Что такое емкостной ток
Однофазные замыкания на землю. Компенсация емкостных токов замыкания на землю. ДГР
1. Основные характеристики ОЗЗ
В сетях, где используется заземленная нейтраль, замыкание фазы на землю приводит к короткому замыканию. В данном случае ток КЗ протекает через замкнутую цепь, образованную заземлением нейтрали первичного оборудования. Такое повреждение приводит к значительному скачку тока и, как правило, незамедлительно отключается действием РЗ, путем отключения поврежденного участка.
Электрические сети классов напряжения 6-35 кВ работают в режиме с изолированной нейтралью или с нейтралью, заземленной через большое добавочное сопротивление. В этом случае замыкание фазы на землю не приводит к образованию замкнутого контура и возникновению КЗ, а ОЗЗ замыкается через емкости неповрежденных фаз.
Величина этого тока незначительна (достигает порядка 10-30 А) и определяется суммарной емкостью неповрежденных фаз. На рис. 1 показаны схемы 3-х фазной сети в режимах до и после возникновения ОЗЗ.
Рисунок 1 – Схема сети с изолированной нейтралью а) в нормальном режиме; б) при ОЗЗ
Такое повреждение не требует немедленного отключения, однако, его длительное воздействие может привести к развитию аварийной ситуации. Однако при ОЗЗ в сетях с изолированной нейтралью происходят процессы, влияющие на режим работы электрической сети в целом.
На рис. 2 представлена векторная диаграмма напряжений.
Рисунок 2 – Векторные диаграммы напряжений а) в нормальном режиме; б) при ОЗЗ
При ОЗЗ происходит нарушение симметрии линейных фазных напряжений, напряжение поврежденной фазы снижается практически до 0, а двух “здоровых” фаз поднимаются до уровня линейных. При этом линейные напряжения остаются неизменными.
2. Последствия ОЗЗ
Несмотря на преимущества изолированной нейтрали, такой режим работы имеет ряд недостатоков:
Несмотря на перечисленные недостатки ОЗЗ не требует немедленного ликвидации повреждения. Согласно ПУЭ, при возникновении ОЗЗ возможно эксплуатация сети без отключения аварии в течении 4 часов, которые выделяются на поиск поврежденного участка.
3. Расчет суммарного тока ОЗЗ
При замыкании на землю фазы одной из нескольких ЛЕП, что включенные к общему источнику, суммарный ток в месте замыкания за счет емкостных токов всех ЛЕП можно рассчитать несколькими методами.
Первый метод заключается в использовании удельных емкостей ЛЭП. Этот способ расчета даст наиболее точный результат и является предпочтительным. Удельные емкости ЛЭП можно взять из справочной литературы, или же из технических характеристик кабеля, предоставляемых заводом-изготовителем.
Выражение для определения тока ОЗЗ:
,
где С∑ – суммарная емкость фазы всех ЛЕП, причем С∑ = Суд l;
Суд – удельная емкость фазы сети относительно земли, Ф/км;
l – общая длина проводника одной фазы сети.
Второй метод применим для сетей с кабельными ЛЭП. Ток замыкания на землю для такой сети можно определить по эмпирической формуле:
,
Кроме этих методов для расчета суммарного тока ОЗЗ, можно использовать значения емкостных токов каждого кабеля взятых из справочной литературы.
4. Компенсационные меры защиты
Из-за распределённой по воздушным и кабельным линиям электропередач ёмкости, при ОЗЗ в месте повреждения протекает ёмкостный ток. В наиболее тяжелых случаях, возможно возникновение электрической дуги, горение которой может приводить к переходу ОЗЗ в двух- или трёхфазное замыкание и отключению линии релейной защитой. Вследствие этого потребитель электроэнергии может временно лишиться электроснабжения.
В соответствии с положениями ПУЭ в нормальных условиях работы сети должны предприниматься специальные меры защиты от возможного пробоя на землю.
Для предотвращения возникновения дуги и уменьшения емкостных токов применяют компенсацию емкостных токов. Значения емкостных токов, при превышении которых требуется компенсация согласно ПУЭ и ПТЭ, приведены табл. 1.
Таблица 1 – Значения токов требующие компенсации
Напряжение сети, кВ | 6 | 10 | 20 | 35 |
Емкостный ток, А | 30 | 20 | 15 | 10 |
При более низких уровнях токов считается, что дуга не загорается, или гаснет самостоятельно, применение компенсации в этом случае не обязательно.
5. Дугогасящий реактор
Для ограничения емкостных токов в нейтраль трансформатора вводится специальный дугогасящий реактор (рис. 3).
Рисунок 3 – Дугогасящий реактор
Этот способ является наиболее эффективным средством защиты электрооборудования от замыканий на землю и компенсации емкостного тока. С его помощью удаётся снизить (компенсировать) ток однофазного замыкания на землю, возникающий сразу после аварии.
6. Основные характеристики ДГР
Дугогасящий реактор (ДГР) – это электрический аппарат, предназначенный для компенсации емкостных токов в электрических сетях с изолированной нейтралью, возникающих при однофазных замыканиях на землю (ОЗЗ). Главным нормативным документом регламентирующим работу, установку и надстройку ДГР является Р 34.20.179.
Дугогасящие реакторы должны подключаться к нейтралям трансформаторов, генераторов или синхронных компенсаторов через разъединители. В цепи заземления реакторов должен быть установлен трансформатор тока. Рекомендуемые схемы подключения ДГР представлены на рис. 4.
Рисунок 4 – Схема подключения ДГР: а) подключение ДГР к трансформаторам СН; б) подключение ДГР к нейтрале силового трансформатора
Индуктивность ДГР подбирается из условия равенства емкостной проводимости сети и индуктивной проводимости реактора. Таким образом, происходит компенсация ёмкостного тока. Ёмкостный ток суммируется в месте замыкания равным ему и противоположным по фазе индуктивным, в результате остается только активная часть, обычно очень малая, это утечки через изоляцию кабельных линий и активные потери в ДГР (как правило, не превышают 5 А), которой недостаточно для возникновения электрической дуги и шагового напряжения. Токоведущие цепи остаются неповреждёнными, потребители продолжают снабжаться электроэнергией.
Современные ДГР имеют различные конструктивные особенности и производятся для огромного диапазона мощностей. В таблице 2 приведен ряд параметров дугогасящих реакторов разных производителей.
Расчет емкостного тока сети
В электротехнике существует такое понятие как емкостный ток, более известный в качестве емкостного тока замыкания на землю в электрических сетях. Данное явление возникает при повреждении фазы, в результате чего возникает так называемая заземляющая дуга. Для того чтобы избежать серьезных негативных последствий, необходимо своевременно и правильно выполнять расчет емкостного тока сети. Это позволит уменьшить перенапряжение в случае повторного зажигания дуги и создаст условия для ее самостоятельного угасания.
Что такое емкостный ток
Емкостный ток возникает как правило на линиях с большой протяженностью. В этом случае земля и проводники работают аналогично обкладкам конденсатора, способствуя появлению определенной емкости. Поскольку напряжение в ЛЭП обладает переменными характеристиками, это может послужить толчком к его появлению. В кабельных линиях, напряжением 6-10 киловольт, его значение может составить 8-10 ампер на 1 км протяженности.
В случае отключения линии, находящейся в ненагруженном состоянии, величина емкостного тока может достигнуть нескольких десятков и даже сотен ампер. В процессе отключения, когда наступает момент перехода тока через нулевое значение, напряжение на расходящихся контактах будет отсутствовать. Однако, в следующий момент вполне возможно образование электрической дуги.
Если значение емкостного тока не превышает 30 ампер, это не приводит к каким-либо серьезным повреждениям оборудования в зоне опасных перенапряжений и замыканий на землю. Электрическая дуга, появляющаяся на месте повреждения, достаточно быстро гаснет с одновременным появлением устойчивого замыкания на землю. Все изменения емкостного тока происходят вдоль электрической линии, в направлении от конца к началу. Величина этих изменений будет пропорциональна длине линии.
Для того чтобы уменьшить ток замыкания на землю, в сетях, напряжением от 6 до 35 киловольт, осуществляется компенсация емкостного тока. Это позволяет снизить скорость восстановления напряжения на поврежденной фазе после гашения дуги. Кроме того, снижаются перенапряжения в случае повторных зажиганий дуги. Компенсация выполняется с применением дугогасящих заземляющих реакторов, имеющих плавную или ступенчатую регулировку индуктивности.
Настройка дугогасящих реакторов выполняется в соответствии с током компенсации, величина которого равна емкостному току замыкания на землю. При настройке допускается использование параметров излишней компенсации, когда индуктивная составляющая тока будет не более 5 ампер, а степень отклонения от основной настройки – 5%.
Выполнение настройки с недостаточной компенсацией допустимо лишь в том случае, когда мощность дугогасящего реактора является недостаточной. Степень расстройки в этом случае не должна превышать 5%. Главным условием такой настройки служит отсутствие напряжения смещения нейтрали, которое может возникнуть при несимметричных емкостях фаз электрической сети – при обрыве проводов, растяжке жил кабеля и т.д.
Для того чтобы заранее предупредить возникновение аварийных ситуаций и принять соответствующие меры, необходимо рассчитать емкостный ток на определенном участке. Существуют специальные методики, позволяющие получить точные результаты.
Пример расчета емкостного тока сети
Значение емкостного тока, возникающего в процессе замыкания фазы на землю, определяется лишь величиной емкостного сопротивления сети. По сравнению с индуктивными и активными сопротивлениями, емкостное сопротивление обладает более высокими показателями. Поэтому первые два вида сопротивлений при расчетах не учитываются.
Образование емкостного тока удобнее всего рассматривать на примере трехфазной сети, где в фазе А произошло обычное замыкание. В этом случае величина токов в остальных фазах В и С рассчитывается с помощью следующих формул:
Модули токов в этих фазах Iв и Iс, учитывая определенные допущения С = СА = СВ = СС и U = UА = UВ = UС можно вычислить при помощи еще одной формулы: Значение тока в земле состоит из геометрической суммы токов фаз В и С. Формула целиком будет выглядеть следующим образом: При проведении практических расчетов величина тока замыкания на землю может быть определена приблизительно по формуле: , где Uср.ном. – является фазным средненоминальным напряжением ступени, N – коэффициент, а l представляет собой суммарную длину воздушных и кабельных линий, имеющих электрическую связь с точкой замыкания на землю (км). Оценка, полученная с помощью такого расчета, указывает на независимость величины тока от места замыкания. Данная величина определяется общей протяженностью всех линий сети.
Как компенсировать емкостные токи замыкания на землю
Работа электрических сетей, напряжением от 6 до 10 киловольт, осуществляется с изолированной или заземленной нейтралью, в зависимости от силы тока замыкания на землю. Во всех случаях в схему включаются дугогасящие катушки. Нейтраль заземляется с помощью дугогасящих катушек, для того чтобы компенсировать токи замыкания на землю. Когда возникает однофазное замыкание на землю, работа всех электроприемников продолжается в нормальном режиме, а электроснабжение потребителей не прерывается.
Значительная протяженность городских кабельных сетей приводит к образованию в них большой емкости, поскольку каждый кабель является своеобразным конденсатором. В результате, однофазное замыкание в подобных сетях, может привести к увеличению тока на месте повреждения до нескольких десятков, а в некоторых случаях – и сотен ампер. Воздействие этих токов приводит к быстрому разрушению изоляции кабеля. Из-за этого, в дальнейшем, однофазное замыкание становится двух- или трехфазным, вызывая отключение участка и прерывая электроснабжение потребителей. В самом начале возникает неустойчивая дуга, постепенно превращающаяся в постоянное замыкание на землю.
Когда ток переходит через нулевое значение, дуга сначала пропадает, а затем появляется вновь. Одновременно на неповрежденных фазах возникает повышение напряжения, которое может привести к нарушению изоляции на других участках. Для погашения дуги в поврежденном месте, необходимо выполнить специальные мероприятия по компенсации емкостного тока. С этой целью к нулевой точке сети подключается индуктивная заземляющая дугогасящая катушка.
Схема включения дугогасящей катушки, изображенная на рисунке, состоит из заземляющего трансформатора (1), выключателя (2), сигнальной обмотки напряжения с вольтметром (3), дугогасящей катушки (4), трансформатора тока (5), амперметра (6), токового реле (7), звуковой и световой сигнализации (8).
Конструкция катушки состоит из обмотки с железным сердечником, помещенной в кожух, наполненный маслом. На главной обмотке имеются ответвления, соответствующие пяти значениям тока для возможности регулировки индуктивного тока. Один из выводов включается в нулевую точку обмотки трансформатора, соединенной звездой. В некоторых случаях может использоваться специальный заземляющий трансформатор, а соединение вывода главной обмотки осуществляется с землей.
Таким образом, для обеспечения безопасности выполняется не только расчет емкостного тока, но и проводятся мероприятия по его компенсации с помощью специальных устройств. В целом это дает хорошие результаты и обеспечивает безопасную эксплуатацию электрических сетей.
Расчет емкостного тока замыкания на землю в сети с изолированной нейтралью
Сети напряжением 6-35 кВ работают преимущественно в режиме с изолированной нейтралью. В нормальном режиме по фазным проводам такой сети протекают токи нагрузки, а также емкостные токи и токи утечки.
Сеть с изолированной нейтралью в нормальном режиме
Емкостные токи обусловлены емкостью фаз относительно земли, а токи утечки – активной проводимостью изоляции. По сравнению с емкостными токами, токи утечки малы и составляют 2-6% емкостных, поэтому при расчетах ими можно пренебречь.
При замыкании на землю одной фазы, например фазы “С”, напряжение нейтрали Un становится равным напряжению поврежденной фазы. Соответсвенно меняется картина распределения токов.
Так как в результате повреждения емкость фазы “С” становится зашунтированной, напряжение Ucn=0 (если пренебречь падением напряжения на продольном сопротивлении ЛЭП), емкостной ток, обусловленный емкостью С0с становится равным нулю.
При этом по поврежденной фазе «С» будет протекать емкостной ток замыкания на землю, равный емкостному току неповрежденных фаз
Знак “-“ говорит от том, что ток направлен в противоположную сторону, то есть к источнику питания, а не от него.
Сеть с изолированной нейтралью при КЗ
Для определения уставок срабатывания токовой защиты от замыкания на землю, необходимости компенсации емкостных токов замыкания на землю, необходимо уметь определять ток замыкания на землю линии.
Расчет емкостного тока замыкания на землю кабельной линии
Для определения емкостного тока замыкания на землю кабельной линии необходимо знать значение емкости жилы кабеля относительно его оболочки С0
Частичные емкости трехжильных кабелей с поясной изоляцией
С0 –емкость жилы на оболочку
Согласно [1] емкость жилы кабеля относительно оболочки С0 характеризует работу трехфазной кабельной линии при замыкании на землю и служит для подсчета емкостного тока замыкания на землю.
Емкостной ток замыкания на землю кабельной линии определяется по формуле [1, 2]:
Расчет емкостного тока замыкания на землю воздушной линии
Емкостной ток ВЛ может быть приближенно определен по формуле [3]:
где: U – напряжение сети, кВ (6, 10 или 35 кВ);
l – длина линии, км.
Для линий 6-10 кВ, а также линий 35 кВ без тросов принимается коэффициент 2,7; для линий 35 кВ на деревянных опорах с тросами – 3,3; на металлических опорах с тросами – 3,0.
Емкостный ток двухцепной линии может быть определен по формуле:
где: Iс.вл – емкостный ток одноцепной ВЛ, А
Увеличение емкостного тока сети за счет емкости оборудования подстанций может ориентировочно оцениваться для воздушных и кабельных сетей 6-10 кВ – на 10%, для воздушных сетей 35 кВ – на 12%.
Для кабельных сетей 35 кВ увеличение емкостного тока за счет оборудования подстанций учитывать не следует.
Недостаточная точность аналитического метода определения емкостных токов замыкания на землю и напряжений несимметрии реальных воздушных линий электропередачи определяет применение расчетов только для предварительной оценки параметров проектируемых сетей, а также перед прямыми их измерениями.
Справочные данные по емкостным токам однофазного замыкания на землю кабельных линий
Ниже приведены некоторые данные с каталогов заводов-изготовителей кабельной продукции и различной литературы.
Завод Южкабель, кабели из сшитого полиэтилена [4]
Кабели из сшитого полиэтилена Nexans [5]
Емкостные токи кабельных линий согласно СТП 09110.20.187-09. Методические указания по заземлению нейтрали сетей 6-35 кВ через резистор [3]
Таблица Г.1 – Емкостные токи замыкания на землю кабелей с секторными жилами и поясной изоляцией
Сечение, мм 2 | Ток замыкания на землю, А/км | |
Кабели 6 кВ | Кабели 10 кВ | |
16 | 0,37 | 0,52 |
25 | 0,46 | 0,62 |
35 | 0,52 | 0,69 |
50 | 0,59 | 0,77 |
70 | 0,71 | 0,90 |
95 | 0,82 | 1,00 |
120 | 0,89 | 1,10 |
150 | 1,10 | 1,30 |
185 | 1,20 | 1,40 |
240 | 1,30 | 1,60 |
300 | 1,50 | 1,80 |
Таблица Г.2 – Емкостные токи замыкания на землю кабелей с бумажной пропитанной изоляцией
Сечение, мм 2 | Ток замыкания на землю, А/км | |
Кабели 20 кВ | Кабели 35 кВ | |
25 | 2,0 | — |
35 | 2,2 | — |
50 | 2,5 | — |
70 | 2,8 | 3,7 |
95 | 3,1 | 4,1 |
120 | 3,4 | 4,4 |
150 | 3,7 | 4,8 |
185 | 4,0 | 5,2 |
Таблица Г.3 – Емкостные токи замыкания на землю кабелей с пластмассовой изоляцией
Сечение, мм 2 | Ток замыкания на землю, А/км | ||
Кабели 6 кВ | Кабели 10 кВ | Кабели 35 кВ | |
25 | 0,55 | 1,90 | 3,30 |
35 | 0,60 | 2,10 | 3,60 |
50 | 0,65 | 2,30 | 3,90 |
70 | 0,70 | 2,60 | 4,50 |
95 | 0,75 | 2,90 | 4,80 |
120 | 0,85 | 3,20 | 5,40 |
150 | 0,9 | 3,40 | 5,70 |
185 | 1,00 | 3,80 | 6,30 |
240 | 1,00 | 4,50 | 6,90 |
300 | — | 5,00 | 7,50 |
400 | — | 5,60 | 8,10 |
Примечания: 1) Три жилы кабелей 6кВ имеют общий металлический экран. 2) Каждая жила кабелей 10-35 кВ имеет отдельный металлический экран. |
Таблица Г.4 – Емкость кабелей с изоляцией из сшитого полиэтилена
Сечение, мм 2 | Ток замыкания на землю, А/км | ||
Кабели 6 кВ | Кабели 10 кВ | Кабели 35 кВ | |
50 | 0,43 | 0,72 | 2,53 |
70 | 0,49 | 0,82 | 2,86 |
95 | 0,55 | 0,91 | 3,19 |
120 | 0,58 | 0,97 | 3,41 |
150 | 0,64 | 1,07 | 3,74 |
185 | 0,70 | 1,16 | 4,07 |
240 | 0,77 | 1,29 | 4,51 |
300 | 0,85 | 1,41 | 4,95 |
400 | 0,94 | 1,57 | 5,50 |
500 | 1,04 | 1,73 | 6,05 |
630 | 1,15 | 1,92 | 6,70 |
800 | 1,28 | 2,14 | 7,47 |
Автор статьи, инженер-проектировщик систем релейной защиты станций и подстанций