Что такое искусственные нейронные сети
Нейронные сети. Часть 1. Основы искусственных нейронных сетей
Доброго времени вам суток, уважаемое Хабрасообщество.
Хочу вначале сделать маленький дисклеймер. Предыдущим постом в этом сообществе были рассмотрены основы искусственной нейронной сети. Я данной темой занималась для написания своей магистерской работы и соответственно прочитала в свое время достаточно литературы, поэтому мне бы хотелось немного дополнить и в дальнейшем продолжить вам рассказывать о том, что такое нейронная сеть, какое представление она имеет изнутри, как с ее помощью решают задачи и так далее…
Сразу оговорюсь, что я не гуру в данном вопросе, я его знаю (ну или знала, так как времени прошло уже достаточно) настолько глубоко, насколько мне было это необходимо для написания работающей нейронной сети для распознавания цифр, ее обучения и дальнейшего использования. Предметом исследования была структура нейронной сети для распознавания символов, а конкретно, зависимость между количеством нейронов в скрытом слое и сложностью выборки для входных данных (количеством символов для распознавания).
UPD: данный текст в основном является обобщением из прочитанной литературы. Он не написан мною лично. По крайней мере эта часть.
UPD2: Скорей всего продолжения данной темы не будет, так как хабрапользователь stepan_ovchinnikov, который является смотрителем данного блога, считает, что нет смысла писать здесь то, что можно прочитать из многочисленной литературы, которая есть по нейронным сетям. Так что извините.
Возможно первая часть будет в чем-то похожа на предыдущий пост хабрапользователя Kallisto, но я считаю, что стоит более детально рассмотреть строение искусственного нейрона, у меня есть, что добавить, ну и, плюс ко всему, я хочу написать полноценную и законченную серию постов про нейросети, не опираясь на уже написанное. Надеюсь вам будет полезен данный материал.
Биологический прототип нейрона
Первой попыткой создания и исследования искусственных нейронных сетей считается работа Дж. Маккалока (J. McCulloch) и У. Питтса (W. Pitts) «Логическое исчисление идей, относящихся к нервной деятельности» (1943 г.), в которой были сформулированы основные принципы построения искусственных нейронов и нейронных сетей. И хотя эта работа была лишь первым этапом, многие идеи, описанные в ней, остаются актуальными и на сегодняшний день.
Искусственные нейронные сети индуцированы биологией, потому что они состоят из элементов, функциональные возможности которых аналогичны большинству функций биологического нейрона. Эти элементы можно организовать таким образом, который может соответствовать анатомии мозга, и они демонстрируют большое количество свойств, которые присущие мозгу. Например, они могут учиться на основе опыта, могут обобщать предыдущие прецеденты на новые случаи и выявлять существенные особенности из входных данных, которые содержат избыточную информацию.
Центральная нервная система имеет клеточное строение. Единица — нервная клетка, нейрон. Он состоит из тела и отростков, которые соединяют его с внешним миром (рис. 1.1). Отростки, по которым нейрон получает возбуждение, называются дендритами. Отросток, по которому нейрон передает возбуждение, называется аксоном, причем аксон у каждого нейрона один. Дендриты и аксон имеют довольно сложную ветвистую структуру. Место соединения аксона нейрона — источника возбуждения с дендритом называется синапсом. Основная функция нейрона состоит в передаче возбуждения из дендритов в аксон. Но сигналы, которые поступают из разных дендритов, могут влиять на сигнал в аксоне. Нейрон выдаст сигнал, если суммарное возбуждение превысит некоторое предельное значение, которое в общем случае меняется в некоторых границах. В противном случае на аксон сигнал выдан не будет: нейрон не ответит на возбуждение. У этой основной схемы много осложнений и исключений, однако большинство нейронных сетей моделируют именно эти простые свойства.
(рисунок 1.1) — Модель биологического нейрона
Интенсивность сигнала, который получает нейрон (а следовательно и возможность его активации), сильно зависит от активности синапсов. Каждый синапс имеет длину, и специальные химические вещества передают сигнал вдоль него. Один из самых авторитетных исследователей нейросистем, Дональд Хебб, высказал постулат, что обучение состоит в первую очередь в изменениях «силы» синаптических связей. Например, в классическом опыте Павлова, каждый раз непосредственно перед кормлением собаки звонил колокольчик, и собака быстро научилась связывать звонок колокольчика с пищей. Синаптические связи между участками коры главного мозга, ответственными за слух, и слюнными железами усилились, и при возбуждении коры звуком колокольчика у собаки начиналось слюноотделение.
Таким образом, будучи построенный из очень большого числа совсем простых элементов (каждый из которых берет взвешенную сумму входных сигналов и в случае, если суммарный вход превышает определенный уровень, передает дальше двоичный сигнал), мозг способен решать чрезвычайно сложные задачи.
Данное описание можно представить следующей формулой
где w0 — биас;
wі — вес i- го нейрона;
xі — выход i- го нейрона;
n — количество нейронов, которые входят в обрабатываемый нейрон
Сигнал w0, который имеет название биас, отображает функцию предельного значения, сдвига. Этот сигнал позволяет сдвинуть начало отсчета функции активации, которая в дальнейшем приводит к увеличению скорости обучения. Этот сигнал добавляется к каждому нейрону, он учится как и все другие весы, а его особенность в том, что он подключается к сигналу +1, а не к выходу предыдущего нейрона.
Полученный сигнал NET как правило обрабатывается функцией активации и дает выходной нейронный сигнал OUT (рис. 1.3)
(рисунок 1.3) — Искусственный нейрон с функцией активации
Если функция активации суживает диапазон изменения величины NET так, что при каждом значении NET значения OUT принадлежат некоторому диапазону — конечному интервалу, то функция F называется функцией, которая суживает. В качестве этой функции часто используются логистическая или «сигмоидальная» функция. Эта функция математически выражается следующим образом:
Основное преимущество такой функции — то, что она имеет простую производную и дифференцируется по всей оси абсцисс. График функции имеет следующий вид (рис. 1.4)
(рисунок 1.4) — Вид сигмоидальной функции активации
Функция усиливает слабые сигналы и предотвращает насыщение от больших сигналов.
Другой функцией, которая также часто используется, является гиперболический тангенс. По форме она похожа на сигмоидальную и часто используется биологами в качестве математической модели активации нервной клетки. Она имеет вид
Как и логистическая функция, гиперболический тангенс имеет S-образный вид, но он является симметричным относительно начала координат, и в точке NET=0 значение выходного сигнала OUT=0 (рис. 1.5). На графике можно увидеть, что эта функция, в отличии от логистической, принимает значение разных знаков, что является очень выгодным свойством для некоторых типов сетей.
(рисунок 1.5) — Вид функции активации — гиперболический тангенс
Рассмотренная модель искусственного нейрона игнорирует много свойств биологического нейрона. Например, она не принимает во внимание задержки во времени, которые влияют на динамику системы. Входные сигналы сразу порождают исходные. Но несмотря на это, искусственные нейронные сети, составленные из рассмотренных нейронов, выявляют свойства, которые присущи биологической системе.
ссылки на литературу:
1. Ф. Уоссермен. Нейрокомпьютерная техника: теория и практика. Перевод на русский язык Ю. А. Зуев, В. А. Точенов, 1992
2. И. В. Заенцев. Нейронные сети: основные модели. Учебное пособие к курсу “Нейронные сети”
Национальная библиотека им. Н. Э. Баумана
Bauman National Library
Персональные инструменты
Искусственная нейронная сеть
Иску́сственная нейро́нная се́ть (ИНС) — математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети У. Маккалока и У. Питтса. После разработки алгоритмов обучения получаемые модели стали использовать в практических целях: в задачах прогнозирования, для распознавания образов, в задачах управления и др.
ИНС представляют собой систему соединённых и взаимодействующих между собой простых процессоров (искусственных нейронов). Такие процессоры обычно довольно просты (особенно в сравнении с процессорами, используемыми в персональных компьютерах). Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. И, тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, такие локально простые процессоры вместе способны выполнять довольно сложные задачи.
Нейронные сети не программируются в привычном смысле этого слова, они обучаются. Возможность обучения — одно из главных преимуществ нейронных сетей перед традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение. Это значит, что в случае успешного обучения сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке, а также неполных и/или «зашумленных», частично искаженных данных.
Содержание
Хронология
Применение
Распознавание образов и классификация
В качестве образов могут выступать различные по своей природе объекты: символы текста, изображения, образцы звуков и т. д. При обучении сети предлагаются различные образцы образов с указанием того, к какому классу они относятся. Образец, как правило, представляется как вектор значений признаков. При этом совокупность всех признаков должна однозначно определять класс, к которому относится образец. В случае, если признаков недостаточно, сеть может соотнести один и тот же образец с несколькими классами, что неверно. По окончании обучения сети ей можно предъявлять неизвестные ранее образы и получать ответ о принадлежности к определённому классу.
Топология такой сети характеризуется тем, что количество нейронов в выходном слое, как правило, равно количеству определяемых классов. При этом устанавливается соответствие между выходом нейронной сети и классом, который он представляет. Когда сети предъявляется некий образ, на одном из её выходов должен появиться признак того, что образ принадлежит этому классу. В то же время на других выходах должен быть признак того, что образ данному классу не принадлежит. Если на двух или более выходах есть признак принадлежности к классу, считается, что сеть «не уверена» в своём ответе.
Принятие решений и управление
Эта задача близка к задаче классификации. Классификации подлежат ситуации, характеристики которых поступают на вход нейронной сети. На выходе сети при этом должен появиться признак решения, которое она приняла. При этом в качестве входных сигналов используются различные критерии описания состояния управляемой системы.
Кластеризация
Под кластеризацией понимается разбиение множества входных сигналов на классы, при том, что ни количество, ни признаки классов заранее не известны. После обучения такая сеть способна определять, к какому классу относится входной сигнал. Сеть также может сигнализировать о том, что входной сигнал не относится ни к одному из выделенных классов — это является признаком новых, отсутствующих в обучающей выборке, данных. Таким образом, подобная сеть может выявлять новые, неизвестные ранее классы сигналов. Соответствие между классами, выделенными сетью, и классами, существующими в предметной области, устанавливается человеком. Кластеризацию осуществляют, например, нейронные сети Кохонена.
Нейронные сети в простом варианте Кохонена не могут быть огромными, поэтому их делят на гиперслои (гиперколонки) и ядра (микроколонки). Если сравнивать с мозгом человека, то идеальное количество параллельных слоёв не должно быть более 112. Эти слои в свою очередь составляют гиперслои (гиперколонку), в которой от 500 до 2000 микроколонок (ядер). При этом каждый слой делится на множество гиперколонок, пронизывающих насквозь эти слои. Микроколонки кодируются цифрами и единицами с получением результата на выходе. Если требуется, то лишние слои и нейроны удаляются или добавляются. Идеально для подбора числа нейронов и слоёв использовать суперкомпьютер. Такая система позволяет нейронным сетям быть пластичными.
Прогнозирование
Способности нейронной сети к прогнозированию напрямую следуют из её способности к обобщению и выделению скрытых зависимостей между входными и выходными данными. После обучения сеть способна предсказать будущее значение некой последовательности на основе нескольких предыдущих значений и (или) каких-то существующих в настоящий момент факторов. Следует отметить, что прогнозирование возможно только тогда, когда предыдущие изменения действительно в какой-то степени предопределяют будущие. Например, прогнозирование котировок акций на основе котировок за прошлую неделю может оказаться успешным (а может и не оказаться), тогда как прогнозирование результатов завтрашней лотереи на основе данных за последние 50 лет почти наверняка не даст никаких результатов.
Аппроксимация
Нейронные сети могут аппроксимировать непрерывные функции. Доказана обобщённая аппроксимационная теорема: с помощью линейных операций и каскадного соединения можно из произвольного нелинейного элемента получить устройство, вычисляющее любую непрерывную функцию с некоторой наперёд заданной точностью. Это означает, что нелинейная характеристика нейрона может быть произвольной: от сигмоидальной до произвольного волнового пакета или вейвлета, синуса или многочлена. От выбора нелинейной функции может зависеть сложность конкретной сети, но с любой нелинейностью сеть остаётся универсальным аппроксиматором и при правильном выборе структуры может достаточно точно аппроксимировать функционирование любого непрерывного автомата.
Сжатие данных и Ассоциативная память
Способность нейросетей к выявлению взаимосвязей между различными параметрами дает возможность выразить данные большой размерности более компактно, если данные тесно взаимосвязаны друг с другом. Обратный процесс — восстановление исходного набора данных из части информации — называется (авто)ассоциативной памятью. Ассоциативная память позволяет также восстанавливать исходный сигнал/образ из зашумленных/поврежденных входных данных. Решение задачи гетероассоциативной памяти позволяет реализовать память, адресуемую по содержимому.
Искусственные нейронные сети простыми словами
Когда, за бутылкой пива, я заводил разговор о нейронных сетях — люди обычно начинали боязливо на меня смотреть, грустнели, иногда у них начинал дёргаться глаз, а в крайних случаях они залезали под стол. Но, на самом деле, эти сети просты и интуитивны. Да-да, именно так! И, позвольте, я вам это докажу!
Допустим, я знаю о девушке две вещи — симпатична она мне или нет, а также, есть ли о чём мне с ней поговорить. Если есть, то будем считать это единицей, если нет, то — нулём. Аналогичный принцип возьмем и для внешности. Вопрос: “В какую девушку я влюблюсь и почему?”
Можно подумать просто и бескомпромиссно: “Если симпатична и есть о чём поговорить, то влюблюсь. Если ни то и ни другое, то — увольте.”
Но что если дама мне симпатична, но с ней не о чем разговаривать? Или наоборот?
Понятно, что для каждого из нас что-то одно будет важнее. Точнее, у каждого параметра есть его уровень важности, или вернее сказать — вес. Если помножить параметр на его вес, то получится соответственно “влияние внешности” и “влияние болтливости разговора”.
И вот теперь я с чистой совестью могу ответить на свой вопрос:
“Если влияние харизмы и влияние болтливости в сумме больше значения “влюбчивость” то влюблюсь…”
То есть, если я поставлю большой вес “болтологичности” дамы и маленький вес внешности, то в спорной ситуации я влюблюсь в особу, с которой приятно поболтать. И наоборот.
Собственно, это правило и есть нейрон.
Искусственный нейрон — это такая функция, которая преобразует несколько входных фактов в один выходной. Настройкой весов этих фактов, а также порога возбуждения — мы настраиваем адекватность нейрона. В принципе, для многих наука жизни заканчивается на этом уровне, но ведь эта история не про нас, верно?
Сделаем ещё несколько выводов:
Смешно, но параметр “влюбчивости” называется “порогом возбуждения”. Но, дабы эта статья не получила рейтинг “18+”, давайте договоримся говорить просто “порог”, ок?
Нейронная сеть
Не бывает однозначно симпатичных и однозначно общительных дам. Да и влюблённость влюблённости рознь, кто бы что ни говорил. Потому давайте вместо брутальных и бескомпромиссных “0” и “1”, будем использовать проценты. Тогда можно сказать — “я сильно влюблён (80%), или “эта дама не особо разговорчива (20%)”.
Наш примитивный “нейрон-максималист” из первой части уже нам не подходит. Ему на смену приходит “нейрон-мудрец”, результатом работы которого будет число от 0 до 1, в зависимости от входных данных.
“Нейрон-мудрец” может нам сказать: “эта дама достаточно красива, но я не знаю о чём с ней говорить, поэтому я не очень-то ей и восхищён”
К слову говоря, входные факты нейрона называются синапсами, а выходное суждение — аксоном. Связи с положительным весом называются возбуждающими, а с отрицательным — тормозящими. Если же вес равен нулю, то считается, что связи нет (мёртвая связь).
Поехали дальше. Сделаем по этим двум фактам другую оценку: насколько хорошо с такой девушкой работать (сотрудничать)? Будем действовать абсолютно аналогичным образом — добавим мудрый нейрон и настроим веса комфортным для нас образом.
Но, судить девушку по двум характеристикам — это очень грубо. Давайте судить её по трём! Добавим ещё один факт – деньги. Который будет варьироваться от нуля (абсолютно бедная) до единицы (дочь Рокфеллера). Посмотрим, как с приходом денег изменятся наши суждения….
Для себя я решил, что, в плане очарования, деньги не очень важны, но шикарный вид всё же может на меня повлиять, потому вес денег я сделаю маленьким, но положительным.
В работе мне абсолютно всё равно, сколько денег у девушки, поэтому вес сделаю равным нулю.
Оценивать девушку только для работы и влюблённости — очень глупо. Давайте добавим, насколько с ней будет приятно путешествовать:
Соединим все эти три схемы в одну и обнаружим, что мы перешли на более глубокий уровень суждений, а именно: от харизмы, денег и разговорчивости — к восхищению, сотрудничеству и комфортности совместного путешествия. И заметьте — это тоже сигналы от нуля до единицы. А значит, теперь я могу добавить финальный “нейрон-максималист”, и пускай он однозначно ответит на вопрос — “жениться или нет”?
Ладно, конечно же, не всё так просто (в плане женщин). Привнесём немного драматизма и реальности в наш простой и радужный мир. Во-первых, сделаем нейрон «женюсь — не женюсь» — мудрым. Сомнения же присущи всем, так или иначе. И ещё — добавим нейрон «хочу от неё детей» и, чтобы совсем по правде, нейрон “держись от неё подальше».
Я ничего не понимаю в женщинах, и поэтому моя примитивная сеть теперь выглядит как картинка в начале статьи.
Входные суждения называются “входной слой”, итоговые — “выходной слой”, а тот, что скрывается посередине, называется «скрытым». Скрытый слой — это мои суждения, полуфабрикаты, мысли, о которых никто не знает. Скрытых слоёв может быть несколько, а может быть и ни одного.
Долой максимализм.
Помните, я говорил об отрицательном влияние денег на моё желание путешествовать с человеком? Так вот — я слукавил. Для путешествий лучше всего подходит персона, у которой денег не мало, и не много. Мне так интереснее и не буду объяснять почему.
Но тут я сталкиваюсь с проблемой:
Если я ставлю вес денег отрицательным, то чем меньше денег — тем лучше для путешествий.
Если положительным, то чем богаче — тем лучше,
Если ноль — тогда деньги “побоку”.
Чтобы это обойти, я сделаю два нейрона — “денег много” и “денег мало”, и подам им на вход денежный поток от нашей дамы.
Теперь у меня есть два суждения: “много” и “мало”. Если оба вывода незначительны, то буквально получится “ни много — ни мало”. То есть, добавим на выход ещё один нейрон, с отрицательными весами:
“Нимногонимало”. Красные стрелки — положительные связи, синие — отрицательные
Вообще, это значит, что нейроны подобны элементам конструктора. Подобно тому, как процессор делают из транзисторов, мы можем собрать из нейронов мозг. Например, суждение “Или богата, или умна” можно сделать так:
Или-или. Красные стрелки — положительные связи, синие – отрицательные
можно заменить “мудрые” нейроны на “максималистов” и тогда получим логический оператор XOR. Главное — не забыть настроить пороги возбуждения.
В отличие от транзисторов и бескомпромиссной логики типичного программиста “если — то”, нейронная сеть умеет принимать взвешенные решения. Их результаты будут плавно меняться, при плавном изменение входных параметров. Вот она мудрость!
Обращу ваше внимание, что добавление слоя из двух нейронов, позволило нейрону “ни много — ни мало” делать более сложное и взвешенное суждение, перейти на новый уровень логики. От “много” или “мало” — к компромиссному решению, к более глубокому, с философской точки зрения, суждению. А что если добавить скрытых слоёв ещё? Мы способны охватить разумом ту простую сеть, но как насчёт сети, у которой есть 7 слоёв? Способны ли мы осознать глубину её суждений? А если в каждом из них, включая входной, около тысячи нейронов? Как вы думаете, на что она способна?
Представьте, что я и дальше усложнял свой пример с женитьбой и влюблённостью, и пришёл к такой сети. Где-то там в ней скрыты все наши девять нейрончиков, и это уже больше похоже на правду. При всём желании, понять все зависимости и глубину суждений такой сети — попросту невозможно. Для меня переход от сети 3х3 к 7х1000 — сравним с осознанием масштабов, если не вселенной, то галактики — относительно моего роста. Попросту говоря, у меня это не получится. Решение такой сети, загоревшийся выход одного из её нейронов — будет необъясним логикой. Это то, что в быту мы можем назвать “интуицией” (по крайней мере – “одно из..”). Непонятное желание системы или её подсказка.
Но, в отличие от нашего синтетического примера 3х3, где каждый нейрон скрытого слоя достаточно чётко формализован, в настоящей сети это не обязательно так. В хорошо настроенной сети, чей размер не избыточен для решения поставленной задачи — каждый нейрон будет детектировать какой-то признак, но это абсолютно не значит, что в нашем языке найдётся слово или предложение, которое сможет его описать. Если проецировать на человека, то это — какая-то его характеристика, которую ты чувствуешь, но словами объяснить не можешь.
Обучение.
Несколькими строчками ранее я обмолвился о хорошо настроенной сети, чем вероятно спровоцировал немой вопрос: “А как мы можем настроить сеть, состоящую из нескольких тысяч нейронов? Сколько “человеколет” и погубленных жизней нужно на это. Боюсь предположить ответ на последний вопрос. Куда лучше автоматизировать такой процесс настройки — заставить сеть саму настраивать себя. Такой процесс автоматизации называется обучением. И чтобы дать поверхностное о нём представление, я вернусь к изначальной метафоре об “очень важном вопросе”:
Мы появляемся в этом мире с чистым, невинным мозгом и нейронной сетью, абсолютно не настроенной относительно дам. Её необходимо как-то грамотно настроить, дабы счастье и радость пришли в наш дом. Для этого нам нужен некоторый опыт, и тут есть несколько путей по его добыче:
1) Обучение с учителем (для романтиков). Насмотреться на голливудские мелодрамы и начитаться слезливых романов. Или же насмотреться на своих родителей и/или друзей. После этого, в зависимости от выборки, отправиться проверять полученные знания. После неудачной попытки — повторить всё заново, начиная с романов.
2) Обучение без учителя (для отчаянных экспериментаторов). Попробовать методом “тыка” жениться на десятке-другом женщин. После каждой женитьбы, в недоумение чесать репу. Повторять, пока не поймёшь, что надоело, и ты “уже знаешь, как это бывает”.
3) Обучение без учителя, вариант 2 (путь отчаянных оптимистов). Забить на всё, что-то делать по жизни, и однажды обнаружить себя женатым. После этого, перенастроить свою сеть в соответствие с текущей реальностью, дабы всё устраивало.
Далее, по логике я должен расписать всё это подробно, но без математики это будет слишком философично. Потому считаю, что мне стоит на этом остановиться. Быть может в другой раз?
Всё вышесказанное справедливо для искусственной нейронной сети типа “персептрон”. Остальные сети похожи на нее по основным принципам, но имеют свою нюансы.
Хороших вам весов и отличных обучающих выборок! Ну а если это уже и не нужно, то расскажите об этом кому-нибудь ещё.