерения. Анализ должен проводится в определенной последовательности.

Источник

Качество измерений

Точность, достоверность, правильность, сходимость, воспроизводимость и погрешность измерений как основные характеристики их качества. Причины возникновения погрешностей результатов измерений, их главные типы. Главные критерии классификации измерений.

РубрикаПроизводство и технологии
Видреферат
Языкрусский
Дата добавления06.02.2016
Размер файла17,9 K

Что такое качество измерений. Смотреть фото Что такое качество измерений. Смотреть картинку Что такое качество измерений. Картинка про Что такое качество измерений. Фото Что такое качество измерений

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

Высшего профессионального образования

«Сибирский государственный индустриальный университет»

по дисциплине «Метрология, стандартизация и сертификация»

на тему «Качество измерений»

Введение

Качество измерений характеризуется точностью, достоверностью, правильностью, сходимостью, воспроизводимостью и погрешностью измерений.

Достоверность измерений характеризует степень доверия результатам измерений. Достоверность оценки погрешностей определяют на основе законов теории вероятностей и математической статистики. Это дает возможность для каждого конкретного случая выбирать средства и методы измерений, обеспечивающие получение результата, погрешности которого не превышают заданных границ.

неверная настройка средства измерений или смещение уровня настройки во время эксплуатации;

неверная установка объекта измерения на измерительную позицию;

ошибки в процессе получения, преобразования и выдачи информации в измерительной цепи средства измерений;

внешние воздействия на средство и объект измерений (изменение температуры и давления, влияние электрического и магнитного полей, вибрация и т.п.);

свойства измеряемого объекта;

квалификация и состояние оператора.

Анализируя причины возникновения погрешностей, необходимо в первую очередь выявить те из них, которые оказывают существенное влияние на результат измерения. Анализ должен проводится в определенной последовательности.

1. Классификация измерений

В зависимости от рода измеряемой величины, условий проведения измерений и приемов обработки экспериментальных данных измерения могут классифицироваться с различных точек зрения.

С точки зрения общих приемов получения результатов они разделены на четыре класса:

Совместные и совокупные измерения характеризуются тем, что состоят из совокупности рядов прямых измерений и числовые значения искомых величин определяются из совокупности уравнений типа:

F1 (Y1,Y2…, X1,X2,…) = 0


Fn (Y1,Y2,…, Xn1,Xn2,…) = 0

Пример совместных измерений: измерение, при котором электрическое сопротивление резистора при температуре 20°С и его температурные коэффициенты находят по данным прямых измерений сопротивления и температуры, выполненных при разных температурах.

По физическому смыслу измерения можно было бы делить на прямые и косвенные.

По числу измерений одной и той же величины измерения делятся на однократные и многократные. От числа измерений зависит методика обработки экспериментальных данных. При многократных наблюдениях для получения результата измерений приходится прибегать к статистической обработке результатов наблюдений.

По характеру изменения измеряемой величины в процессе измерений они делятся на статические и динамические (величина изменяется в процессе измерений).

По отношению к основным единицам измерения делятся на абсолютные и относительные.

Существуют и другие классификации измерений, например, по связи с объектом (контактные и бесконтактные), по условиям измерений (равноточные и неравноточные).

Следует различать понятия измерение и наблюдение.

2. Погрешности измерений

Так как истинное значение измеряемой величины всегда неизвестно и на практике мы имеем дело с действительными значениями величин Хд, то формула для определения погрешности в связи с этим приобретает вид:

Критерием качества измерения является отношение абсолютной погрешности к окончательному результату измерения


dx= (x2-x1) /x. (2.1)


Это отношение безразмерно, а dx называют относительной погрешностью и используют как в абсолютном, так и в процентном выражении. Высокой точности измерения соответствует малое значение относительной погрешности. Наоборот, существенная относительная погрешность характеризует малую точность.

Рассмотрим основные типы погрешностей, проявляющихся в лабораторных физических экспериментах.

Промахи или грубые погрешности.

Модельная погрешность.


В основу любого экспериментального исследования, сопряженного с измерениями, заложена модель. Модель содержит наиболее полное физическое описание исследуемого объекта или процесса, которое позволяет составить его математическое описание, а именно, набор математических соотношений, включающих в себя физические величины. Они выступают в роли переменных и параметров, которыми могут быть величины, непосредственно измеряемые в ходе эксперимента, и величины, значения которых требуется определить, исходя из всей совокупности экспериментальных данных. В итоге модель представляет собой математическую конструкцию, базирующуюся на физических представлениях.

К разряду модельных может быть отнесена погрешность взвешивания на рычажных весах. Согласно закону Архимеда вес тела и гирь уменьшается из-за действия выталкивающей силы воздуха. Напомним, что 1 куб. м. воздуха весит примерно 10 Н. Для того, чтобы правильно найти массу взвешиваемого тела, опять же, нужно ввести поправки на потерю веса гирями и самим телом. Вместе с тем, как и при любых измерениях, здесь необходим разумный подход. Например, при работе с грубыми техническими весами бессмысленно вводить поправку на Архимедову силу, так как она окажется много меньше погрешностей, вносимых в результат измерения гирями и самими весами.

Следует особо отметить, что модельные погрешности являются наиболее сложными для анализа и учета.

Существуют также случайные погрешности. К ним относятся, например, погрешности, вносимые вибрациями в лабораторных исследованиях, переходными процессами в электрических цепях или тепловыми шумами в вакуумных трубках. Такие погрешности нельзя предсказать заранее и трудно оценить теоретически. Уменьшение влияния случайных погрешностей измерений достигается многократными измерениями и (после отбрасывания ошибочных результатов) вычислением среднего значения.

качество измерение погрешность точность

Список литературы

1. Качество измерений. Метрологическая справочная книга Автор: М.Н. Селиванов, А.Э. Фридман, Ж.Ф. Издательство: Лениздат Год издания: 1987 г.

2. И.Ф. Девятко. Методы социологического исследования

Размещено на Allbest.ru

Подобные документы

Исследование понятий «сходимость» и «воспроизводимость измерений». Построение карты статистического анализа качества конденсаторов методом средних арифметических величин. Анализ основных видов погрешностей измерений: систематических, случайных и грубых.

контрольная работа [154,2 K], добавлен 07.02.2012

Теоретические основы и главные понятия метрологии. Методы нормирования метрологических характеристик средств измерений, оценки погрешностей средств и результатов измерений. Основы обеспечения единства измерений. Структура и функции метрологических служб.

учебное пособие [1,4 M], добавлен 30.11.2010

Сведения о методах и видах измерений. Описание теории и технологической схемы процесса искусственного охлаждения. Метрологическое обеспечение процесса. Выбор и обоснование системы измерений, схема передачи информации. Расчет погрешностей измерения.

курсовая работа [437,4 K], добавлен 29.04.2014

Этапы проведения измерений. Вопрос о предварительной модели объекта, обоснование необходимой точности эксперимента, разработка методики его проведения, выбор средств измерений, обработка результатов измерений, оценки погрешности полученного результата.

реферат [356,6 K], добавлен 26.07.2014

Общая характеристика объектов измерений в метрологии. Понятие видов и методов измерений. Классификация и характеристика средств измерений. Метрологические свойства и метрологические характеристики средств измерений. Основы теории и методики измерений.

реферат [49,4 K], добавлен 14.02.2011

Источник

Что такое качество измерений

ГОСТ Р ИСО 5725-1-2002

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ТОЧНОСТЬ (ПРАВИЛЬНОСТЬ И ПРЕЦИЗИОННОСТЬ) МЕТОДОВ И РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Основные положения и определения

Accuracy (trueness and precision) of measurement methods and results. Part 1. General principles and definitions

Дата введения 2002-11-01

Предисловие

1 РАЗРАБОТАН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт метрологической службы» Госстандарта России (ВНИИМС), Всероссийским научно-исследовательским институтом стандартизации (ВНИИСтандарт), Всероссийским научно-исследовательским институтом классификации, терминологии и информации по стандартизации и качеству (ВНИИКИ) Госстандарта России

ВНЕСЕН Управлением метрологии и Научно-техническим управлением Госстандарта России

3 Настоящий стандарт представляет собой полный аутентичный текст международного стандарта ИСО 5725-1:1994* «Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения»

В необходимых случаях в тексте стандарта даны комментарии научного редактора, выделенные курсивом

ИЗДАНИЕ (март 2009 г.) с Поправкой (ИУС 11-2003)

* С 1 июля 2007 г. введен в действие ГОСТ Р ИСО/МЭК 17025-2006.

ГОСТ Р ИСО 5725 представляют собой полный аутентичный текст шести частей международного стандарта ИСО 5725, в том числе:

ГОСТ Р ИСО 5725-1-2002 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения»;

ГОСТ Р ИСО 5725-2-2002 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений»;

ГОСТ Р ИСО 5725-3-2002 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 3. Промежуточные показатели прецизионности стандартного метода измерений»;

ГОСТ Р ИСО 5725-4-2002 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 4. Основные методы определения правильности стандартного метода измерений»;

ГОСТ Р ИСО 5725-5-2002 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 5. Альтернативные методы определения прецизионности стандартного метода измерений»;

ГОСТ Р ИСО 5725-6-2002 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике».

Пользование частями 2-6 ГОСТ Р ИСО 5725 в отдельности возможно только совместно с частью 1 (ГОСТ Р ИСО 5725-1), в которой установлены основные положения и определения, касающиеся всех частей ГОСТ Р ИСО 5725.

В соответствии с основными положениями ИСО 5725-1 (пункт 1.2) настоящий стандарт распространяется на методы измерений непрерывных (в смысле принимаемых значений в измеряемом диапазоне) величин, дающие в качестве результата измерений единственное значение. При этом это единственное значение может быть и результатом расчета, основанного на ряде измерений одной и той же величины.

Применяемый в международных стандартах термин «стандартный метод измерений» адекватен отечественному термину «стандартизованный метод измерений».

В ИСО 5725:1994-1998 и ИСО/МЭК 17025-99 понятие «метод измерений» («measurement method») включает совокупность операций и правил, выполнение которых обеспечивает получение результатов с известной точностью. Таким образом, понятие «метод измерений» по ИСО 5725 и ИСО/МЭК 17025 адекватно понятию «методика выполнения измерений (МВИ)» по ГОСТ Р 8.563-96 «Государственная система обеспечения единства измерений. Методики выполнения измерений» (пункт 3.1) и соответственно значительно шире по смыслу, чем определение термина «метод измерений» в Рекомендации по межгосударственной стандартизации РМГ 29-99 «Государственная система обеспечения единства измерений. Метрология. Основные термины и определения» (пункт 7.2).

Следует отметить, что в отечественной метрологии точность (accuracy) и погрешность (еrror) результатов измерений, как правило, определяются сравнением результата измерений с истинным или действительным (условно истинным) значением измеряемой физической величины (являющимися фактически эталонными значениями измеряемых величин, выраженными в узаконенных единицах).

В условиях отсутствия необходимых эталонов, обеспечивающих воспроизведение, хранение и передачу соответствующих значений единиц величин, необходимых для оценки погрешности (точности) результатов измерений, и в отечественной, и в международной практике за действительное значение зачастую принимают общее среднее значение (математическое ожидание) установленной (заданной) совокупности результатов измерений. В ИСО 5725 эта ситуация отражена в термине «принятое опорное значение» (см. пункты 3.5 и 3.6 ГОСТ Р ИСО 5725-1) и рекомендуется ГОСТ Р ИСО 5725-1 для использования в этих случаях и в отечественной практике.

В соответствии с ИСО 5725 цель государственных стандартов ГОСТ Р ИСО 5725 состоит в том, чтобы:

а) изложить основные положения, которые следует иметь в виду при оценке точности (правильности и прецизионности) методов и результатов измерений при их применении, а также при планировании экспериментов по оценке различных показателей точности (ГОСТ Р ИСО 5725-1);

б) регламентировать основной способ экспериментальной оценки повторяемости (сходимости) и воспроизводимости методов и результатов измерений (ГОСТ Р ИСО 5725-2);

в) регламентировать процедуру получения промежуточных показателей прецизионности методов и результатов измерений, изложив условия их применения и методы оценки (ГОСТ Р ИСО 5725-3);

г) регламентировать основные способы определения правильности методов и результатов измерений (ГОСТ Р ИСО 5725-4);

д) регламентировать для применения в определенных обстоятельствах несколько альтернатив основным способам (ГОСТ Р ИСО 5725-2 и ГОСТ Р ИСО 5725-4) определения прецизионности и правильности методов и результатов измерений, приведенных в ГОСТ Р ИСО 5725-5;

е) изложить некоторые практические применения показателей правильности и прецизионности (ГОСТ Р ИСО 5725-6).

Представленные в виде таблицы рекомендации по применению основных положений ГОСТ Р ИСО 5725 в деятельности по метрологии, стандартизации, испытаниям, оценке компетентности испытательных лабораторий со ссылками на нормы государственных стандартов Российской Федерации, содержащих требования к выполнению соответствующих работ, приведены в приложении к предисловию в ГОСТ Р ИСО 5725-1.

Алгоритмы проведения экспериментов по оценке повторяемости, воспроизводимости, промежуточных показателей прецизионности, показателей правильности (характеристик систематической погрешности) методов и результатов измерений рекомендуется внедрять через программы экспериментальных метрологических исследований показателей точности (характеристик погрешности) результатов измерений, выполняемых по разрабатываемой МВИ, и (или) через программы контроля показателей точности применяемых МВИ.

Использование приведенных в приложениях А к каждому стандарту условных обозначений в качестве обязательных рекомендуется только для тех показателей точности, которые до настоящего времени в отечественной метрологической практике не использовались (например, для показателей по пунктам 3.9-3.12 ГОСТ Р ИСО 5725-1). Для остальных показателей и критериев используемые в стандартах ГОСТ Р ИСО 5725 условные обозначения, как правило, могут применяться наряду с условными обозначениями этих показателей и критериев, принятых в действующих отечественных документах (например, предел повторяемости (сходимости) с условным обозначением по пункту 3.16 ГОСТ Р ИСО 5725-1 наряду с условным обозначением , принятым для этого показателя в ряде рекомендаций по метрологии, а также в государственных стандартах на методы испытаний продукции).

ПРЕДИСЛОВИЕ К МЕЖДУНАРОДНОМУ СТАНДАРТУ ИСО 5725

Международный стандарт ИСО 5725-1 был подготовлен Техническим комитетом ИСО/ТК 69 «Применение статистических методов», Подкомитетом ПК 6 «Методы и результаты измерений».

ИСО 5725 состоит из следующих частей под общим заголовком «Точность (правильность и прецизионность) методов и результатов измерений»:

Часть 1. Основные положения и определения

Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений

Часть 3. Промежуточные показатели прецизионности стандартного метода измерений

Часть 4. Основные методы определения правильности стандартного метода измерений

Часть 5. Альтернативные методы определения прецизионности стандартного метода измерений

Часть 6. Использование значений точности на практике

ИСО 5725 (части 1-6) в совокупности аннулирует и заменяет ИСО 5725:1986, область распространения которого была расширена включением правильности (в дополнение к прецизионности) и условий промежуточной прецизионности (в дополнение к условиям повторяемости и воспроизводимости).

ВВЕДЕНИЕ К МЕЖДУНАРОДНОМУ СТАНДАРТУ ИСО 5725

0.2 Необходимость рассмотрения «прецизионности» возникает из-за того, что измерения, выполняемые на предположительно идентичных материалах при предположительно идентичных обстоятельствах, не дают, как правило, идентичных результатов. Это объясняется неизбежными случайными погрешностями, присущими каждой измерительной процедуре, а факторы, оказывающие влияние на результат измерения, не поддаются полному контролю. При практической интерпретации результатов измерений эта изменчивость должна учитываться. Например, нельзя установить фактическое различие между полученным результатом измерений и какой-либо точной величиной, если она лежит в области неизбежных случайных погрешностей измерительной процедуры. Аналогичным образом, сопоставление результатов испытаний двух существенно различающихся партий материала не выявит какого-либо существенного отличия в качестве, если расхождение между результатами лежит в вышеупомянутой области.

0.3 На изменчивость результатов измерений, выполненных по одному методу, помимо различий между предположительно идентичными образцами, могут влиять многие различные факторы, в том числе:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *