Что такое дюза в трв
Терморегулирующие вентили
Принцип работы ТРВ
Перегрев
Переохлаждение
Линия внешнего уравнивания
Наполнители
В ТРВ с универсальным наполнителем количество жидкости в термобаллоне таково, что какой бы ни была температура термобаллона по отношению к температуре термочувствительной системы, в термобаллоне всегда будет оставаться жидкость.
ТРВ с наполнителем МОР используются в моноблочных агрегатах, в которых при пуске установки желательно ограничивать давление всасывания (авторефрижераторы, воздушные кондиционеры).
ТРВ с заправкой МОР имеют небольшое количество жидкости в термобаллоне. Это означает, что вентиль или термочувствительная система всегда должны быть более теплыми, чем термобаллон. В противном случае начинается перетекание наполнителя из термобаллона в полость термочувствительной системы и ТРВ перестает работать.
В термобаллонах с наполнителем МОР количество жидкости ограничено. МОР (максимальное рабочее давление) — это максимально допустимое в магистралях всасывания и/или кипения давление всасывания и/или кипения соответственно. При достижении МОР жидкость в термобаллоне испаряется. Когда давление всасывания повышается, вентиль начинает закрываться, как только это давление приблизится к давлению МОР менее, чем на 0,3—0,4 бар. При достижении давления МОР вентиль полностью закроется.
ТРВ с наполнителем МОР и балластом предназначены для холодильных установок, имеющих высокодинамичные испарители, например, воздушных кондиционеров, или для пластинчатых теплообменников с высокой интенсивностью теплопередачи. ТРВ, заправленные наполнителем МОР с балластом, обеспечивают работу испарителя при перегреве на 2—4°К ниже, чем это достигается с другими типами наполнителя.
При использовании наполнителя с балластом внутри термобаллона содержится материал с высокой пористостью, т.е. с большим отношением площади поверхности к массе. Этот материал создает демпфирующий эффект при регулировке, обеспечивающий медленное открытие ТРВ при повышении температуры термобаллона и быстрое закрытие при ее понижении.
Сокращение МОР часто переводят также как «Motor Overload Protection», т.е. «Защита двигателя от перегрузки».
Выбор терморегулирующего вентиля
В маркировке указывается тип ТРВ (и его кодовый номер), диапазон температуры кипения, точка MOP, тип хладагента, допустимое рабочее давление PB/MWP. В вентилях ТЕ20 и ТЕ55 номинальная производительность ТРВ указывается на этикетке, прикрепленной к вентилю.
На сменных клапанных узлах вентилей Т2 и ТЕ2 указывается размер этих узлов (например, 06), а также номер недели и последняя цифра года изготовления (например, 279). Размер клапанного узла указывается также на крышке его пластикового контейнера.
Верхняя маркировка клапанного узла вентилей ТЕ 5 и ТЕ 12 указывает, для какого вентиля предназначен данный клапанный узел. Нижняя маркировка (на рисунке 01) указывает размер клапанного узла.
Нижняя маркировка клапанного узла вентилей ТЕ 20 и ТЕ 55 (50/35 TR N/B) указывает номинальные производительности данного узла в двух диапазонах температур кипения N и B и тип хладагента (50/35 TR соответствует 175 кВт в диапазоне N и 123 кВт в диапазоне В).
Монтаж ТРВ
Термобаллон рекомендуется устанавливать на горизонтальной части всасывающего трубопровода в зоне первой трети окружности трубопровода (см. рисунок). Размещение термобаллона зависит от размеров всасывающего трубопровода. Примечание: Никогда не устанавливайте термобаллон в нижней части трубопровода, так как наличие масла на дне трубопровода может исказить показания термобаллона.
Термобаллон должен контролировать температуру перегретого пара на линии всасывания, поэтому устанавливать его нужно таким образом, чтобы избежать влияния посторонних источников тепла или холода. Если есть опасность попадания на термобаллон потока горячего воздуха, его нужно теплоизолировать.
Крепежный хомутик должен плотно и надежно фиксировать термобаллон на трубопроводе линии всасывания, обеспечивая хороший тепловой контакт термобаллона и трубопровода. Конструкция винта крепежного хомутика позволяет монтажнику легко передавать момент кручения от отвертки на винт, не оказывая усилия на шлиц винта. Более того, конструкция шлица исключает опасность его повреждения.
Во избежание появления ложных команд в контуре регулирования не устанавливайте термобаллон за промежуточным теплообменником.
Как уже отмечалось, термобаллон следует устанавливать на горизонтальном участке всасывающей магистрали сразу после испарителя. Не устанавливайте термобаллон на коллекторе или вертикальном участке трубопровода после масляной ловушки.
Термобаллон следует всегда монтировать перед любыми жидкостными ловушками.
Настройка ТРВ
Для ТРВ типа Т2/ТЕ2 полный оборот винта изменяет температуру перегрева примерно на 4К при температуре кипения 0°C.
Для вентиля ТЕ5 полный оборот винта дает изменение перегрева примерно на 0,5 К при температуре кипения 0°C. Для вентилей TUA и TUB полный оборот винта дает изменение перегрева примерно на 3 К при температуре кипения 0°C.
Чтобы избежать колебаний перегрева, нужно действовать следующим образом: Вращая регулировочный винт вправо (по часовой стрелке), повышайте перегрев до прекращения колебаний. Затем понемногу вращайте винт влево до появления колебаний. После этого поверните винт вправо примерно на 1 оборот (для вентилей Т/ТЕ2 на ¼ оборота). При такой настройке колебания перегрева прекращаются, и испаритель работает в оптимальном режиме. Изменения перегрева в диапазоне ±1 К не рассматриваются как колебания.
Если хладагент в испарителе сильно перегревается, это может быть следствием его недостаточной подпитки жидкостью.
Снизить перегрев можно, вращая регулировочный винт влево (против часовой стрелки), постепенно выходя установку на режим с колебаниями перегрева. После этого поверните винт вправо на один оборот (для ТРВ типа Т/ТЕ2 на У оборота). При такой настройке колебания перегрева прекращаются, и испаритель работает в оптимальном режиме. Изменения перегрева в диапазоне ±1 К не рас сматриваются как колебания.
Замена клапанных узлов
Если перегрев в испарителе слишком большой, значит, производительность ТРВ слишком мала. Тогда, чтобы повысить расход хладагента, также следует заменить клапанный узел. Терморегулирующие вентили компании Danfoss типа Те, Т2, TUA, ТСАЕ поставляются с комплектом сменных клапанных узлов.
ТРВ компании Данфосс
Вентили TUA, TUB, TUC с корпусом из нержавеющей стали и штуцерами из нержавеющей стали/меди под пайку. Номинальная производительность: от 0,5 до 12 кВт (R134a).
Вентили ТСАЕ, TСBЕ, TСCЕ с корпусом из нержавеющей стали и штуцерами из нержавеющей стали/меди под пайку. Номинальная производительность: от 12 до 18 кВт (R134a). Эти вентили работают, как вентили TU, но имеют большую производительность. Поставляются с линией внешнего уравнивания.
Вентили ТRE с корпусом из латуни и штуцерами из нержавеющей стали/меди. Номинальная производительность: от 18 до 196 кВт (R134a). ТRE оснащены фиксированными клапанными узлами и имеют регулируемый перегрев.
Вентили ТDE с корпусом из латуни и медными штуцерами под пайку. Номинальная производительность: от 10,5 до 140 кВт (R407Q. ТDE оснащены фиксированными клапанными узлами и имеют регулируемый перегрев.
Вентили ТE 5 — ТЕ 55 с корпусом из латуни. Вентили ТЕ 5 — ТЕ 55 поставляются в комплектации, включающей корпус, клапанный узел и термочувствительную систему. Корпус вентиля в прямом или угловом исполнении со штуцерами под пайку, отбортовку или под фланцы. Номинальная производительность: от 12,9 до 220 кВт (R134а). Поставляются с линией внешнего уравнивания.
Подбор терморегулирующего вентиля для кондиционеров
Терморегулирующий вентиль (ТРВ) – один из элементов, без которого работа холодильного контура невозможна. Другими словами, без ТРВ не сможет функционировать ни одна холодильная машина. Вместо ТРВ в холодильный контур может быть также установлено другое устройство с подобными функциональными свойствами. Это может быть более простая и дешевая капиллярная трубка, или более дорогой и сложный электронный терморегулирующий вентиль (ЭТРВ). Все эти приборы носят одно общее название – дросселирующие устройства. Установка в холодильный контур одного или другого дросселирующего устройства регламентируется только производителем, исходя из особенностей того или иного вида кондиционера.
Где устанавливается ТРВ
Место установки ТРВ в холодильном контуре имеет вполне определенное место. Он должен устанавливаться поближе к испарителю, а расширительный баллончик – на выходном горизонтальном участке фреонового трубопровода испарителя. Прикрепляется он очень плотно, в идеальном варианте между баллончиком и трубопроводом должна быть проложена теплопроводящая паста, а место установки – теплоизолировано.
В исключительных случаях в бытовых или полупромышленных кондиционерах дросселирующее устройство устанавливается во внешнем блоке. Это достаточно далеко от испарителя, но это исключение из правил.
На фото: Место установки ТРВ в холодильном контуре
ТРВ может регулировать проходное сечение дросселирующего отверстия. В нижней его части имеется регулировочный винт. После сборки, на фабрике ТРВ настраивают на перегрев 4°C. Если необходимо увеличить или уменьшить перегрев, то регулировочный винт следует повернуть по часовой или против часовой стрелки. Один полный оборот винта соответствует перегреву в 0.5, 2 или 4 °C, в зависимости от производителя и модели ТРВ.
Как правильно подобрать ТРВ
Независимо от оборудования, на котором устанавливается ТРВ, вентиль должен соответствовать типу заправленного холодильного агента. Если мы говорим о кондиционировании, то 99% подобного оборудования работает на R410А. В некоторых случаях в кондиционерах применяются R134А, R32 или R407C. Все эти холодильные агенты озонобезопасны. В настоящее время имеются кондиционеры, работающие на старом хладагенте R22. На поверхности ТРВ обязательно указывается тип холодильного агента, для которого предназначен данный терморегулирующий вентиль. В исключительных случаях на корпусе ТРВ может быть указано два типа холодильных агентов. Категорически запрещается устанавливать ТРВ на кондиционер, если марка холодильного агента на корпусе ТРВ не соответствует заправленному в кондиционер.
На фото: Принцип работы терморегулирующего вентиля (ТРВ)
Второй показатель, на который необходимо обратить внимание, выбирая ТРВ, — это производительность. Так как терморегулирующий вентиль устанавливается перед испарителем, то он должен быть согласован с его производительностью. Принимая во внимание справочные данные различных ТРВ, можно сказать, что у каждого из них есть фиксированный показатель производительности, которой должен соответствовать характеристиками испарителя. Конечно, точно подобрать вентиль просто невозможно, но после расчета допускается, чтобы его производительность была меньше аналогичного показателя у испарителя. В противном случае в испаритель будет поступать больше холодильного агента, что в дальнейшем неизбежно приведет к выходу из строя самого кондиционера.
Мы рассмотрели два основных параметра, по которым подбирается ТРВ. Однако существуют и другие характеристики, которыми обладают терморегулирующие вентили. Так, например, ТРВ могут быть с внешним и внутренним уравниванием, с постоянным дросселирующем отверстием или сменным отверстием, меняющейся вставкой с отверстием, а также однопоточные и реверсивные. Эти параметры терморегулирующего вентиля выбираются самим производителем.
Формулы для расчета характеристик ТРВ
Терморегулирующий вентиль кондиционера или любой другой холодильной установки может быть рассчитан более точно с применением академических формул.
Для расчета номинальной холодопроизводительности ТРВ может быть использована следующая зависимость:
где Qо — холодопроизводительность системы, Вт;
КΔР — поправочный коэффициент, учитывающий потери давления;
К1 — поправочный коэффициент, учитывающий разность значений температуры кипения.
Пример значений коэффициентов КΔР и К1 для К410А приведены ниже в таблицах.
Если переохлаждение превышает 15 о С, необходима соответствующая корректировка типоразмеров составных элементов системы. На практике для компенсации эффекта переохлаждения к уже известным поправочным коэффициентам К1 и КΔР добавляют еще один коэффициент, К2.
В этом случае расчет номинальной холодопроизводительности ТРВ может быть произведен по формуле
где Qо — холодопроизводительность системы, Вт;
КΔР — поправочный коэффициент, учитывающий потери давления;
К2 — поправочный коэффициент, учитывающий переохлаждение свыше 15 о С.
Если испаритель расположен выше уровня жидкостного ресивера, то из этой разницы вычитают гидростатическое давление высоты столба соответствующей жидкости.
В этом случае для расчета ТРВ требуется знать действительный перепад давления. Для его расчета может быть использована следующая зависимость:
где Рк — давление конденсации, определяемое по температуре конденсации, мПа;
Ро — давление кипения, определяемое по температуре кипения, мПа;
ΔР1 — падение давления на жидкостной линии (примерно равно 0,01 мПа);
ΔР2 — общее падение давления на фильтре-осушителе, смотровом окне, ручном запорном вентиле и на участках изгиба (составляет приблизительно 0,02 мПа);
ΔР3 — падение давления на вертикальном жидкостном трубопроводе, возникающее из-за разности высот при высоте 6 м (для определения данного значения необходимо воспользоваться дополнительными источниками);
ΔР4 — падение давления в распределителе жидкости (примерно равно 0,05 мПа);
ΔР5 — падение давления в трубах распределителя жидкости, (примерно равно 0,05 мПа).
Однако сегодня такими формулами для расчета мало кто пользуется, поскольку это занимает много времени и не исключает больших погрешностей, так как техника быстро развивается и претерпевает со временем значительные изменения. Наиболее точный расчет и подбор ТРВ возможен только при помощи специализированных программ подбора холодильной автоматики. Каждый производитель имеет такую программу, и она позволяет выбрать любой тип ТРВ под рассчитанные параметры кондиционера, такие как температура кипения, перегрев, температура конденсации, переохлаждение, температура нагнетания и т.д. Использование программ подбора полностью исключает ошибки при подборе ТРВ, если специалист строго следует рекомендациям производителя.
Принципы работы терморегулирующего вентиля (ТРВ)
Если температура термобаллона превысит 11 С, то это повлечет и увеличение давления (оно станет больше 6 бар) и ТРВ откроется. Когда температура и давление станут ниже 11 С и 6 бар соответственно, то ТРВ закроется.
Получается, что при соответствующей настройке регулировочной пружины ТРВ (1,4 бар), будет поддерживаться постоянная разница между температурой кипения и температурой термобаллона в 7 К.
Основные причины аномального перегрева
На (рис. 5.1) tB= tE= температуре кипения=4 С. В точке D температура составляет 18 С, а перегрев составляет 14 К.
Объясняется это следующим образом: если холодильный контур имеет нормальную работу, то последние капли жидкости в точке С уже выкипели. Далее пары продолжают нагреваться – участок C-D. Когда участок C-D заполнен парами, обеспечивается нормальный перегрев.
Когда в испарителе хладагент находится в недостаточном количестве, длина участка, заполненного парами, увеличивается (рис.5.1 точка Е), в результате чего перегрев значительно возрастает. Если температура в точке D достигнет 18 С, то перегрев составит 14 К.
Чрезмерно низкий перегрев (меньше 5 К)
Практика показывает, что даже после выполнения настроек ТРВ, системе необходимо 20 минут для того, чтобы войти в новый режим.
В стабильно работающих установках открытие ТРВ действительно приводит к увеличению давления кипения, в связи с этим необходимо знать, что в функции ТРВ не входит его регулировка. Основное назначение ТРВ – это оптимальное заполнение испарителя при различных тепловых нагрузках для обеспечения постоянного перегрева всасываемых паров.
Как перегрев влияет на холодопроизводительность?
Поэтому для максимальной холодопроизводительности необходимо следить, чтобы испаритель был как можно больше заполнен хладагентом. Снижая перегрев необходимо следить, чтобы жидкость не попадала на вход в компрессор. Если в системе слишком большой перегрев, то это означает, что ТРВ пропускает слишком мало жидкости (почти закрыт). Низкая холодопроизводительность испарителя свидетельствует о том, что перепад температур Δθ на входе-выходе является незначительным. Давление кипения на выходе из ТРВ падает, и трубопровод покрывается инеем. При низком перегреве отверстие ТРВ пропускает много жидкости или полностью открыто. Если в испарителе содержится много жидкости, то наблюдается высокая холодопроизводительность и перепад температур Δθ для охлаждаемого воздуха является нормальным. В этом случае в компрессор могут попадать губительные для него частицы жидкости.
Воздействие температуры охлаждаемого воздуха
Если охлаждаемый воздух поступает к испарителю с температурой 25 С, то участка трубопровода А-В достаточно, чтобы обеспечить перегрев паров в 7 К. Давление кипения в этом случае соответствует 5,2 барам, что является эквивалентом температурному напору Δθполн 18 К.
В данном случае установка работает нормально, температура окружающей среды падает, как и температура на входе в испаритель. Допустим, что температура на входе в испаритель снизилась на 20 С. При прежних настройках ТРВ перегрев остается почти постоянным – 7 К. Чтобы перегрев паров остался прежним при более низкой температуре, необходимо увеличить участок трубопровода испарителя, где происходит обмен между воздухом и парами хладагента. При температуре наружного воздуха 20 С длина участка А?-В больше для обеспечения перегрева 7 К, чем участка А-Б при температуре 25 С, для обеспечения аналогичного перегрева паров. Поскольку в данных участках находятся только пары, то можно утверждать, что при температуре воздуха на входе в испаритель 20 С в нем находится меньше жидкого хладагента, нежели при температуре 25 С.
При поступлении в ТРВ более холодного воздуха он начинается закрываться, что приводит к снижению количества жидкости и уменьшении холодопроизводительность. Давление кипения также снижается. Говоря другими словами, при снижении температуры воздуха на входе в испаритель, сечение ТРВ становится меньше, для сохранения необходимого перегрева. При этом давление кипения также уменьшается. Температурный напор Δθполн остается неизменным, если давление конденсации не меняется и правильно отрегулировано.
Производительность ТРВ
Аналогичная ситуация происходит и с терморегулирующим вентилем: при снижении расхода жидкости давление между входом и выходом уменьшается, и увеличивается при его повышении. Также следует помнить о том, что увеличение расхода жидкости хладагента, проходящего через терморегулирующий вентиль, повышает его производительность, а, следовательно, и мощность установки.
Необходимо различать следующие понятия: производительность ТРВ, поглощающая способность испарителя и холодопроизводительность.
Под производительностью терморегулирующего вентиля понимают максимальный расход, способный пропускать данный элемент при полностью открытом отверстии и фиксированном перепаде давления ΔР. Исходя из этого, можно сделать вывод, что производительность напрямую зависит от диаметра сечения сменного клапанного узла внутри ТРВ. Данная зависимость отображена на схеме рис.8.2.
Проходное сечение В обладает большим диаметром чем b, а, следовательно, может пропускать больше жидкости. Таким образом, терморегулирующий вентиль с клапанным узлом, имеющим сечение В, обладает большей производительностью, чем ТРВ с патроном сечением b.
При этом производительность ТРВ и холодопроизводительность испарителя должны быть равны, поскольку через ТРВ может проходить столько жидкости, сколько сможет выкипеть в испарителе.
В приведенной ниже таблице 8.1 указаны данные по выбору ТРВ для установки на R22.
Точка 1: Производительность ТРВ 3,32 кВт при tk=50 С и to=0 С (ΔР=18,4-4=14,4 бар)
Точка 2: Производительность ТРВ 2,88 кВт при tk=35 С и to=0 С (ΔР=12,5-4=8,5 бар)
Точка 2: Производительность ТРВ 2,53 кВт при tk=35 С и to=10 С (ΔР=12,5-5,8=6,7 бар)
Следовательно, для температуры кипения 0 С производительность снижается с 3,32 до 2,88 кВт при уменьшении ΔР с 14,4 до 8,5 бар, что равняется 13%.
При температуре конденсации 35 С производительность терморегулирующего вентиля снижается с 2,88 до 2,53 кВт и ΔР уменьшается с 8,5 до 6,7 бар – 12%.
Поэтому ТРВ и маркируются по производительности. Некоторые изготовители указывают номинальную производительность данной величины для определенных условий работы (+5/+32 С переохлаждение 4 К). Так, номинальная производительность ТРВ компании DANFOSS марки TEX5-3 составляет 3 тонны, а ALCO марки TIE4HW – 4 тонны.
Стоит помнить, что номинальная производительность обозначает только порядок величины, а ее конкретное значение будет показано на практике. Определяется оно рабочим перепадом и паспортом ТРВ, устанавливающим определенное значение производительности для данного проходного сечения.
Пульсации ТРВ
В точке to хорошо налаженный ТРВ обеспечит перегрев 7 К. В целом, установка показывает стабильную работу и необходимый перегрев. На промежутке времени t1 открываем вентиль на один оборот, после чего сразу видим, как он быстро переходит на пульсирующий режим работы. При этом перегрев меняется от 2 до 14 К. Показания манометра НД также свидетельствуют о пульсации давления кипения, которые совпадают по частоте с изменениями кривой 2. На следующем промежутке t2 ТРВ открываем еще на оборот. При этом частота пульсации начинает быстро возрастать, и перегрев находится в промежутке 0-12 К.
Если дотронутся до всасывающего трубопровода, то можно отчетливо ощутить гидроудары, которые передаются в компрессор. При этом корпус компрессора будет холодным. Чем больше открываем регулировочный винт ТРВ, тем больше повышается его производительность. Пульсация свидетельствует о том, что пропускная способность ТРВ выше производительности испарителя.
Негативные нюансы пульсации
При дальнейшем открытии ТРВ, пульсации прекратятся, низкое давление стабилизируется, а температуры 1 и 2 приобретут одинаковое значение. Компрессор станет работать в условиях, когда на его входе имеются неиспарившиеся частицы. Правда, данный режим может привести к негативным последствиям.
Настройка терморегулирующего вентиля
Давайте рассмотрим наиболее простой и верный способ. К используемым манометрам подключаем электронный термометр, датчик которого крепим на термобаллоне ТРВ (рис.8.4). Для того, чтобы обеспечить стабильность настроек необходимо все действия производить при температуре близкой к отключению компрессора. Категорически не рекомендуется их выполнять при высокой температуре ТРВ в охлаждаемом объеме.
Предлагаемая технология настройки основана на том, что вначале необходимо ТРВ вывести на предельный режим, во время которого начнутся пульсации. Для этого ТРВ медленно открывается до появления пульсации (показания манометра НД и термометра остаются неизменными). При возникновении пульсаций перегрева необходимо прикрывать ТРВ до тех пор, пока они не прекратятся.
Не следует вращать регулировочный винт больше, чем на один оборот, поскольку предельный режим пульсации может наступить через ¼, а иногда и через 1/8 оборота. После всех совершенных изменений необходимо выждать порядка 15 минут. В конечном результате это поможет сократить общее время настройки.
Если в период работы установки в пульсирующем режиме слегка закрыть ТРВ (пол-оборота), то это будет значить, что терморегулирующий вентиль настроен на минимально возможный перегрев. В этом случае заполнение испарителя жидким хладагентом станет оптимальным, и пульсации прекратятся.
Стоит учитывать, что давление конденсации должно оставаться практически стабильным, но максимально приближенным к номинальным условиям работы, поскольку от нее зависит производительность ТРВ.