Что такое изоэлектрическая точка белка

ИЗОЭЛЕКТРИЧЕСКАЯ ТОЧКА

ИЗОЭЛЕКТРИЧЕСКАЯ ТОЧКА (принятые обозначения: pI, ИЭТ) — величина водородного показателя (pH) среды, при к-рой суммарный заряд молекул амфотерных электролитов (амфолитов), находящихся в этой среде, равен нулю; является одним из основных показателей, определяющих электрохимические свойства амфолитов, напр. аминокислот и белков, клеток и тканей. Изучение Изоэлектрической точки объектов биологического происхождения представляется перспективным с точки зрения диагностики целого ряда заболеваний, т. к. при различных заболеваниях происходит изменение значений pH, при которых находятся Изоэлектрические точки эритроцитов и других клеток организма, а также белков плазмы крови.

Понятие «Изоэлектрическая точка» относится не только к подвижным частицам (молекулам, коллоидным частицам, частицам суспензий и эмульсий), но также и к неподвижным структурным элементам различного рода систем, находящихся в контакте с водными р-рами. Напр., можно говорить об И. т. поверхности мышечных фибрилл, биол, мембран и т. п.

Впервые это понятие было введено в 1899 г. Харди (W. Hardy), который установил, что в кислых р-рах частицы белка передвигаются в электрическом поле к катоду и, следовательно, несут положительные заряды, а в щелочных р-рах — к аноду, т. е. заряжены отрицательно. Состояние, в к-ром частицы белка электронейтральны, было названо изоэлектрическим состоянием, а соответствующее ему значение pH среды — И. т.

Теория изоэлектрического состояния амфолитов впервые была развита Михаэлисом (L. Michaelis) в 1918 г. и видоизменена Бьеррумом (N. Bjerrum) в 1923 г. Согласно теории Бьеррума, молекулы амфолитов (см.) в изоэлектрическом состоянии практически полностью диссоциированы и находятся в р-ре в виде биполярных ионов, которые для белков можно представить схематической формулой +NH3RCOO-, где R — полипептидная цепь. Биполярный ион в И. т. несет равное число элементарных положительных и отрицательных зарядов и поэтому в целом является электронейтральной частицей. При добавлении к р-ру сильной к-ты образуемые ею водородные ионы соединяются с группами COO- и частицы белка становятся положительно заряженными: +NH3RCOOH. При добавлении к р-ру сильной щелочи от групп +NH3 отщепляются водородные ионы, которые соединяются с гидроксильными ионами щелочи, образуя молекулы воды, и частицы белка становятся отрицательно заряженными: NH2RCOO-.

И. т. следует отличать от изоионной точки (ИИТ) белка, т. е. от такого значения pH среды, при к-ром число водородных ионов, отщепляемых от кислотных групп молекулы белка, равно числу водородных ионов, связываемых с основными группами. Величины И. т. и ИИТ совпадают только в тех случаях, когда чистый белок находится в водном р-ре, не содержащем каких-либо других ионов, помимо водородных и гидроксильных. В солевых р-рах белка численные значения его И. т. и ИИТ различны, т. к. заряд белковых частиц определяется не только ионогенными группами белковой частицы, но и теми ионами солей, которые могут сорбироваться белком.

Величина И. т. зависит от относительного содержания кислотных и основных групп в молекуле белка, а также от величины констант диссоциации этих групп. С увеличением отношения числа кислотных групп к числу основных групп значение И. т. уменьшается, а с увеличением констант диссоциации основных групп и с уменьшением констант диссоциации кислотных групп оно возрастает. При денатурации белков их И. т. повышается. И. т. белка практически не зависит от его концентрации в р-ре.

Свойства амфолитов в изоэлектрическом состоянии отличаются от их свойств при pH, не соответствующих И. т. Так, напр., белки в И. т. не обладают электрофоретической подвижностью (см. Электрофорез), имеют минимальные гидратацию, растворимость и устойчивость (что широко используется при фракционировании белков высаливанием), вязкость, осмотическое давление, электропроводность, степень набухания, удельное оптическое вращение. Скорость желатинирования и высаливания в И. т. максимальна. Аналогичными свойствами в И. т. обладает и протоплазма клеток, основу к-рой составляют белковые вещества. Знание И. т. белков и других полимерных амфолитов существенно для разработки методов их разделения и очистки.

Прямым и наиболее точным методом определения И. т. белков является измерение их электрофоретической подвижности в буферных р-рах с последовательно изменяющимися значениями pH. При этом определяют два соседних значения pH, при одном из которых частицы белка передвигаются к аноду, а при другом — к катоду. Среднее двух наблюдаемых значений pH принимают равным И. т.

Со 2-й половины 20 в. для измерения И. т. самых различных белков широко применяется метод изоэлектрического фокусирования (см.) с использованием синтетических амфолитов-носителей. Косвенные, менее точные, методы определения И. т. основаны на измерении растворимости, набухаемости, порога высаливания и других свойств, характеризующихся в изоэлектрическом состоянии экстремальными значениями. Для определения И. т. тканей, клеток и их компонентов широко используют метод Пишингера (A. Pischinger), основанный на измерении интенсивности окраски исследуемого объекта основными и кислотными красителями при последовательном изменении величины pH среды, в к-рой находится исследуемый объект. Кривые изменения интенсивности окраски пересекаются при pH, соответствующем И. т.

ПИТ белков определяют добавлением водного р-ра чистого белка к р-рам сильной к-ты (или щелочи) с постепенно изменяющимися значениями pH и последующим измерением происходящего при этом сдвига pH. Значение pH р-ра, при к-ром этот сдвиг равен нулю, соответствует ИИТ белка.

Библиография: Ашмарин И. П. и др. Химия белка, ч. 1, JI., i 968; Белки, под ред. Г. Нейрата и К. Бэйли, пер. с англ., т. 2, с. 475 и др., М., 1956, библиогр.; Гауровиц Ф. Химия и функции белков, пер. с англ., М., 1965, библиогр.; Макаров П. В. Физико-химические свойства клетки и методы их изучения. Л., 1948, библиогр.; Роскин Г. И. Изоэлектрические пункты клеток и их изменения в норме, развитии и патологии, Усп. совр, биол., т. 22, в. 2(5), с. 247, 1946, библиогр.

Источник

Строение аминокислот. Изоэлектрическая точка. Характеристика пептидной связи

Что такое изоэлектрическая точка белка. Смотреть фото Что такое изоэлектрическая точка белка. Смотреть картинку Что такое изоэлектрическая точка белка. Картинка про Что такое изоэлектрическая точка белка. Фото Что такое изоэлектрическая точка белка

Даже и не знаю с чего начать, давайте попробуем вот так. Белки — это полимерные молекулы, которые состоят из молекул поменьше — мономеров. Этими мономерами будут аминокислоты. Поэтому, если нам хочется построить дом, то сначала нужно разобраться с кирпичами, правильно? Вот в этой статье и будем разбираться с аминокислотами: какие они бывают, сколько их и какие у них свойства. Дальше синтезируем пептид и определим — почему некоторые молекулы называются пептидами, а другие белками. Поймем почему про пептидную связь пишут, что она частично-двойная. А в конце небольшой подарок — торсионные углы. Вроде неплохо получилось? Тогда поехали.

Строение аминокислот

По названию все понятно, аминокислота — это молекула, которая содержит аминогруппу и карбоксильную группу. Но посмотрите на центральный углерод, что за бабник? У него целых четыре разных заместителя — водород, аминогруппа, карбоксильная группа и радикал. Он называется…. Альфа-углерод, такой альфа-самец прямо.

Такое общее строение у всех аминокислот, которые входят в состав белков, но они кое-чем отличаются. Да-да, радикалом. Основных аминокислот — 20 штук, хотя если честно, то 19. А если еще честнее, то их больше, но не будем путаться. У одной аминокислоты особенное строение, она даже не аминокислота вовсе, а иминокислота. Вот наша легенда — пролин.

Вернемся к различиям между аминокислотами. Есть несколько классификаций радикалов, но мы возьмем самую полезную для нас — по полярности. А если говорить простыми словами, то по растворимости радикала в воде. И тут все очень логично — радикалы делятся на неполярные и полярные. Первые нерастворимы в воде, а вторые растворимы. Когда будем говорить о строении белка, то поймем почему нас интересует только эта классификация.

Неполярные радикалы аминокислот

У этих ребят нет групп, которые могут образовать водородные связи с водой, поэтому они нерастворимы. Вместо этого у них есть алифатические и ароматические группы. Радикалы выделены фиолетовым цветом.

Опа, а глицин то получается не альфа-самец, у него два одинаковых заместителя — водороды.

Полярные радикалы аминокислот

Перед этим остановимся на одной вещичке. Я писал формулы аминокислот так, как будто они не находятся в растворе. Но если мы заглянем в клетку, pH в цитоплазме которой 7 и 0, то увидим такую картину.

Полярные радикалы можно разделить на две группы: полярные незаряженные и полярные заряженные.

В этих аминокислотах есть сильно электроотрицательные атомы — азот, кислород и сера. С их помощью молекулы образуют водородные связи и растворяются в воде. Но заряда у них нет.

Заряд у радикала может быть положительным или отрицательным, поэтому здесь небольшое деление.

Кстати, лучше растворимы в воде заряженные радикалы. Но разница между полярными заряженными и незаряженными не слишком большая. И еще одно — аспартат и глутамат это название аспарагиновой и глутаминовой кислот в растворе.

Аминокислоты делятся на полярные и неполярные. Полярные аминокислоты могут быть заряженными или незаряженными.

Аминокислоты называли по месту их выделения или физическим свойствам, поэтому у них такие странные названия. Гликос с греческого — сладкий, вот и глицин сладковат. Так что придется зазубрить это.

Изоэлектрическая точка

Вы уже заметили, что у аминокислот есть положительная и отрицательная части. Не так много молекул имеют такую особенность. Так что аминокислоты — это такой гибрид, поэтому их так и назвали — гибридные ионы. Правда на немецком…. А звучит это так: «Цвиттер-ион». Но как всегда есть один нюанс — у гибридного иона общий заряд молекулы равен нулю.

И вы уже смекнули, что не у всех аминокислот будет общий заряд равен нулю. Для неполярных и полярных незаряженных аминокислот это верно, но че делать с заряженными? До этого мы разбирали заряд аминокислот в клетке, то есть при нейтральном pH. Но что будет с ними, если поместить их в другие значения среды, например, в сильнощелочную или кислотную? Аминокислоты будут менять свой заряд и сейчас посмотрим как.

Думаю, что нужно кое-что уточнить. Вы понимаете, что эти реакции обратимы. Когда я добавляю кислоту или щелочь, неважно, то я смещаю реакцию в какую-то сторону. Пусть я добавляю кислоту. С каждой каплей реакция смещается в сторону образования глицина +1, но только при pH равном 2,34 в растворе будет большая часть глицина +1. Хотя на pH +3 большая часть будет глицина с зарядом 0. Надеюсь, что понятно объяснил.

Как же назвать pH при котором происходит переход из одной формы в другую? Очень просто, показатель константы диссоциации или pKa. Химики не корите, не слишком точно конечно, но запомнить легче. Получается, что в молекуле глицина pKa карбоксильной группы=2,34, а pKa аминогруппы=9,6. Я написал про молекулу глицина, потому что в остальных аминокислотах значения немного отличаются.

А теперь о том, ради чего все это затевалось — изоэлектрическая точка.

Изоэлектрическая точка — это pH среды, при которой заряд молекулы равен нулю. Да, вот так вот просто. Ее, кстати, можно посчитать — для этого нужно сложить pKa двух ближних функциональных групп и поделить на их количество. А их количество — две.

Сделаем тоже самое с молекулами посложнее, начнем с гистидина.

У гистидина есть заряженная группа, поэтому у него побольше вариантов заряда, чем у глицина. Мы видим, что у гистидина карбоксильная группа присоединяет водород при pH =1,82, а аминогруппа отдает протон водорода при pH=9,17. Вот про эти отличия я и говорил до этого, но так-то они не слишком большие. Радикал же отдает протон водорода при pH=6.

Сделаем тоже самое с глутаматом.

Думаю, что смысл понятен. У каждой аминокислоты своя собственная изоэлектрическая точка. Точки уже давно подсчитаны — достаточно найти их в интернете.

Сделаем красивый вывод:

Любая аминокислота цвиттер-ион, но только в изоэлектрической точке

Зачем это нужно? Ну давайте посмотрим. Мы знаем, что каждая аминокислота несет определенный заряд, но этот заряд меняется от pH среды. Если мы поместим аминокислоты в нейтральную среду и закинем туда катод и анод, то положительно заряженные аминокислоты направятся к аноду, а отрицательные к катоду. Остальные аминокислоты можно будет разделить с помощью изменения pH среды, ведь в изоэлектрической точке у аминокислоты не будет заряда. Нет заряда — нет движения к катоду или аноду, аминокислота стоит на месте. Вот мы и разделили аминокислоты в растворе, можно их изучить.

Образование пептидов

Теперь давайте соединим между собой парочку аминокислот, пусть это будет глицин и аланин. Соединяем их с помощью реакции дегидратации — отщепляем молекулу воды и получаем пептид.

Какие группы вступали в реакцию? Да, аминогруппа и карбоксильная группа. Получается, что пептидная связь — это связь между аминогруппой одной аминокислоты с карбоксильной группой другой аминокислоты. Так как соединены две аминокислоты, то название молекулы — дипептид. Ничего не мешает мне присоединить еще одну.

И это уже трипептид. Если соединены до 10 пептидов, то это олигопептид. От 10 до 50 — полипептид, ну а если больше 50, то это белок. Как видите реакция обратима, можно провести гидратацию по пептидной связи и пептид разрушится. На самом деле реакция гидратации идет намного лучше, а вот для дегидратации нужен источник энергии — АТФ, и рибосомальная РНК. Так что для синтеза пептидов/белков организм неплохо так тратится.

Ну и вы заметили, что я располагаю радикалы с разных сторон — то сверху, а то снизу. Это транс положение, оно более устойчиво, но можете писать как хотите.

Белок — это пептид, который содержит более 50 остатков аминокислот

Пептидная связь

У пептидной связи есть свои секретики, но мы не дадим ей хранить их просто так. Главный секрет в том, что двойная связь находится не у кислорода, а у азота… Хотя это не совсем двойная связь, но близка к ней. Как же это происходит? У азота есть неподеленная электронная пара, электроны могут перейти от азота к кислороду, а двойная связь перейдет от кислорода к азоту — неплохой такой обменчик. Это явление называется резонанс пептидной связи, именно из-за него во всех учебниках пишут про «частично-двойной характер пептидной связи».

Так как все углы по 120 градусов, то все 6 атомов — 3 углерода, азот, водород и кислород, лежат в одной плоскости, как будто на ладошке. За счет того, что углерод и азот образуют две связи — одну пи и одну сигму, вращение вокруг этих связей практически невозможно. Но об этом чуть позже, сейчас давайте упростим эту схему.

Это мы сделали только с одной пептидной связью, но что если добавить вторую? Получится кое что интересненькое…

Следующая пептидная связь такая же, как и предыдущая. Получается, что опять 6 атомов лежат в одной плоскости, вы видите, что один атом углерода принадлежит сразу к двум плоскостям и это удивительно! Можно даже подумать, что все эти пептидные связи будут лежать в одной и той же плоскости, но это не так, а виной этому — вращение вокруг связей.

Диэдральные или торсионные углы

Название пугающее, но сейчас как устроим этим углам! Так, мы уже говорили о том, что вокруг пептидной связи не повращаться из-за того, что она частично двойная. Но ведь есть и другие связи, вокруг которых можно устроить веселуху.

Понимаю, что представить это не так уж и легко, но можно попробовать сделать! Получится конечно не совсем так, но принцип поймем. Возьмем ручку и два колпачка, засунем бумажку под каждый колпачок и начнем крутить. Условимся, что мои пальцы — альфа-углеродный атом, то есть место пересечения двух плоскостей.

Теперь мы поняли, как происходит вращение, но это еще не все. Существуют определенные углы между плоскостями и всего их два. Представьте, что нам захочется найти угол между углеродами, у которых карбоксильная группа, двух плоскостей. Или угол между двумя атомами азота, опять же, двух разных плоскостей. Задачка кажется сложной… Но перед этим, а зачем я вообще мучаю вас этим? Дело в том, что когда мы дойдем до конформации белковых молекул, то благодаря этим углам мы поймем: как и почему образуется альфа-спираль, тоже самое с бета-складчатостью. Так что потерпите немного!

Если посмотреть на эту схему, то можно кое-что прикинуть: если мы будем вращать связь между N и C, то углерод с карбоксильной группой изменит положение относительно углерода другой плоскости, а вот азот останется на том же месте — угол между двумя азотами не изменится. А вот если начнем вращать связь между C и C, то все будет наоборот: угол между азотами изменится, но вот углероды с карбоксильной группой останутся на месте. Сложновато, но чуть дальше я дам пространственную картинку. Пока что мы пришли к выводу, что связь между N и C влияет на угол между углеродами — этот угол называется фи. А вот связь между C и C влияет на угол между атомами азота — угол пси.

Теперь можно и добавить атомы водорода в схему, они скоро нам понадобятся.

Что такое изоэлектрическая точка белка. Смотреть фото Что такое изоэлектрическая точка белка. Смотреть картинку Что такое изоэлектрическая точка белка. Картинка про Что такое изоэлектрическая точка белка. Фото Что такое изоэлектрическая точка белка Торсионные углы в пептидах. Первая картинка с https://proteopedia.org/wiki/index.php/Tutorial:Ramachandran_principle_and_phi_psi_angles

А теперь главный вопрос — как измерить эти углы? Хорошо, что уже это придумали… И мы можем сделать это вместе — заходите сюда и поехали! Первым делом нам нужно перевернуть молекулу так, чтобы расположить атом углерода с карбоксильной группой сверху. Зачем такие выкрутасы? Расскажу позже. А теперь посмотрим прямо в альфа атом углерода, да так что за ним спрятался азот. Как-то это странно звучит, но давайте попробуем.

Еще это можно посмотреть графически с помощью проекций Ньюмана.

Так, повторим что такое угол фи — это угол между двумя карбоксильными атомами углерода. На рисунке уже их видно.

Поняли зачем так крутили молекулу? Да, просто так нам удобнее смотреть угол. А теперь начнем вращать и посмотрим как меняются углы.

Угол пси по такой же логике. Крутим молекулу, чтобы атом азота оказался сверху и смотрим прямо в альфа атом углерода.

Еще разок построим проекцию Ньюмана, она немного отличается, и сразу же отметим углы.

Думаю, что принцип понятен. Дальше можете покрутить сами, правильно? Я не сказал про одно большое «НО» — не каждый угол возможен, так как у атомов есть электронные оболочки, которые заряжены отрицательно. Если электронные оболочки подходят слишком близко, то они отталкиваются и угол меняется. Какие углы возможны? Для этого еще разок зайдите сюда и включите на панельке справа силы Ван-дер-Вальса и show clashes.

Подробнее о влиянии этих углов в следующей статье.

Хочешь задать вопрос, похвалить или наговорить гадостей? Тогда залетай в телегу. Там ты сможешь предложить новый формат или разбор темы. А если серьёзно, то эти статьи пишутся для вас, поэтому мне важна обратная связь.

Источник

Изоэлектрическая и изоионная точки белков

В изоэлектрической точке суммарный заряд белков, обладающих амфотерными свойствами, равен нулю и белки не перемещаются в электрическом поле. Зная аминокислотный состав белка, можно приближенно определить изоэлектрическую точку (pI); pI является характерной константой белков. Изоэлектрическая точка большинства белков животных тканей лежит в пределах от 5,5 до 7,0, что свидетельствует о частичном преобладании кислых аминокислот. Однако в природе имеются белки, у которых значения изоэлектрических точек лежат в крайних значениях рН среды. В частности, величина рI пепсина (фермент желудочного сока) равна 1, а сальмина (основной белок из молоки семги) – почти 12.

В изоэлектрической точке белки наименее устойчивы в растворе и легко выпадают в осадок. Изоэлектрическая точка белка в сильной степени зависит от присутствия в растворе ионов солей; в то же время на ее величину не влияет концентрация белка.

В химии белков существует понятие «изоионная точка белка». Раствор белка называется изоионным, если он не содержит никаких других ионов, кроме ионизированных остатков аминокислот белковой молекулы и ионов, образующихся при диссоциации воды. Для освобождения белка от посторонних ионов обычно его раствор пропускают через колонку, наполненную смесью анионо- и катионообменников. Изоионной точкой данного белка принято называть значение рН изоионного раствора этого белка:

Что такое изоэлектрическая точка белка. Смотреть фото Что такое изоэлектрическая точка белка. Смотреть картинку Что такое изоэлектрическая точка белка. Картинка про Что такое изоэлектрическая точка белка. Фото Что такое изоэлектрическая точка белка

где [Р] – молярная концентрация белка; Z – средний заряд молекулы. Согласно этому уравнению, изоионная точка белка зависит от его концентрации. Очевидно, поэтому белок, за исключением случая, когда рI равно 7, не может быть одновременно изоэлектрическим и изоионным.

Источник

Изоэлектрическая точка белка и ее определение. От чего зависит изоэлектрическая точка белков? Почему изоэлектрическая точка различна для разных белков?

Понятие об изоэлектрической точке

Белки состоят из аминокислот. Некоторые из этих соединений (аргинин, аспарагиновая кислота, гистидин, глутаминовая кислота, лизин) представлены в виде радикалов, содержащих ионогенные группы, то есть такие группы, которые способны к ионизации. Помимо них к ионизации способны альфа-карбоксильная и аминогруппы, расположенные на углеродном и азотном концах полипептидных цепей. Если рН раствора равен 7 или приближен к данной отметке, то в ионизированном состоянии находятся все ионогенные группы. По мере удаления от данного значения рН в ту или иную сторону, причем преимущественно в кислую, белок начинает переход в изоэлектрическое состояние, при котором молекула данного вещества становится электронейтральной, число ионизированных групп стремится к нулю. Величина рН, при которой белки переходят в изоэлектрическое состояние, называется изоэлектрической точкой белков (ИЭТ).

Что такое изоэлектрическая точка белка. Смотреть фото Что такое изоэлектрическая точка белка. Смотреть картинку Что такое изоэлектрическая точка белка. Картинка про Что такое изоэлектрическая точка белка. Фото Что такое изоэлектрическая точка белка

Физико-химическая природа белков

Из-за того, что в состав белков входят карбокси- и аминные группы, они могут диссоциировать как основания и как кислоты. Свободная карбоксильная группа при диссоциации отдает положительно заряженный ион водорода и анион COO-. В результате ион водорода присоединяется к аминогруппе, что характеризует основные свойства белка, в результате чего образуются частицы белка с отрицательным и положительным зарядами. При помещении белка в кислый раствор его кислотная диссоциация будет подавляться из-за значительного присутствия катионов водорода. И наоборот, при помещении его в основный раствор его основная диссоциация будет подавляться из-за присутствия анионов COO-.

Как известно, вода представляет собой диполь, поэтому она располагает свои частицы вокруг белковой молекулы в зависимости от того, как она заряжена. В изоэлектрической точке молекула белка не имеет гидратно-ориентированной оболочки. Если осуществляется осаждение белков, необходимо, прежде всего, разрушить гидратную оболочку, сняв электрический заряд.

Что такое изоэлектрическая точка белка. Смотреть фото Что такое изоэлектрическая точка белка. Смотреть картинку Что такое изоэлектрическая точка белка. Картинка про Что такое изоэлектрическая точка белка. Фото Что такое изоэлектрическая точка белка

Использование ИЭТ в промышленности

В изоэлектрическом состоянии некоторые свойства раствора белка, такие как набухание, вязкость, осмотическое давление, светопропускание, имеют минимальные значения, при этом показатель преломления и оптическая плотность достигают, наоборот, максимальной величины. Изоэлектрическую точку белка можно определить опытным путем, определяя зависимость указанных выше свойств белкового раствора: от величины рН, при этом по положению экстремумов на графиках определяют ИЭТ. В изоэлектрическом состоянии казеин способен осаждаться, что применяется при производстве сыров и кисломолочных продуктов, для получения казеина из обезжиренного молока, как сырья в различных производствах (казеиновые клеи, искусственные продукты питания и т. д.). Измерение ИЭТ позволяет оценить качество белка, в частности, молочного продукта на наличие примесей. Это актуально на сегодняшний день, поскольку введение растительных добавок в молочную основу позволяет заменить часть животного белка растительным, который является более дешевым.

Помимо этого, изоэлектрическая точка белка может использовать при очистке сточных вод от птицефабрик. Так, основная доля загрязнений сточных вод убойного цеха птицефабрики приходится на белки крови. Учитывая то, что ИЭТ большинства белков находится в зоне слабокислой реакции среды, наиболее полное извлечение белков будет происходить при слабокислой реакции среды при величине рН, стремящейся к ИЭТ.

Факторы, оказывающие влияние на ИЭТ

Что такое изоэлектрическая точка белка. Смотреть фото Что такое изоэлектрическая точка белка. Смотреть картинку Что такое изоэлектрическая точка белка. Картинка про Что такое изоэлектрическая точка белка. Фото Что такое изоэлектрическая точка белка

На ИЭТ оказывает влияние несколько факторов. Рассмотрим, от чего зависит изоэлектрическая точка белков. Прежде всего, она определяется преобладанием аминных или карбоксигрупп в составе молекулы белка. Большая часть белков представляют собой более сильные кислоты по сравнению с основаниями, поэтому для них ИЭТ меньше 7. Имеется группа белков, которые являются более сильными основаниями, чем кислотами, для них ИЭТ больше 7. Установлена сильная корреляционная зависимость между изоэлектрической точкой белка и содержанием ионов солей в растворе. Концентрация белка не оказывает никакого влияния на данный показатель. Рассмотренные факторы позволяют понять, почему изоэлектрическая точка различна для разных белков.

Что такое изоэлектрическая точка белка. Смотреть фото Что такое изоэлектрическая точка белка. Смотреть картинку Что такое изоэлектрическая точка белка. Картинка про Что такое изоэлектрическая точка белка. Фото Что такое изоэлектрическая точка белка

Примеры ИЭТ белков:

ИЭТ и ее определение

Что такое изоэлектрическая точка белка. Смотреть фото Что такое изоэлектрическая точка белка. Смотреть картинку Что такое изоэлектрическая точка белка. Картинка про Что такое изоэлектрическая точка белка. Фото Что такое изоэлектрическая точка белка

Все методы определения изоэлектрической точки белков основаны на приготовлении буферных растворов, имеющих отличающуюся реакцию среды. Во все эти растворы помещаются одинаковые навески изучаемого белка, который может быть как в сухом виде, так и в виде раствора. Используются различные методы определения ИЭТ. Как определить изоэлектрическую точку белка?

Основными методами определения ИЭТ являются электрофорез, по минимуму вязкости и связанный с применением водоотнимающих веществ. Могут использоваться и некоторые другие методы, такие, как определение по степени набухания сухого белка, скорости застудевания, но они менее точные и требуют наличия большого количества белка.

Электрофорез

При использовании данного метода в прибор для его осуществления помещаются полоски хромотографической или фильтровальной бумаги, смоченные определенным буферным раствором. Посередине каждой полоски делается карандашная отметка, в которую при помощи пипетки наносится одна капля изучаемого раствора белка. Затем прибор включают и через эти полоски пропускают электрический ток. Макромолекулы изменяют свой заряд в зависимости от величины рН буферного раствора. Если величина рН превышает ИЭТ, то наблюдается отрицательный заряд макромолекул, и наоборот.

Что такое изоэлектрическая точка белка. Смотреть фото Что такое изоэлектрическая точка белка. Смотреть картинку Что такое изоэлектрическая точка белка. Картинка про Что такое изоэлектрическая точка белка. Фото Что такое изоэлектрическая точка белка

Если рН равно ИЭТ, то макромолекулы становятся нейтрально заряженными. Через определенное время подача тока прекращается, полоски бумаги достаются из прибора и высушиваются, после чего пятна белка опрыскивают нингидрином для их проявления. ИЭТ устанавливают по буферному раствору полоски бумаги, где белковое пятно осталось там же, где была нанесена капля. При необходимости этот метод может быть применен и для тонкого фракционирования белков.

Применение других методов для определения ИЭТ

При нахождении в изоэлектрическом состоянии молекулы белков менее гидратированы, поэтому изоэлектрическую точку белка можно определить, используя метод по минимуму вязкости. Для его применения необходимо наличие вискозиметра. С помощью этого прибора определяют относительную вязкость буферных растворов. Молекулы белка, находящегося в изоэлектрическом состоянии, свернуты, поэтому самая небольшая вязкость будет у раствора, в котором его рН будет совпадать с ИЭТ.

На этом же свойстве основан метод, связанный с действием водоотнимающих средств. В качестве таких средств могут выступать ацетон, эфир или спирт. Выделение белков из соответствующих растворов потенциально происходит тем быстрее и полнее, чем полнее соответствует реакция среды ИЭТ. В изоэлектрической точке растворы белков неустойчивы.

Таким образом, существуют различные методы определения изоэлектрической точки белка. И ее определение должно выполняться в зависимости от имеющегося оборудования, материалов, количества белка.

Устойчивость белка в ИЭТ

В изоэлектрической точке белка силы отталкивания между белковыми частицами в макромолекуле ослабевают, благодаря чему происходи агрегация этих молекул и белок выпадает в осадок. Это свидетельствует о том, что в ИЭТ белок неустойчивый за счет потери заряда, который является фактором стабилизации водных белковых растворов. Если к белку добавить кислоту или основание, то молекулы перезаряжаются, белок осуществляет переход в раствор.

Что такое изоэлектрическая точка белка. Смотреть фото Что такое изоэлектрическая точка белка. Смотреть картинку Что такое изоэлектрическая точка белка. Картинка про Что такое изоэлектрическая точка белка. Фото Что такое изоэлектрическая точка белка

В заключение

Таким образом, изоэлектрическая точка белка представляет собой значение реакции среды (рН), при котором в белковой молекуле отмечается равенство разнонаправленных (отрицательных и положительных) зарядов и равенство различных степеней (основных и кислотных) диссоциации. В данной точке белок теряет заряды и становится неустойчивым, вследствие чего выпадает в осадок. Молекула белка сворачивается, в то время, когда она несет в себе определенные заряды, она распрямлена в виде нити.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *