Что такое интеллектуальные технологии на основе инженерии знаний

Инженерия знаний.

Инженерия знанийпредставляет собой совокупность моделей, методов и технических приемов, нацеленных на создание систем, которые предназначены для решения проблем с использованием знаний. Знания – это информация с ограниченной семантикой, однако с позиции прикладных аспектов необходимо, чтобы знания имели такую форму, которой была бы в определенной степени свойственна свобода достижения поставленной цели. В какой именно степени допустима эта свобода, или каким условиям должны отвечать знания, включая и их описательные возможности, зависит от области их приложения. В сфере технического применения и в экономике используется самая разнообразная среда представления, и помимо языкового описания она включает рисунки, математические формулы и т.п.

Хотя языковое представление и ограничено сравнительно простыми формализмами, оно не всегда удобно для технической и экономической областей. Это связано с их специфическим характером, т.к. в них все определяется фактами и объективной реальностью.

В дальнейшем изложении языковое описание, требуемое в прикладных областях информации (включая язык в широком его понимании и графику), будет называться языком представления знаний. Для использования подобной информации в виде знаний требуются интеллектуальные функции, превосходящие пока возможности современных компьютеров. Представление знаний, их обработка и использование, рассматриваемое применительно к конкретной прикладной области, является предметом инженерии знаний.

Инженерия знаний заняла свое место как технология применения знаний, когда вышла из недр ИИ и продолжала интенсивно развиваться все последние года.

Существом ИИ можно считать научный анализ и автоматизацию интеллектуальных функций человека. Однако для большинства проблем общей реальностью является трудность их машинного воплощения.

Исследования по ИИ позволили утвердиться во мнении, что подлинно необходимыми для решения проблем являются знания экспертов. То есть, если создать систему, способную запоминать и использовать знания экспертов, то она найдет применение в практической деятельности.

И когда исследователи по ИИ действительно создали подобного ряда системы в конце 60-х и начале 70-х годов прошлого века, все эти воззрения были подтверждены.

Это системы DENDRAL, а позднее MYCIN, созданные под руководством Э. Фейгунбаума в Стэнфордском университете США, Поскольку эти системы накапливают в памяти компьютера знания экспертов и используют эти знания для решения проблем, извлекая их при необходимости из памяти, то они получили название экспертных, а профессор Э. Фейгенбаум, являющийся одним из создателей экспертных систем (ЭС), выдвинул для данной области техники название «инженерия знаний».

Фактически инженерия знаний – это методология ЭС, которая охватывает методы добычи, анализа и выражения в правилах знаний экспертов. Развитие ЭС создало инженерию знаний – процесс построения интеллектуальных систем.

Инженерия знаний тесно связана со всем процессом разработки интеллектуальных информационных систем в целом и ЭС в частности – от возникновения замысла до его реализации и совершенствования.

Главными элементами инженерии знаний являются использование операций типа обобщение, генерация гипотез для индуктивных выводов, подготовка новых программ самими компьютерными программами и т.д.

Слово engineering в английском означает искусная обработка предметов, изобретение или создание чего-либо. Следовательно, работу по оснащению программ специальными экспертными знаниями из проблемной области, выполняемую человеком, либо компьютером (программой), также можно назвать инженерией знаний.

1.2. Развитие исследований в области искусственного интеллекта.

Искусственный интеллект как наука был основан тремя поколениями исследователей.

В таблице 9.1 представлены ключевые события в истории ИИ и инженерии знаний, начиная с первой работы Маккалока и Питса в 1943 г. и до современных тенденций в комбинированных усилиях экспертных систем, нечеткой логики и нейронных вычислений в современных системах, основанных на знаниях, способных осуществлять вычисления при помощи слов.

Таким образом,исторически разработки в области ИИ велись в двух основных направлениях:

— второе направление связано с разработками методов, приемов, специализированных устройств и программ для компью­теров, обеспечивающих решение сложных математических и ло­гических задач, позволяющих автоматизировать отдельные ин­теллектуальные действия человека (системы, основанные на знаниях, экспертные системы, прикладные интеллектуальные системы).

Эти два направления как бы определяют программу минимум и программу максимум, между которыми и лежит область сегодняшних исследований и разработок систем ИИ (рис.9.4). Работы по разработке программного и аппаратного обеспечения ИИ выделены в отдельную область.

Для нас представляет интерес прежде всего второе направление: прикладные интеллектуальные системы и ЭС в таких предметных областях, как производство, управление процессами, управление маркетингом, финансовый менеджмент, банковская сфера, фондовый рынок.

1.3. Теория и практика искусственного интеллекта.

В процессе развития устройств и систем, которые проявляют интеллектуальные характеристики, вовлекаются различные науки и технологии, такие как лингвистика, психология, философия, техническое и программное обеспечение компьютеров, механика, гидравлика и оптика.

Пересечение интересов психологии и ИИ сосредоточено в областях когнитологии и психолингвистики. Философия и ИИ сотрудничают в областях логики, философии языка и философии разума. Взаимные пересечения между инженерией и ИИ включают обработку изображений, распознавание образов и роботику.

Позже свой вклад внесли менеджмент и теория организации (такие как принятие и реализация решений), химия, физика, статистика, математика, теория управления, эвристическое программирование, информационные системы менеджмента.

ИИ является наукой и технологией, а не коммерческой сферой. Это совокупность понятий и идей, которые предназначены для исследований. Однако, ИИ обеспечивает научные основы для нескольких развивающихся коммерческих технологий. Главными прикладными технологиями ИИ экспертные системы, интеллектуальные системы поддержки решений, обработка естественного языка, понимание речи, нечеткая логика, робототехника и сенсорные системы, компьютерное зрение и распознавание образов. На рис.9.5 представлены главные дисциплины и приложения ИИ.

Что такое интеллектуальные технологии на основе инженерии знаний. Смотреть фото Что такое интеллектуальные технологии на основе инженерии знаний. Смотреть картинку Что такое интеллектуальные технологии на основе инженерии знаний. Картинка про Что такое интеллектуальные технологии на основе инженерии знаний. Фото Что такое интеллектуальные технологии на основе инженерии знаний

Области применения существующих на сегодняшний день систем ИИ охватывает медицинскую диагностику, интерпретацию геологических данных, научные исследования в химии и биологии, военное дело, производство, финансы и другие сферы экономики. Однако, несмотря на значительные успехи в области ИИ, пока еще существует определенный разрыв между техническими разработками, программными средствами ИИ и возможностями их более широко практического применения в частности, в экономике.

Наиболее показательным сектором, аккумулирующим различные проблемные направления экономической области, является управление промышленным предприятием. На его примере особенно хорошо видны преимущества использования систем ИИ для решения как различных предметных задач, так и для управления интегрированной системой предприятия в целом.

Существует множество доводов в пользу того, что системы искусственного интеллекта могут и должны стать важнейшей составной частью в технологии современных производств. Рассмотрим основные из них.

Данная проблема обостряется в случае гибких производствен­ных систем. Добавление гибкости приводит к увеличению числа альтернатив и, следовательно, возможных вариантов производст­ва изделий. Уже сегодня составление расписания этапов производства изделий на «жестком» программном обеспечении пред­ставляет большие трудности. Усложнение самих изделий также ведет к усложнению проектирования.

Управление производством требует обработки большого объе­ма информации. Проблема получения информации с объектов, функционирующих в реальном масштабе времени, в настоящее время решена. Но это породило другую проблему: как уменьшить долю информации до того уровня, который действительно необ­ходим для принятия решения индивидуумом? В то же время сле­дует отметить, что потеря информации, поступающей от объек­тов, работающих в реальном масштабе времени, может сущест­венно сказаться на конечном результате.

Таким образом, происходит интеллектуализация информационных систем управления и трансформация их в интеллектуальные СПР, основной разновидностью которых являются ЭС. Это наиболее значимые и важные для экономики и бизнеса прикладные технологии ИИ.

1.4. Интеллектуальные информационные системы поддержки решений.

Опыт эксплуатации информационных систем, в организационных и экономических системах показал, что наиболее важное значение должен иметь в этих системах и в контуре управления – человек (управленец; лицо, принимающее решение – ЛПР).

Не следует забывать, что управление в экономических и организационно – технических системах является сложным творческим процессом, нуждающимся в различных формах обеспечения интеллектуальной деятельности. Преуменьшение значения творческого элемента (опыта, интуиции) и, наоборот, преувеличение возможностей формализации ряда управленческих задач, неизбежно ведет к тому, что реальные результаты далеко не полностью оправдывают ожидания, которые связывались и связываются с компьютеризацией управления и принятия решений.

Видимо, здесь кроется причина недостаточно эффективного использования в ИС и системах поддержки решений методов оптимизации. Говоря о взаимодействии пользователя с оптимизационными моделями априорно подразумевают адекватность этих моделей реальному объекту. Однако, сложность, существенная нелинейность, слабая структурированность задач, неясность предпочтений, нечеткость исходной информации не позволяют в большинстве случаев разработчикам создавать адекватные модели объектов. «Ключом» в этом направлении должны стать и уже активно становятся методы и модели ИИ, в частности прикладные, системы, базирующиеся на знаниях (или интеллектуальные системы).

Большинствоимеющихся объектов управления относятся к слабоструктурированным или плохо определяемым объектам, которые обладают рядом неожиданных для традиционного управления свойств, таких, как уникальность, отсутствие формализуемой цели существования, отсутствие оптимальности, высокая динамичность, неполнота описания объекта, и, наконец, индивидуальность поведения лица принимающего решения в процессе принятия решений.

Следовательно, в процессе практической деятельности по управлению объектом ЛПР приобретает некоторый инструмент, который помогает ему в решении задач управления плохо определенными объектами. Этот инструмент есть не что иное, как знание. Таким образом, возникла идея необходимости автоматизации интеллектуальной деятельности человека.

Основное назначение информационных систем в экономике – это своевременное представление необходимой информации ЛПР для принятия им адекватных и эффективных решений при управлении процессами, ресурсами, финансовыми транзакциями, персоналом или организацией в целом. Однако в процессе развития информационных технологий, исследования операций и технологий моделирования, а также с возрастанием потребителей информационно – аналитической поддержки самих ЛПР, все больше проявлялась потребность в системах, не только представляющих информацию, но и выполняющих некоторый ее предварительный анализ, способных давать некоторые советы и рекомендации, осуществлять прогнозирование развитие ситуаций, отбирать наиболее перспективные альтернативы решений, т.е. поддерживать решения ЛПР, взяв на себя значительную часть рутинных операций, а также функции предварительного анализа и оценок.

Информационная система поддержки решений связывает интеллектуальные ресурсы управленца со способностями и возможностями компьютера для улучшения качества решений. Эти системы предназначены для менеджеров, принимающих управленческие решения в условиях полуструктурированных и слабо определенных задач.

Таким образом, дальнейшее развитие ИСПР привело к созданию интеллектуальной информационной СПР.

Интеллектуальная ИСПР – это компьютерная система, состоящая из 5 основных взаимодействующих компонентов: языковой подсистемы (механизм обеспечения связи между пользователем и другими компонентами ИСПР), информационной подсистемы (хранилище данных и средств их обработки), подсистемы управления знаниями (хранилище знаний о проблемной области, таких как процедуры, эвристики и правила, и средства обработки знаний), подсистемы управления моделями и подсистемы обработки и решения задач (связующее звено между другими подсистемами).

Подсистема обработки и решения задач распределена и функционально встроена в другие подсистемы, реализуя свои отдельные специфические функции в их рамках. Эта подсистема обладает основными способностями по манипуляции и обработке задач для принятия решений.

На рис.9.6 представлен вариант структуры интеллектуальной ИСПР.

Информационная подсистема состоит из БД, системы управления БД, средств организации запросов, справочника данных, внешних источников данных.

Подсистема управления моделями состоит из базы моделей, системы управления моделями, языков моделирования, справочника моделей и процессора, который осуществляет реализации на модели, интегрирует модели и осуществляет руководство процессом моделирования.

База моделей содержит обычные и специальные статические, финансовые, прогнозирующие, управленческие и другие количественные модели, которые обеспечивают аналитические способности ИСПР. Способность обращаться к моделям, реализовывать их прогоны, вносить изменения, комбинировать и проверять модели являются ключевой способностью ИСПР, которая отличает их от обычных информационных систем.

Модели в базе моделей могут подразделяться на стратегические, тактические, операционные и составные стандартные блоки моделей.

Функциями системы управления моделями являются создание моделей с использованием стандартных модельных модулей, генерация новых стандартных модулей и отчетов, дополнение и модернизация моделей, их изменения и манипулирование с данными модели.

Модельный процессор обычно реализует следующие действия:

— исполнение модели, т.е. процесс управления текущим прогоном или реализацией модели;

— интеграция модели, т.е. совмещение операций нескольких моделей, когда это необходимо;

— подтверждение и интерпретация инструкций моделирования, поступающих от диалогового компонента системы и проведение их в систему управления моделями.

Пользовательский интерфейс реализует все аспекты коммуникации между пользователем и ИСПР. Он включает не только техническое и программное обеспечение, но также факторы, которые способствуют облегчению использования и доступности человеко-машинных взаимодействий.

Модели в базе моделей могут подразделяться на стратегические, тактические, операционные и составные стандартные блоки моделей.

Функциями системы управления моделями являются создание моделей с использованием стандартных модельных модулей, генерация новых стандартных модулей и отчетов, дополнение и модернизация моделей, их изменения и манипулирование с данными модели.

Подсистема управления знаниями. Многие неструктурированные и слабоструктурированные задачи являются такими сложными, что они требуют для своего решения экспертизы, дополнительно к обычным способностям ИСПР.

Такая экспертиза может быть обеспечена ЭС или другой интеллектуальной системой.

Поэтому большинство первых ИСПР оснащены системной компонентой, называемой управление знаниями. Такая компонента может обеспечить требуемую экспертизу для решения некоторых видов задач и обеспечивать действие других составных частей ИСПР.

Возможны различные способы интеграции интеллектуальных систем, основанных на знаниях, с математическим моделированием.

Например, часто решения, основанные на знаниях, помогают поддерживать шаги в процессе получения решения без математической поддержки; интеллектуальные системы моделирования решений могут помочь пользователям строить, использовать и управлять библиотекой или базой моделей; аналитические ЭС принятия решений могут интегрировать теоретически строгие методы неопределенности в базу знаний ЭС.

Компонента знаний состоит из одной или нескольких интеллектуальных программных составляющих. Как СУБД и система управления моделями, программное обеспечение управления знаниями обеспечивает требуемое исполнение и интеграцию в интеллектуальных системах.

Информационные СПР, которые включают такую составляющую, называются интеллектуальными информационными СПР, интеллектуальными СПР, экспертными СПР, экспертными системами или СПР, базирующимися на знаниях.

Необходимость использования интеллектуальных систем.

Существует множество доводов в пользу того, интеллектуальные системы могут и должны стать важней­шей составной частью в системах принятия и поддержки решений, при управлении сложными объектами в технологии современных производств и решении широкого спектра экономических задач.

Если в качестве примера объекта взять предприятие, то здесь при управлении возни­кают такие проблемы:

— преодоление сложности (сложности управления возникают тогда, когда приходится делать выбор из множества возможных решений);

— управление предприятием требует организации больших объемов информа­ции;

— как уменьшить информациюдо того уровня, который необходим для принятия решения (потеря информации, поступающей от объектов, работающих в реальном режиме времени, может существенно сказаться на результате);

— нехватка времени на принятие решения (проявляется по мере усложнения производства);

— проблема координации (решения необходимо координировать с другими звеньями процесса или объекта);

В процессе своей управленческой (а вообще говоря, любой) деятельности человек получает и осознает огромное количество информации. Однако ограниченные возможности человеческого мозга заставляют его осуществлять вербальное перекодирование исходной информации в сгустки насыщенной информации, используя при этом уникальные возможности человеческого языка. Едва ли не все рассуждения человека по своей природе являются приближенными.При этом, используя простые эвристические правила вывода, человек легко справляется с нечеткими рассуждениями.

Специалисты в области ИИ всегда старались разработать программы для компьютеров, кото­рые могли бы в некотором смысле «думать», т.е. решать задачи таким способом, который мы бы сочли разумным, если бы его применил человек.

В процессе исследований и 20-летних поисков они пришли к выводу, что эффектив­ность программы при решении задач зависит от знаний, которыми она обладает, а не только от формализмов и схем вывода, которые она использует. То есть, чтобы сделать программу интеллектуальной, ее нужно снабдить множеством высококачественных спе­циальных знаний о некоторой предметной области.

Понимание этого факта привело к созданию специальных систем, каждая из которых является экспериментом в некоторой узкой предметной области.

Эти программы получили название экспертных систем.

Источник

Что такое интеллектуальные технологии на основе инженерии знаний

На высоком уровне, процесс инженерии знаний состоит из двух:

1. Извлечение знаний – преобразование «сырых знаний» в организованные.

2. Внедрение знаний – преобразование организованных знаний в реализованные.

История возникновения термина

Инженерия знаний тесно связана со всем процессом разработки интеллектуальных информационных систем в целом и экспертных систем (ЭС) в частности – от возникновения замысла до его реализации и совершенствования.

Базы знаний.

Представление знаний, их обработка и использование, рассматриваемое применительно к конкретной прикладной области, является предметом инженерии знаний. Коллекция совместно организованных знаний, относящихся к задачам, решаемым в системе искусственного интеллекта (ИИ), называется базой знаний (БЗ).

Задачи инженерии знаний.

Анализ предметной и проблемной областей.

При исследовании экономических систем и решаемых ими задач с целью формализации знаний в БЗ и работе необходимо учитывать специфику таких систем. Экономическим системам присуща динамичность функционирования, частая смена ситуаций, обновление больших массивов измерительных и других данных, характеризующих состояние объекта. Они часто функционируют в условиях полной определенности из-за действия случайных возмущающих факторов.

Приобретение знаний.

Классификация этапов обучения, соответствующих способностям компьютеров к формализации знаний:

А. Получение информации без логических выводов.

2. Ввод фактических данных.

Б. Получение извне информации, уже представленной в виде знаний.

1. Получение готового набора знаний, представленных во внутреннем формате.

2. Получение знаний, представленных во внутреннем формате, в режиме диалога.

3. Получение знаний, представленных во внешнем формате, и их понимание.

В. Обучение по примерам.

1. Параметрическое обучение.

2. Обучение на основе выводов по аналогии.

3. Обучение на основе выводов по индукции – эвристическое обучение.

Г. Приобретение знаний на метауровне.

В случае прикладных систем инженерии знаний необходимо преобразовать специальные знания из какой-либо области в машинный формат, но для этого нужен посредник, хорошо знающий как проблемную область, так и инженерию знаний. Таких посредников называют инженерами знаний (инженерами по знаниям).

Итак, инженер по знаниям – это специалист по искусственному интеллекту, проектирующий и создающий Экспертную систему или другую информационную систему.

Выявление источников знаний.

Инженер знаний работает с ним в режиме диалога или интервью и формирует необходимый объем знаний и сведений для работы с объектом. Возможно также использование опросников, которые затем соответствующим образом обрабатываются.

Табл.1 Методы извлечения знаний из предметного эксперта.

Наблюдение на рабочем месте

Наблюдать за экспертом, решающим реальные задачи на своем рабочем месте.

Выявить виды данных, знаний и процедур, необходимых для решения конкретных задач.

Попросить эксперта описать прототипную задачу для каждой категории возможных ответов.

Представить эксперту ряд реалистических задач для решения вслух с целью выявить логические основания конкретных шагов рассуждения.

Попросить эксперта предоставить вам несколько задач для решения и с использованием правил, выявленных во время интервью.

Попросить эксперта проверить работу системы и подвергнуть критике правила и структуру управления прототипной системой.

Предоставить примеры, решенные экспертом и прототипом системы, другим независимым экспертам для сравнения и оценки.

Знания об объекте можно формировать путем использования статистической обработки информации и информации о результатах имитационных экспериментов.

Другим важным источником знаний является Интернет. Помимо традиционного поиска необходимой информации и знаний в Интернет, в настоящее время в процесс поиска знаний вовлекаются интеллектуальные агенты.

Автоматизация процесса сбора знаний.

Представление знаний.

Важное место в системах управления знаниями занимает проблема представления знаний, являющаяся ключевой.

Существует также ряд общих для всех СПЗ проблем. К ним можно отнести,

в частности, проблемы:

• приобретения новых знаний и их взаимодействие с уже существующими;

• организации ассоциативных связей;

• выбора диапазона в размере элементов представления, связан­ной с тем, насколько «детально могут быть описаны объекты и события, и какая часть внешнего мира может быть представлена в конкретной системе»;

• неоднозначности и выбора семантических примитивов;

• модульности и понимания;

• явности знаний и доступности;

• выбора соотношения декларативной и процедурной составляющих представления, что влияет на экономичность системы, полноту, легкость кодировки и понимания.

Модели представления знаний.

Модели представления знаний можно условно разделить на декларативные и процедурные.

Декларативная модель представления знаний основывается на предположении, что проблема представления некоей предметной области решается независимо от того, как эти знания потом будут использоваться. Поэтому модель как бы состоит из двух частей: статических описательных структур знаний и механизма вывода, оперирующего этими структурами и практически независимого от их содержательного наполнения. При этом оказываются раздельными синтаксические и семантические аспекты знания, что является достоинством указанных форм представления из-за возможности достижения их определенной

В декларативных моделях не содержатся в явном виде описания выполняемых процедур. Эти модели представляют собой множество утверждений. Предметная область представляется в виде

синтаксического описания ее состояния.

Вывод решений основывается в основном на процедурах поиска в пространстве состояний.

При этом можно не описывать все возможные состояния среды или объекта для реализации вывода. Достаточно хранить некоторые начальные состояния и процедуры, генерирующие необходимые описания ситуаций и действий. При процедурном представлении знаний семантика непосредственно заложена в описание элементов базы знаний, за счет чего повышается эффективность поиска решений.

Выбор способа представления знаний.

Важным вопросом при создании БЗ является выбор способа представления знаний. Цель представления знаний — организация необходимой информации в такую форму, чтобы программа ИИ имела легкий доступ к ней для принятия решений, планирования, узнавания объектов и ситуаций, анализа сцен, вывода заключений и других когнитивных функций.

Основные типы моделей представления знаний применительно к процессу разработки БЗ:

При использовании логики предикатов первого порядка (дедуктивной логики) БЗ может рассматриваться как совокупность логических формул, которые обеспечивают частичное описание проблемной среды.

Семантические сети позволяют описывать свойства и отношения объектов событий, понятий, ситуаций или действий с помощью направленного графа, состоящего из вершин и помеченных ребер.

Фреймы представляют собой декларативно-процедурные структуры. Во многих фреймовых структурах возможна реализация наследственных отношений, при которых объекты могут наследовать атрибуты более абстрактных объектов. Такая форма организации знаний позволяет экономить объем памяти.

Продукционные модели (основанные на правилах вида Если-То) являются наиболее популярным способом представления знаний. При организации знаний с использованием продукционных моделей в БЗ содержатся правила продукций, а в БД содержится информация, которая отображает текущее состояние решаемой задачи. Инициализацию необходимого правила осуществляет блок управления.

Большие трудности возникают при создании моделей нечетких знаний.

Формализация таких знаний осуществляется на основе теории нечетких множеств. Развиваются также модели на основе искусственных нейронных сетей (ИНС), многоагентных систем, генетических алгоритмов и другие моделипредставления и обработки знаний.

Поиск и хранение знаний.

Корпоративная память хранит неоднородную информацию из различных и c точников и делает ее доступной пользователям для решения корпоративных задач.

Становится актуальной разработка модели представления знаний, которая обеспечивала бы автоматизированную обработку информации на c емантическом уровне в системах управления знаниями.

Большую популярность в последнее время приобретают онтологии.

Методы инженерии знаний

В области инженерии знаний было созданы различные средства и модели, позволяющие эффективно управлять знаниями и их представлением. Рассмотрим некоторые из них на нашей странице, посвященной методам инженерии знаний.

Ссылки по теме:

Книга «Управление знаниями корпорации и реинжиниринг бизнеса». Абдикеев Н.М., Киселев А.Д. Основными ресурсами развития компаний во все большей мере становятся люди и знания, которыми они обладают, интеллектуальный капитал и растущая профессиональная компетенция кадров. Сегодня требуются новые методы развития организации, основанные на стыке гуманитарного и инженерного подходов, что позволит получить синергетический эффект от их взаимодействия. Этот подход базируется на современных достижениях информационных технологий, а именно когнитивных технологиях развития организации. Актуально развитие симбиоза концепции управления знаниями, реинжиниринга, бизнес-процессов и когнитивной человеческой составляющей.

Сайт Новгородского Государственного Университета предоставляет статью на тему инженерии знаний. В статье представлен обзор некоторых теоретических аспектов получения знаний, рассматриваются практические методы получения знаний, а также информация о структурирование знаний.

Сайт Ульяновского Государственного Технического Университета. На странице представлены материалы по вопросу извлечения знаний. Приводится классификация некоторых методов извлечения знаний, а также их практическое применение.

На сайте выложена первая глава книги В. П. Баранчеева «Управление знаниями». В. П. Баранчеев – доктор экономических наук, профессор Государственного университета управления (Институт инноватики и логистики, кафедра инновационного менеджмента). В книге рассматриваются современные концепции управления знаниями, неформализованное и формализованное знание, а также базы знаний.

Сайт, посвященный базам данных. На странице вводятся понятия знаний, информации, управление знаниями, познание и т.д. Также описаны некоторые возможности баз знаний, а также рассказывается об их практическом применении и проблемах, связанных с их использованием. Каждому понятию отведена отдельная веб-страница.

В статье рассматриваются вопросы построения, структурирования, описания, классификации и использования онтологических баз знаний. Приведен обзор современных исследований, посвященных различным аспектам создания и использования онтологии. Пристальное внимание в работе уделено разграничению формальных и лингвистических онтологий. Также, предложена достаточно подробная методология построения ресурсов онтологического типа.

Статья, повященная семантическим сетям. Описывается история создания семантических сетей, а также принципы построения и классификация.

Статья о когнитивных картах. Приводится несколько примеров использования когнитивных карт.

Материал из википедии. Статья о семантических сетях.

Сайт научно-исследовательского центра. Можно найти пример визуализации биохимической и биологической онтологии.

В статье дается обзор исследований в области инженерии знаний, описываются принципы и методы, а также два подхода, сформированные в данной области. Ссылка на статью в формате pdf содержится на веб-странице.

Веб-сайт, посвященный инженерии знаний. На сайте можно увидеть новости, результаты научных исследований в виде статей, презентаций, видео.

Презентация. Введение в инженерию знаний. История и терминология.

Краткий обзор методов извлечения знаний.

Стратегия инженерии знаний. Автор статьи Jesu Valiant.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *