Что такое ионные каналы

Ионные каналы

Ионные каналы представлены интегральными белками мембраны. Эти белки способны, при определенных воздействиях, изменять свою конформацию (форму и свойства) таким образом, что пора, через которую может пройти какой-либо ион открывается или закрывается. Известны натриевые, калиевые, кальциевые, хлорные каналы, иногда канал может пропускать два иона, например известны натрий – кальциевые каналы. Через ионные каналы осуществляется только пассивный транспорт ионов. Это значит, что для перемещения иона необходим не только открытый канал, но и градиент концентрации для этого иона. В этом случае, будет движение иона по градиенту концентрации – из области с большей концентрацией в область с меньшей концентрацией. Необходимо помнить, что мы говорим об ионах – заряженных частицах, транспорт которых обусловлен еще и зарядом. Возможны ситуации, когда движение по градиенту концентрации может быть направлено в одну сторону, а существующие заряды противодействуют этому переносу.

Ионные каналы обладают двумя важнейшими свойствами: 1) избирательностью(селективностью) по отношению к определенным ионам и 2) способностью открываться (активироваться) и закрываться. При активации канал открывается и пропускает ионы (рис. 8). Таким образом, в комплекс интегральных белков, формирующих канал, должны обязательно входить два элемента: структуры, распознающие «свой» ион и способные его пропустить, и структуры, которые позволяют узнать – когда пропускать этот ион. Селективность канала определяется теми белками, которые его образуют, «свой» ион распознается по размерам и заряду.

Активация каналов возможна несколькими путями. Во-первых, каналы могут открываться и закрываться при изменении потенциала мембраны. Изменение заряда приводит к изменению конформации белковых молекул, и канал становится проницаемым для иона. Для изменения свойств канала достаточно ничтожного колебания потенциала мембраны. Такие каналы называются потенциал-зависимые(или электроуправляемые). Во-вторых, каналы могут быть частью сложного белкового комплекса, который называется мембранный рецептор. В этом случае изменение свойств канала обусловлено конформационнй перестройкой белков, которая происходит в результате взаимодействия рецептора с биологически активным веществом (гормоном, медиатором). Такие каналы называются хемозависимые (или рецептор-управляемые). Кроме того, каналы могут открываться при механическом воздействии – давлении, растяжении (рис.9). Механизм, который обеспечивает активацию, называется воротами канала. По скорости, с которой открываются и закрываются каналы их можно разделить на быстрые и медленные.

Большинство каналов (калиевые, кальциевые, хлорные) могут находиться в двух состояниях: открытом и закрытом. В работе натриевых каналов есть некоторые особенности. Этим каналам, как и калиевым, кальциевым, хлорным свойственно находиться или в открытом, или в закрытом состоянии, однако, натриевый канал может быть и инактивирован, этот состояние, в котором канал закрыт и не может быть открыт никаким воздействием (рис.10).

Что такое ионные каналы. Смотреть фото Что такое ионные каналы. Смотреть картинку Что такое ионные каналы. Картинка про Что такое ионные каналы. Фото Что такое ионные каналы

Рисунок 8. Состояния ионных каналов

Что такое ионные каналы. Смотреть фото Что такое ионные каналы. Смотреть картинку Что такое ионные каналы. Картинка про Что такое ионные каналы. Фото Что такое ионные каналы

Рисунок 9. Пример работы рецептор-управляемого канала. АЦХ – ацетилхолин. Взаимодействие молекулы АЦХ с мембранным рецептором изменяет конформацию воротного белка таким образом, что канал начинает пропускать ионы.

Что такое ионные каналы. Смотреть фото Что такое ионные каналы. Смотреть картинку Что такое ионные каналы. Картинка про Что такое ионные каналы. Фото Что такое ионные каналы

Рисунок 10 Пример потенциал-зависимого канала

В потенциал-зависимом натриевом канале имеются активационные и инактивационные ворота (заслонки). Активационные и инактивационные заслонки меняют конформацию при различном мембранном потенциале.

При рассмотрении механизмов возбуждения нас будет интересовать в основном работа натриевых и калиевых каналов, однако, остановимся коротко на особенностях кальциевых каналов, они нам понадобятся в дальнейшем. Натриевые и кальциевые каналы отличаются по своим свойствам. Натриевые каналы бывают быстрые и медленные, а кальциевые – только медленные. Активация натриевых каналов приводит только к деполяризации и возникновению или ЛО, или ПД, активация кальциевых может дополнительно вызвать метаболические изменения в клетке. Эти изменения обусловлены тем, что кальций связывается со специальными, чувствительными к этому иону белками. Связанный с кальцием белок изменяет свойства таким образом, что становится способен изменить свойства других белков, например, активировать ферменты, запустить сокращение мышцы, выделение медиаторов.

Механизм работы Na + /K + насоса

Дата добавления: 2015-07-07 ; просмотров: 3503 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Ионные каналы

Что такое ионные каналы. Смотреть фото Что такое ионные каналы. Смотреть картинку Что такое ионные каналы. Картинка про Что такое ионные каналы. Фото Что такое ионные каналы

Что такое ионные каналы. Смотреть фото Что такое ионные каналы. Смотреть картинку Что такое ионные каналы. Картинка про Что такое ионные каналы. Фото Что такое ионные каналы

Ио́нные кана́лы — порообразующие белки (одиночные либо целые комплексы), поддерживающие разность потенциалов, которая существует между внешней и внутренней сторонами клеточной мембраны всех живых клеток. Относятся к транспортным белкам. С их помощью ионы перемещаются согласно их электрохимическим градиентам сквозь мембрану. Такие комплексы представляют собой набор идентичных или гомологичных белков, плотно упакованных в липидном бислое мембраны вокруг водной поры. Каналы расположены в плазмалемме и некоторых внутренних мембранах клетки.

Через ионные каналы проходят ионы Na + (натрия), K + (калия), Cl − (хлора) и Ca ++ (кальция). Из-за открывания и закрывания ионных каналов меняется концентрация ионов по разные стороны мембраны и происходит сдвиг мембранного потенциала.

Канальные белки состоят из субъединиц, образующих структуру со сложной пространственной конфигурацией, в которой кроме поры обычно имеются молекулярные системы открытия, закрытия, избирательности, инактивации, рецепции и регуляции. Ионные каналы могут иметь несколько участков (сайтов) для связывания с управляющими веществами.

Содержание

Типы ионных каналов

Классификация ионных каналов проводится по различным параметрам и поэтому единой унифицированной классификации для них пока не существует.

Так, возможна классификация по структуре (строению) и происхождению от однотипных генов.

По этому принципу, например, выделяют три семейства лиганд-активируемых ионных каналов [1] :

При этом в одно и то же семейство попадают ионные каналы с разной ионной селективностью, а также с рецепторами к разным лигандам. Но зато образующие эти каналы белки имеют большое сходство в строении и происхождении.

Ионные каналы также можно классифицировать по селективности в зависимости от проходящих через них ионов: натриевые, калиевые, кальциевые, хлорные, протонные (водородные).

Наиболее часто встречаются два типа каналов: ионные каналы с лиганд-зависимыми воротами (находятся, в частности, в постсинаптической мембране нервно-мышечных соединений) и ионные каналы с потенциал-зависимыми воротами. Лиганд-зависимые каналы превращают химические сигналы, приходящие к клетке, в электрические; они необходимы, в частности, для работы химических синапсов. Потенциал-зависимые каналы нужны для распространения потенциала действия.

Работа ионных каналов

Неуправляемые (независимые) ионные каналы

Эти каналы обычно находятся в открытом состоянии и постоянно пропускают через себя ионы за счёт диффузии по градиенту их концентрации и/или по электрическому градиенту зарядов по обе стороны мембраны. Некоторые неуправляемые каналы различают вещества и пропускают через себя по градиенту концентрации все молекулы меньше определённой величины, их называют «неселективные каналы» или «поры». Существуют также «селективные каналы», которые благодаря своему диаметру и строению внутренней поверхности переносят только определённые ионы. Примеры: калиевые каналы, участвующие в формировании мембранного потенциала покоя, хлоридные каналы, эпителиальные натриевые каналы, анионные каналы эритроцитов. [3]

Потенциал-зависимые ионные каналы

Эти каналы отвечают за распространение потенциала действия, они открываются и закрываются в ответ на изменение мембранного потенциала. Например, натриевые каналы. Если мембранный потенциал поддерживается на уровне потенциала покоя, натриевые каналы закрыты и натриевый ток отсутствует. Если мембранный потенциал сдвигается в положительную сторону, то натриевые каналы откроются, и в клетку начнут входить ионы натрия по градиенту концентрации. Через 0,5 мс после установления нового значения мембранного потенциала, этот натриевый ток достигнет максимума. А еще через несколько миллисекунд падает почти до нуля. Это значит, что каналы через некоторое время закрываются вследствие инактивации, даже если клеточная мембрана остается деполяризованной. Но закрывшись, они отличаются от состояния, в котором находились до открытия, теперь они не могут открываться в ответ на деполяризацию мембраны, то есть они инактивированны. В таком состоянии они останутся до тех пор, пока мембранный потенциал не вернется к исходному значению и не пройдет восстановительный период, занимающий несколько миллисекунд.

Лиганд-зависимые ионные каналы

Эти каналы открываются, когда медиатор, связываясь с их наружными рецепторными участками, меняет их конформацию. Открываясь, они впускают ионы, изменяя этим мембранный потенциал. Лиганд-зависимые каналы почти нечувствительны к изменению мембранного потенциала. Они генерируют электрический потенциал, сила которого зависит от количества медиатора, поступающего в синаптическую щель и времени, которое он там находится.

Свойства ионных каналов

Для каналов характерна ионная специфичность. Каналы одного типа пропускают только ионы калия, другого — только ионы натрия и т. д.

Селективность — это избирательно повышенная проницаемость ионного канала для определённых ионов и пониженная для других. Такая избирательность определяется селективным фильтром — самым узким местом канальной поры. Фильтр, кроме узких размеров, может иметь также локальный электрический заряд.

Управляемая проницаемость — это способность открываться или закрываться при определённых управляющих воздействиях на канал.

Инактивация — это способность ионного канала через некоторое время после своего открытия автоматически понижать свою проницаемость даже в том случае, когда открывший их активирующий фактор продолжает действовать.

Блокировка — это способность ионного канала под действием веществ-блокаторов фиксировать какое-то одно своё состояние и не реагировать на обычные управляющие воздействия. Блокировку вызывают вещества-блокаторы, которые могут называться антагонистами, блокаторами или литиками.

Пластичность — это способность ионного канала изменять свои свойства, свои характеристики. Наиболее распространённый механизм, обеспечивающий пластичность — это фосфорилирование аминокислот канальных белков с внутренней стороны мембраны ферментами-протеинкиназами.

Источник

Ионные каналы мембраны

Введение

Ионные каналы (ИК) клеточной мембраны имеют огромное значение для жизни клеток. Они обеспечивают обмен клетки с окружающей средой веществом, энергией и информацией, с них начинаются и ими поддерживаются процессы возбуждения и торможения в нервной системе и мышцах, именно они (вместе и другими молекулярными рецепторами) обеспечивают восприятие клеткой внешних сигналов. С помощью ИК происходит передача в клетку управляющих сигналов из окружающей её среды. Именно ИК обеспечивают синаптическую передачу возбуждения от возбуждённого нейрона на другие клетки. Обобщая, можно сказать, что почти все важнейшие физиологические процессы в организме начинаются с ионных каналов и поддерживаются ими!

Определение понятия

Ионные каналы мембраны — это маленькие белковые трубочки разного диаметра, вставленные в клеточную мембрану, через которые внутрь клетки или наружу могут перемещаться ионы. Перемещение ионов через ионные каналы приводит к изменению концентрации ионов внутри и снаружи клетки, а также к изменению электрического потенциала мембраны. Перемещение в клетку ионов кальция через кальциевые каналы запускает в ней различные внутренние биохимические процессы. Существует множество видов ионных каналов. © 2014-2017 Сазонов В.Ф. © 2014-2016 kineziolog.bodhy.ru. © 2016-2017 kineziolog.su.

Ионный канал клеточной мембраны — это отверстие в мембране, обмётанное по краям белковой нитью, через которое через мембрану могут перемещаться ионы. Белковая нить нужна для того, чтобы отверстие не затянулось жировым слоем мембраны. Во многих случаях белковая нить, или каналообразующий белок, обладает функциональной активностью и контролирует пропускную способность канала по отношению к различным ионам. © 2014-2017 Сазонов В.Ф. © 2014-2016 kineziolog.bodhy.ru. © 2016-2017 kineziolog.su.

Ионные каналы можно рассматривать как транспортный механизм, обеспечивающий перемещение ионов между цитоплазмной клетки и наружной средой.

Упрощённое определение:

Что такое ионные каналы. Смотреть фото Что такое ионные каналы. Смотреть картинку Что такое ионные каналы. Картинка про Что такое ионные каналы. Фото Что такое ионные каналы

В мембране существуют и неионные каналы. Например, аквапорины — это специальные водные каналы, пропускающие через себя воду. Это тоже мембранные каналы, хотя их формально нельзя назвать «ионными каналами».

В настоящее время в молекулярной биологии в основном завершён описательный период в исследовании многообразия катион-транспортирующих ионных каналов в клетках эукариот. Теперь на первый план выходят проблемы познания механизмов регуляции ионных каналов и описание их участия в реакциях живой клетки на различные воздействия и на изменение её микроокружения.

Регулирумый перенос ионов через гидрофильные поры мембраны с помощью управляемых ИК является важнейшим свойством живых клеток, как электровозбудимых, так и невозбудимых.

В связи с этим целесообразно использовать в классификации ионных каналов именно принцип управления их деятельностью. Принцип управления состоянием ионных каналов и был положен в основу предложенной нами (Сазонов В.Ф., 2011.) функциональной классификации ионных каналов.

Видео: Ионные каналы в мембране

Строение ИК

Что такое ионные каналы. Смотреть фото Что такое ионные каналы. Смотреть картинку Что такое ионные каналы. Картинка про Что такое ионные каналы. Фото Что такое ионные каналы

ИК состоят из белков сложной структуры (белков-каналоформеров). Схематические изображения ИК приведены ниже, например: натриевый НАХ-рецепторный ионный канал.

Белки ИК имеют определённую конформацию, образующую трансмембранную пору, и «вшиты» в липидный слой мембраны. Канальный белковый комплекс может состоять либо из одной белковой молекулы, либо из нескольких белковых субъединиц, одинаковых или разных по строению. Эти субъединицы могут кодироваться разными генами, синтезироваться на рибосомах по-отдельности и затем собираться в виде целостного канала. В другом случае канал может представлять собой единый полипептид, который в виде петель прошивает мембрану несколько раз. На начало XXI века известно более 400 белков-каналоформеров, для биосинтеза которых используется 1-2% генома человека.

Практически все ИК имеют в составе своих субъединиц регуляторные домены, способные связываться с различными управляющими веществами (регуляторными молекулами) и за счёт этого менять состояние или свойства канала. В потенциал-активируемых ИК один из трансмембранных сегментов содержит специальный набор аминокислот с положительными зарядами и работает как сенсор электрического потенциала мембраны. При изменении потенциала такой сенсор меняет состояние канала с открытого на закрытое или наоборот. Таким образом, ИК могут управляться определёнными воздействиями извне, это важное их свойство.

По структуре ИК возможно провести их классификацию, о чём будет сказано ниже.

Свойства ИК

Функции ИК

В зависимости от проходящих через них ионов ИК подразделяют на натриевые, калиевые, кальциевые, хлорные, протонные (водородные).

1. Регуляция водного обмена клетки: объём и тургор.

2. Регуляция pH: закисление и защелачивание.

3. Регуляция ионного обмена (обмен солей): изменение внутриклеточного ионного состава и концентрации.

5. Проведение возбуждения в возбудимых клетках: обеспечение движения нервных импульсов.

6. Трансдукция в сенсорных рецепторах: преобразование раздражения (стимула) в возбуждение.

Функциональные состояния ИК

1. Открытое. Канал открыт и через него происходит перемещение ионов.

2. Закрытое. Канал закрыт и ионы не проходят через него.

3. Активированное. Канал может выполнять свои функции, т.е. открываться и закрываться под действием его регуляторов (управляющих веществ или электрических потенциалов).

4. Инактивированное. Канал не может выполнять свои функции, т.е. открываться и закрываться, он «фиксируется» в каком-то одном состоянии.

5. Блокированное. Канал перекрыт, инактивирован веществом-антагонистом (блокатором), занявшем место управляющего вещества.

Структурно-функциональные нарушения ИК

Функциональная классификация ионных каналов (ИК)
(© Сазонов В.Ф., 2011. © 2011-2017 Сазонов В.Ф. © 2011-2016 kineziolog.bodhy.ru © 2016-2017 kineziolog.su)

Как уже говорилось выше, ИК можно классифицировать различным образом:

1. По селективности (степени избирательной проницаемости к определённым ионам). В этом случае мы будем говорить о натриевых, калиевых, хлорных каналах и т.п.

2. По строению (родству их химического строения и происхождения образующих их белков). По строению (структуре) и по происхождению от однотипных генов различные ИК объединяются в отдельные семейства. Например, выделяют три семейства лиганд-активируемых ИК: 1) семейство с пуриновыми рецепторами (АТФ-активируемые), 2) с никотиновыми АХ-рецепторами, ГАМК-, глицин- и серотонин-рецепторами, 3) с глутаматными рецепторами. При этом в одно и то же семейство попадают ИК с разной ионной селективностью, а также ИК с разными управляющими лигандами. Но зато образующие эти каналы белки имеют большое сходство в строении и происхождении.

3. По способу управления их состоянием. В этом случае мы будем говорить о потенциал-управляемых каналах, хемо-управляемых и т.д.

4. По связывающимся с ними лигандам (в том числе веществам-маркёрам) и т.д.

Создание удобной классификации является пока ещё не решённой проблемой. Как указывают Н.Н. Мушкамбаров и С.Л. Кузнецов, (2003), «в отличие от липидов, мембранные белки трудно классифицировать по их структуре. Более перспективно попытаться подразделить эти белки по их функциональной роли. Но и здесь нет законченной системы, т.к. любые попытки её создания наталкиваются на типичные трудности, когда один и тот же белок может быть отнесён к разным группам». Тем не менее, на наш взгляд, функциональная классификация ИК просто необходима для обучения студентов: биологов, медиков, психологов.

В основу предложенной нами функциональной классификации ИК (Сазонов В.Ф., 2011) положен способ управления их деятельностью, а не их селективная проницаемость к определённым ионам или химическое родство образующих их белков-каналоформеров. С этой точки зрения ИК делятся на неуправляемые и управляемые, т.е. либо постоянно открытые, либо открывающиеся-закрывающиеся при определённих воздействиях. Заметим, что большинство ИК являются управляемыми, но различаются между собой по механизмам управления. Воздействие регуляторного (управляющего) фактора на управляемый ИК вызывает конформационные изменения каналообразующих белков, канал открывается и ионы проходят по градиенту концентрации. При этом сам транспорт ионов через такие каналы не приводит к конформационным изменениям канальных белков и зависит только от разности концентраций веществ по обе стороны мембраны.

В одну и ту же функциональную группу нашей классификации могут попасть каналы различного молекулярного строения и с различной селективностью, т.е. пропускающие различные ионы. С другой стороны, сходные по строению и происхождению каналы могут оказаться в разных функциональных группах. Так, например, хлор-селективные ИК могут управляться как лигандами (глицином, ГАМК) и состоять в группе лиганд-управляемых каналов, так и потенциалом мембрнаны и состоять в группе потенциал-управляемых каналов (потенциал-активируемые хлорные каналы ClC).

Студентам

Для понимания электрических процессов, идущих в нервных клетках, формирования электрических потенциалов и нервных импульсов вполне достаточным будет разобраться в первых четырёх видах ионных каналов: 1) неуправляемые постоянно пропускают через себя ионы калия, 2) потенциал-управляемые открываются при деполяризации и начинают в этих условиях пропускать через себя в клетку ионы натрия (в постсинаптических окончаниях и нервных отростках) или же ионы кальция (в пресинаптических окончаниях или рецепторных клетках), 3) хемо-управляемые открываются под действием медиатора и начинают пропускать через себя в клетку ионы натрия, что вызывает деполяризацию в виде возбуждающего постсинаптического потенциала (ВПСП), 4) стимул-управляемые находятся в сенсорных рецепторах (рецепторных клетках или рецепторных нервных окончаниях) и открываются под действием стимула (раздражителя), начиная пропускать через себя ионы натрия, что вызывает деполяризацию в виде рецепторного потенциала.

Виды ионных каналов согласно функциональной классификации:

1. Неуправляемые (независимые, «проточные»). Конечно, это название условно и отражает лишь основное функциональное состояние подобных каналов. Пожалуй, полностью независимых и неуправляемых ИК в мембране просто не существует, и все они так или иначе регулируются. Неуправляемые ИК обычно находятся в постоянно открытом состоянии и обеспечивают постоянный ионный ток через открытую пору канала как в клетку, так и из клетки. Процесс перемещения ионов через такие ИК идёт пассивно за счёт диффузии под действием химических сил (по градиенту их концентрации) и/или электрических сил (по электрическому градиенту зарядов между внутренней и наружной сторонами мембраны).

Если неуправляемые каналы различают вещества только по размеру и пропускают через себя по градиенту концентрации все молекулы меньше определённой величины, т.е. служат фильтрами молекулярных размеров, то их называют «неселективные каналы», или «поры». Селективные каналы, работают избирательно и обеспечивают перенос только определённых ионов. Ионная селективность (избирательность) каналов определяется их диаметром и строением внутренней поверхности канала. Например, катионселективные каналы пропускают только катионы, так как содержат много отрицательно заряженных аминокислотных остатков.

Видео: Калиевый ионный канал

Что такое ионные каналы. Смотреть фото Что такое ионные каналы. Смотреть картинку Что такое ионные каналы. Картинка про Что такое ионные каналы. Фото Что такое ионные каналы

Примеры: т етродотоксин-чувствительные натриевые каналы, потенциал-активируемые К-каналы, калиевые Kdr-каналы задержанного выпрямления, кальциевые каналы пресинаптических окончаний аксонов.

Что такое ионные каналы. Смотреть фото Что такое ионные каналы. Смотреть картинку Что такое ионные каналы. Картинка про Что такое ионные каналы. Фото Что такое ионные каналыПримеры: каналы с никотиновыми ацетилхолиновыми рецепторами nAChR), серотониновыми рецепторами (5-HT3), глициновыми, ГАМК-рецепторами (GABAA и GABAC).

Видео: Работа хемо-управляемого (лиганд-управляемого) ионного канала

4. Стимул-управляемые (механочувствительные, механосенситивные, стретч-активируемые, stretch-activated, протон-активируемые, температурно-чувствительные).

Что такое ионные каналы. Смотреть фото Что такое ионные каналы. Смотреть картинку Что такое ионные каналы. Картинка про Что такое ионные каналы. Фото Что такое ионные каналы

Они открываются под воздействием специфичного и адекватного для них стимула (раздражителя). Такие каналы обеспечивают сенсорное восприятие и располагаются в мембране сенсорных рецепторов.

Пример: механочувствительные ИК рецепторных волосковых клеток, обеспечивающих слуховое восприятие; температурно-чувствительные ИК терморецепторов кожи, обеспечивающие восприятие тепла и холода.

В настоящее время стимул-управляемые механочувствительные ИК обнаружены не только в специализированных механорецепторных структурах, но также и в мембранах бактерий, грибов, растений, позвоночных и беспозвоночных животных. Механочувствительные каналы не только обеспечивают сенсорное восприятие механического раздражения, но также вовлечены в контроль клеточного цикла, регуляцию объёма и роста клеток, секрецию и эндоцитоз.

TRP-каналы в мембране терморецепторов кожи обеспечивают термотрансдукцию, открываясь при различных значениях темпераруры. Они пропускают катионы, особенно ионы кальция.

5. Совместно-управляемые (NMDA-рецепторно-канальный комплекс). Они открываются одновременно как лигандами, так и определённым электрическим потенциалом мембраны. Можно сказать, что у них двойное управление.

Пример: NMDA-рецепторно-канальный комплекс, имеющий сложную систему управления, включающую в себя 8 рецепторных участков-сайтов, с которыми могут связываться различные лиганды.

7. Актин-управляемые (актин-регулируемые, actin-regulated, actin-gated channels). Они открываются и закрываются за счёт разборки-сборки примембранных микрофиламентов с участием актин-связывающих белков.

В электроневозбудимых клетках активация и инактивация актин-управляемых потенциал-независимых натриевых каналов контролируется процессами разборки-сборки примембранных микрофиламентов с участием актин-связывающих белков. Актиновые элементы цитоскелета, по-видимому, представляют важнейшую часть потенциал-независимого воротного механизма, управляющего открыванием и закрыванием каналов. Именно сборка микрофиламентов на цитоплазматической стороне мембраны приводит к инактивации таких каналов.

Коннексоны найдены практически во всех видах клеток.

9. «Энерго-зависимые транспортёры» (ионные насосы, ионные помпы, ионные обменники, транспортёры). Это особая группа динамичных пор, проводящих ионы через мембрану, которые формально не относятся к ИК. Их деятельность обеспечивается энергией расщепления АТФ. Они представлены мембранными ферментными белками АТФазами, которые активно протаскивают через себя ионы, используя для этого энергию расщепления АТФ, и обеспечивают активный транспорт ионов через мембрану даже против их градиента концентрации.

Примеры: натрий-калиевый насос, протонный насос, кальциевый насос.

Примеры ионных каналов разного типа

Что такое ионные каналы. Смотреть фото Что такое ионные каналы. Смотреть картинку Что такое ионные каналы. Картинка про Что такое ионные каналы. Фото Что такое ионные каналы

Ацетилхолиновый рецептор лиганд-управляемого (хемозависимого) ионного канала

На рисунке слева представлена структурная модель лиганд-управляемого ацетилхолинового ИК.

http://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Nicotinic_Acetylch. (Top and front view to the 3D structure of the nicotinic acetylcholine receptor. *Created by S. Jähnichen using PhyMol *Derived from the published structure (source: [http://www.rcsb.org/pdb/ RCSB PDB Database] **PDB ID: 2BG9 **fro)

Глутаматные лиганд-управляемые (хемозависимые) и совместно-управляемые ионные каналы

Постсинаптические рецепторы к глутамату классифицируются в соответствии с аффинностью (сродством) к трем экзогенным агонистам:

3) N-метил-D-аспартату (NMDA).

Ионные каналы, активируемые квисгулатом и каинатом, подобны каналам, которые управляются никотиновыми рецепторами — они пропускают смесь катионов (Na + и К + ). По нашей функциональной классификации они являются лиганд-управляемыми.

Потенциал-управляемые ионные каналы

Что такое ионные каналы. Смотреть фото Что такое ионные каналы. Смотреть картинку Что такое ионные каналы. Картинка про Что такое ионные каналы. Фото Что такое ионные каналы

На рисунке слева представлена модель, отражающая взаимодействие субъединиц потенциал-управляемого кальциевого канала (вверху), и его доменная структура.

(Источник: Фундаментальная и клиническая физиология. Под ред. А.Г. Камкина и А.А. Каменского. М.: Академия, 2004. 1072 с.)

Кальциевые ионные каналы

Это означает, что нейроны могут активироваться входящими ионами кальция на подпороговом уровне, ещё до генерации нервного импульса.

Ионные каналы мембраны и их виды

1. Ионные каналы возбудимой клетки (структура, функция, патология) / Зефиров А.Л., Ситдикова Г.Ф. Казань: Арт-кафе, 2010. 271 с.

2. Мушкамбаров Н.Н., Кузнецов С.Л. Молекулярная биология. Учебное пособие для студентов медицинских вузов. М.: ООО «Медицинское информационное агентство», 2003. 544 с.

3. Сазонов В.Ф. Функциональная классификация мембранных ионных каналов // Научные труды III Съезда физиологов СНГ / Под ред. А.И. Григорьева, О.А. Крышталя, Ю.В. Наточина, Р.И. Сепиашвили. М.: Медицина–Здоровье, 2011. С. 72. (Электронная версия: physiology-cis.org/Page181.html)

4. Фундаментальная и клиническая физиология. Под ред. А.Г. Камкина и А.А. Каменского. М.: Академия, 2004. 1072 с.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *