Что такое интерференция зубьев колеса
2.7. ИНТЕРФЕРЕНЦИЯ ЗУБЧАТЫХ КОЛЕС
Интерференция профилей приводит к заклиниванию зубьев одного колеса во впадинах другого. Для исключения интерференции в эвольвентном зацеплении точки касания профилей зубьев колес должны всегда находиться на линии зацепления, что обеспечивается при угле профиля α = 20° числом зубьев колес больше 17.
При нарезании эвольвентных зубчатых колес с числами зубьев меньше 17 имеет место интерференция части профиля зуба колеса и профилей зубьев режущего инструмента. В этом случае режущие кромки инструмента срезают часть формообразующей кривой профилей зубьев колеса.
При положительных значениях коэффициента относительного смещения имеет место интерференция профилей зубьев режущего инструмента и части эвольвентного профиля, принадлежащего головке зуба колеса, что приводит к срезу этой части профиля. В этом случае имеет место заострение зуба колеса (рис.8).
Изменение профилей зубьев колес приводит к увеличению нагрузочной способности механизма. Заострение головок зубьев зубчатых колес является нежелательным, т. к. это приводит к снижению кинематической точности механизма и вызывает увеличение склонности зубьев к скалыванию.
Рисунок 8. Заострение зуба колеса.
Зуб зубчатого колеса считается незаостренным, а зубчатый механизм − сохраняющим работоспособность при выполнении следующего условия:
где [sa ] − допускаемое значение толщины зуба по окружности вершин sa:
При отрицательных значениях коэффициента относительного смещения относительного, имеет место интерференция профилей зубьев режущего инструмента и части эвольвентного профиля, принадлежащего ножке зуба колеса, что приводит к срезу этой части профиля. В этом случае имеет место подрезание части профиля зуба колеса в его основании в области переходной кривой (рис. 9).
Изменение профилей зубьев колес приводит к увеличению кинематической точности механизма. Подрезание ножек зубьев зубчатых колес является нежелательным, т. к. это ослабляет ножку зуба колеса, что приводит к уменьшению нагрузочной способности механизма.
Зуб зубчатого колеса считается не подрезанным, а зубчатый механизм − сохраняющим работоспособность при выполнении следующего условия:
Минимальное значение коэффициента относительного смещения, при котором обеспечивается отсутствие подреза ножек и заострение головок зубьев зубчатых колес, определяется по выражению
2.7. ИНТЕРФЕРЕНЦИЯ ЗУБЧАТЫХ КОЛЕС
Интерференция профилей приводит к заклиниванию зубьев одного колеса во впадинах другого. Для исключения интерференции в эвольвентном зацеплении точки касания профилей зубьев колес должны всегда находиться на линии зацепления, что обеспечивается при угле профиля α = 20° числом зубьев колес больше 17.
При нарезании эвольвентных зубчатых колес с числами зубьев меньше 17 имеет место интерференция части профиля зуба колеса и профилей зубьев режущего инструмента. В этом случае режущие кромки инструмента срезают часть формообразующей кривой профилей зубьев колеса.
При положительных значениях коэффициента относительного смещения имеет место интерференция профилей зубьев режущего инструмента и части эвольвентного профиля, принадлежащего головке зуба колеса, что приводит к срезу этой части профиля. В этом случае имеет место заострение зуба колеса (рис.8).
Изменение профилей зубьев колес приводит к увеличению нагрузочной способности механизма. Заострение головок зубьев зубчатых колес является нежелательным, т. к. это приводит к снижению кинематической точности механизма и вызывает увеличение склонности зубьев к скалыванию.
Рисунок 8. Заострение зуба колеса.
Зуб зубчатого колеса считается незаостренным, а зубчатый механизм − сохраняющим работоспособность при выполнении следующего условия:
где [sa ] − допускаемое значение толщины зуба по окружности вершин sa:
При отрицательных значениях коэффициента относительного смещения относительного, имеет место интерференция профилей зубьев режущего инструмента и части эвольвентного профиля, принадлежащего ножке зуба колеса, что приводит к срезу этой части профиля. В этом случае имеет место подрезание части профиля зуба колеса в его основании в области переходной кривой (рис. 9).
Изменение профилей зубьев колес приводит к увеличению кинематической точности механизма. Подрезание ножек зубьев зубчатых колес является нежелательным, т. к. это ослабляет ножку зуба колеса, что приводит к уменьшению нагрузочной способности механизма.
Зуб зубчатого колеса считается не подрезанным, а зубчатый механизм − сохраняющим работоспособность при выполнении следующего условия:
Минимальное значение коэффициента относительного смещения, при котором обеспечивается отсутствие подреза ножек и заострение головок зубьев зубчатых колес, определяется по выражению
Рисунок 9. Подрезание зуба колеса.
3. ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ЗУБЧАТОГО ЗАЦЕПЛЕНИЯ
Размеры колес, а также всего зацепления, зависят от чисел Z1 и Z2 зубьев колес, от модуля m зацепления (определяемого из расчета зуба колеса на прочность), общего для обоих колес, а также от метода их обработки.
Предположим, что колеса изготавливаются по методу обкатки инструментом реечного типа (инструментальной рейкой, червячной фрезой), который профилируется на основе исходного контура согласно ГОСТ 13755-81 (рис. 10).
Процесс изготовления зубчатого колеса (рис. 10) инструментальной рейкой по методу обкатки заключается в том, что рейка в движении по отношению к обрабатываемому колесу перекатывается без скольжения одной из своих делительных прямых (ДП) или средней прямой (СП) по делительной окружности колеса (движение обкатки) и одновременно совершает быстрые возвратно-поступательные перемещения вдоль оси колеса, снимая при этом стружку (рабочее движение).
Расстояние между средней прямой рейки (СП) и той делительной прямой (ДП), которая в процессе обкатки перекатывается по делительной окружности колеса, называется смещением Х рейки (см. п. 2.6). Очевидно, что смещение Х равно расстоянию, на которое отодвинута средняя прямая рейки от делительной окружности колеса. Смещение считается положительным, если средняя прямая отодвинута в направлении от центра нарезаемого колеса.
Величина смещения Х определяется формулой:
где х – коэффициент смещения, который имеет положительное или отрицательное значение (см. п. 2.6).
Рисунок 10. Станочное зацепление.
Зубчатые колеса, изготовленные без смещения инструментальной рейки, называются нулевыми; изготовленные при положительном смещении рейки – положительными, при отрицательном смещении – отрицательными.
В зависимости от значений хΣ зубчатые зацепления классифицируются следующим образом:
а)если хΣ = 0, при чем х1 = х2 = 0, то зацепление называется нормальным (нулевым);
в)если хΣ ≠ 0, то зацепление называется неравносмещенным, при чем при х Σ > 0 зацепление называется положительным неравносмещенным, а при х Σ
Применение нормальных зубчатых колес с постоянной высотой головки зубьев и постоянным углом зацепления, вызвано стремлением получить систему сменных зубчатых колес с постоянным расстоянием между центрами для одной и той же суммы чисел зубьев, с одной стороны, и с другой стороны – сократить число комплектов зуборезного инструмента в виде модульных фрез, которыми снабжаются инструментальные мастерские. Однако условие сменности зубчатых колес при постоянном расстоянии между центрами может быть удовлетворено и при применении косозубых колес, а также колесами, нарезанными со смещением инструмента. Наибольшее применение нормальные зубчатые колеса находят в передачах при значительных числах зубьев обоих колес (при Z1 > 30), когда эффективность применения смещения инструмента значительно меньше.
При равносмещенном зацеплении ( х Σ = х1 + х2 = 0) толщина зуба (S1) по делительной окружности шестерни увеличивается за счет уменьшения толщины зуба (S2) колеса, но сумма толщин по делительной окружности сцепляющихся зубьев остается постоянной и равной шагу. Таким образом, нет необходимости в раздвигании осей колес; начальные окружности так же, как и у нормальных колес, совпадают с делительными; угол зацепления не изменяется, но меняется соотношение высот головок и ножек зубьев. В связи с тем, что прочность зубьев колеса понижается, такое зацепление может применяться только при малых числах зубьев шестерни и значительных передаточных отношениях.
При неравносмещенном зацеплении ( х Σ = х1 + х2 ≠ 0) сумма толщин зубьев по делительным окружностям обычно больше, чем у нулевых колес. Поэтому оси колес приходится раздвигать, начальные окружности не совпадают с делительными и угол зацепления увеличен. Неравносмещенное зацепление имеет большие возможности, чем равносмещенное, и поэтому имеет более широкое распространение.
Применяя смещение инструмента при нарезании зубчатых колес можно повысить качество зубчатого зацепления:
а) устранить подрезание зубьев шестерни при малом числе зубьев;
б) повысить прочность зубьев на изгиб (до 100 %);
в) повысить контактную прочность зубьев (до 20 %);
г) повысить износостойкость зубьев и др.
Но следует иметь в виду, что улучшение одних показателей ведет к ухудшению других.
Существуют простые системы, которые позволяют определить смещение по простейшим эмпирическим формулам. Эти системы повышают показатели работы передач по сравнению с нулевыми, однако они не используют все возможности смещения.
В соответствии с рекомендациями ISO предложены следующие правила выбора коэффициентов смещения:
а) при числе зубьев шестерни Z1 ≥ 30 применяют нормальные колеса;
Суммарное смещение ограничивается величиной:
в) при числе зубьев шестерни Z1 суммарном числе зубьев Z1 + Z2
Суммарное смещение ограничивается величиной:
х Σ ≤ 1,8 – 0,03 · (Z1 + Z2), если 30 х Σ является максимально возможной при выполнении следующих требований:
а) не должно быть подрезания зубьев при обработке их инструментальной рейкой;
б) предельно допустимая толщина зуба по окружности выступов принята 0,3m;
в) наименьшее значение коэффициента перекрытия εα = 1,1;
г) обеспечение наибольшей контактной прочности;
д) обеспечение наибольшей прочности на изгиб и равнопрочности (равенства напряжений изгиба) зубьев шестерни и колеса, изготовленных из одинакового материала с учетом разного направления сил трения на зубьях;
е) наибольшей износостойкости и наибольшего сопротивления заданного (равенство удельных скольжений в крайних точках зацепления).
Данными таблицами нужно пользоваться следующим образом:
а) для неравномерного внешнего зацепления коэффициенты смещения х1 и х2 определяются в зависимости от передаточного отношения
i1,2: при 2 ≥ i1,2 ≥ 1 по табл. 1; при 5 ≥ i1,2 > 2 по табл. 2, 3 по заданным Z1 и Z2.
После определения коэффициентов смещения все размеры зацепления подсчитываются по формулам, приведенным в табл. 5.