Что такое доза на орган

Что такое доза на орган

Прочитав и изучив этот раздел Вы должны:

По мере изучения биологических эффектов излучения и развития атомной энергетики и промышленности развивались концепции радиационного нормирования профессионального облучения.

Экспозиционная доза является мерой ионизационного действия фотонного излучения, определяемой по ионизации воздуха в условиях электронного равновесия. Непосредственно измеряемой физической величиной при определении экспозиционной дозы фотонного излучения является суммарный электрический заряд ионов одного знака, образованных в воздухе за время облучения. Для фотонов с энергией менее 3 МэВ воздух служит хорошей моделью мышечной ткани при оценке ионизационного эффекта.

С открытием нейтрона и деления ядер возникли новые мощные источники излучения: потоки нейтронов, ускоренных электронов, позитронов и тяжелых заряженных частиц. Необходимость защиты от воздействия различных излучений привела к созданию универсальной энергетической концепции, применимой к любым видам ионизирующего излучения и ко всем средам.

Затем появилось понятие эквивалентной дозы, а позднее эффективной дозы.

Поглощенная доза ( D ) — это количество энергии, вносимое ионизирующим излучением в единицу массы вещества.

Веществом, например, может быть биологическая ткань. Единицей поглощенной дозы является грей (Гр). Один грей равен одному джоулю поглощенной энергии на один килограмм вещества.

Для сравнения всех ионизирующих излучений в отношении возможного возникновения вредных воздействий необходима была другая величина. Такой величиной стала эквивалентная доза, которая введена была в качестве меры ущерба при облучении отдельной ткани или органа человека.

Эквивалентная доза облучения органа или ткани равна поглощенной дозе в органе или ткани, умноженной на соответствующий взвешивающий коэффициент излучения W R :

Единица эквивалентной дозы является Зиверт (Зв).

Взвешивающие коэффициенты данного вида излучений получаются в результате обобщения имеющейся информации об особенностях действия различных видов ионизирующего излучения на экспериментальных животных.

При внешнем облучении человека принимают, что ущерб его здоровью причиняется в момент прохождения излучения через тело, хотя при этом ожидается, что эффект излучения (при нормальных уровнях доз, характерных для облучения профессиональных работников), является маловероятным событием и может произойти в течение всей оставшейся жизни.

Разные органы тела человека по-разному экранируются другими частями человеческого тела, что приводит к существенной разнице между эквивалентными дозами их облучения. Вот почему указание на облучаемый орган является существенным в определении эквивалентной дозы облучения органа.

Ожидаемая эквивалентная доза определена как временной интеграл мощности эквивалентной дозы в органе или ткани, которая формируется в течение некоторого времени t после поступления радиоактивного вещества в организм стандартного человека:

Что такое доза на орган. Смотреть фото Что такое доза на орган. Смотреть картинку Что такое доза на орган. Картинка про Что такое доза на орган. Фото Что такое доза на орган

Для целей обеспечения радиационной безопасности за время причинения ущерба человеку в результате внутреннего облучения его органов или тканей принимают момент поступления радиоактивного вещества в организм; при этом ожидается, что реализация ущерба в виде того или иного эффекта излучения может произойти в течение всей оставшейся жизни человека. Тем самым приводятся к единой мере разные по протяженности во времени облучения.

При равенстве величин H T и H T ( t ) следует ожидать в течение оставшейся жизни одинаковые последствия внешнего и внутреннего облучений.

В отличие от понятий экспозиционная доза и поглощенная доза эквивалентная доза не является физической величиной.

Эквивалентная доза характеризует воздействие излучения на биологическую ткань, т.е. является биофизической величиной.

Попытки свести ее к чисто физическим понятиям, объясняя разницу в биологическом действии различных видов ионизирующих излучений различиями в плотности ионизации, а также попытки создать дозиметр, измеряющий эквивалентную дозу, не получили практического воплощения, поскольку биологические процессы возможно регулировать с помощью физических приборов, но невозможно измерять.

Физический прибор не может быть полностью эквивалентен биологической ткани.

В области малых доз облучение различных органов или тканей с различными эквивалентными дозами может приводить к одним и тем же последствиям. Это означает, что одни органы и ткани более чувствительны, чем другие: например, при одинаковой эквивалентной дозе облучения возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений.

Поэтому дозы облучения органов и тканей следует учитывать с разными коэффициентами. Умножив эквивалентные дозы на соответствующие коэффициенты и просуммировав по всем органам и тканям, получим эффективную эквивалентную дозу, отражающую суммарный эффект облучения организма.

Эффективная доза ( Е ) представляет собой сумму произведений эквивалентной дозы в органах и тканях на соответствующие взвешивающие коэффициенты:

В эффективной дозе учитываются:

Взвешивающие коэффициенты для органов и тканей определяют в результате анализа длительных наблюдений за последствиями облучения больших групп людей (жители Хиросимы и Нагасаки, шахтеры урановых и неурановых рудников; пациенты, подвергшиеся облучению в медицинских целях и др.).

Эквивалентная доза характеризует последствия облучения человека, т.е. является медико-биофизической величиной.

Для индивидуума она характеризует риск возникновения онкологических заболеваний с летальным исходом и эквивалентных по значимости генетических и других эффектов. Просуммировав индивидуальные эффективные дозы, полученные группой людей, получим коллективную эффективную эквивалентную дозу, которая измеряется в человеко-зивертах (чел-Зв). Для группы людей она характеризует количество ожидаемых таких последствий облучения.

Эффективная доза внешнего облучения и ожидаемая эффективная доза внутреннего облучения эквивалентны: ущербы, причиненные источниками внешнего и внутреннего облучения, суммируются. Поэтому годовая эффективная доза равна сумме эффективной дозы внешнего облучения, полученной за год, и ожидаемой эффективной дозы внутреннего облучения, обусловленной поступлением в организм радионуклидов за этот же год.

Еще раз напоминаем: эффективная доза не является физической величиной.

Поэтому невозможно создать дозиметр, измеряющий эффективную дозу, или создать эталон (стандарт) эффективной дозы. Но она может быть легко пересчитана в количество ожидаемых последствий облучения (или риск их) путем умножения на принятое значение коффициента риска.

Дальнейшее накопление информации о действии ионизирующего излучения на здоровье людей приведет к уточнению эффективной дозы. Однако уже сейчас можно утверждать, что действие ионизирующего излучения изучено достаточно фундаментально, возможно, значительно лучше, чем действие других факторов.

В заключение раздела приведем картинку-диаграмму, на которой наглядно показана различная чувствительность органов человека к облучению разными видами излучения.

Источник

Мощность дозы рентгеновского излучения

Что такое доза на орган. Смотреть фото Что такое доза на орган. Смотреть картинку Что такое доза на орган. Картинка про Что такое доза на орган. Фото Что такое доза на орган

Содержание

В чём измеряется мощность дозы рентгеновского излучения и как происходит радионуклидное накопление в человеческом организме?
Какой объем накопленного ионизирующего облучения критичен для здоровья?

Системные и внесистемные единицы измерения

В процессе научного открытия и последующего изучения источников ионизирующего излучения и радиоактивности возникла необходимость во введении специальных единиц измерения. Первыми такими единицами стали Кюри и Рентген. Изначально в мировой практике исследования радиоактивного фона полностью отсутствовала систематизация, поэтому сегодня первичные единицы измерения принято называть внесистемными.

В настоящее время подавляющим большинством государств принята единая интернациональная система измерения (CI). В Российской Федерации переход на CI был начат в январе 1982 года. Предполагалось, что он будет завершен к январю 1990 года, но политические и экономические события в стране существенно затянули данный процесс. Тем не менее, вся современная дозиметрическая аппаратура выпускается с учётом градуирования в новых единицах измерения.

За несколько десятилетий активного изучения и практического применения рентгеновского излучения было введено большое количество различных единиц измерения дозы: Бэр, Грэй, Беккерель, Рад, Кюри и многие другие. Они используются в различных системах измерения и сферах радиологии. В контексте рентгенодиагностики наиболее часто употребляемые – Зиверт и Рентген.

Области применения Рентгена и Зиверта

Рентген сегодня считается устаревшей единицей измерения. Сфера её применения за последние годы существенно сузилась. Чаще всего она теперь используется для отображения общего излучения, тогда как размер полученной человеком дозы обозначается Зивертами.

Еще одно современное применение единицы измерения Рентген – определение характеристик рентгеновского аппарата, в том числе уровня излучаемой им проникающей радиации.

Для объективной и максимально точной оценки воздействия радиоактивного фона на человеческий организм используется понятие – эквивалентная поглощенная доза. ЭПД дает возможность определить количественную величину поглощенной организмом энергии. Анализ проводится с учетом биологической реакции отдельных тканей тела на ионизирующее излучение. При определении показателей применяется единица измерения – Зиверт. Она равна примерно 100 Рентген.

Тысячные и миллионные доли Зиверта/Рентгена

Мощность получаемой дозы облучения при прохождении рентгенодиагностики в десятки раз ниже показателя в 1 зиверт. Многократно ниже данной единицы измерения и естественный фон облучения. Поэтому для проведения более корректных замеров были введены такие понятия, как миллизиверт (мЗв) и микрозиверт (мкЗв). Один зиверт равен тысяче миллизиверт, или одному миллиону микрозиверт. Аналогичные значения применяются и по отношению к Рентгену.

Мощность дозы принято отображать в виде количественной части полученного облучения за определённый временной промежуток. Наиболее распространенные единицы времени: секунды, минуты и часы. Следовательно, часто используемые показатели: зв/ч, мзв/, р/ч, мр/ч и так далее.

Допустимый объём накопленного в организме облучения

Доза облучения при воздействии на человеческий организм имеет накопительное свойство. Учеными определен критический порог накопленных на протяжении жизни Зивертов в организме, превышение которого чревато негативными последствиями. Безопасный объем накопленного облучения находится в диапазоне от 100 до 700 миллизивертов.

Для коренных жителей высокогорных районов данные показатели могут быть немного выше.

Основные источники накопления в организме радионуклидных соединений

Ионизирующее излучение происходит вследствие инерционного высвобождения магнитных волн при активном взаимодействии атомов. Источники ионизирующего излучения делятся на природные и искусственные.

Природные ионизирующие излучения

К числу природных источников излучения в первую очередь относится естественный радиационный фон. В различных районах планеты фиксируется разный уровень радиации. На его размер оказывают прямое влияние следующие факторы:

Оптимальным для жизни считается радиационный фон 0,2 микрозиверта в час (или 20 микрорентген в час). Верхний порог допустимого уровня: 0,5 микрозивертов в час (50 микрорентген в час).

В зоне радиационного фона до 10 мкЗв/ч (1 мР/ч) возможно безопасное нахождение на протяжении 2-3 часов. Более продолжительное пребывание способно повлечь критические последствия.

Источники накопления дозы естественного излучения в организме

Среднестатистическая накапливаемая в человеческом организме доза естественного излучения составляет примерно 2–3 мЗв в год. Она складывается из следующих показателей:

Одним из источников природного ионизирующего излучения является сам человеческий организм, производящий собственные отложения радионуклидных соединений. Среднестатистический уровень одного только скелета колеблется от 0,1 до 0,5 мЗв.

Искусственные ионизирующие излучения

К источникам искусственного ионизирующего облучения в первую очередь относятся медицинские аппараты, применяемые во время проведения рентгеновской диагностики или терапии. В разных видах рентгеновского обследования различная величина эквивалентной поглощенной дозы. Также на мощность дозы облучения влияет срок выпуска и эксплуатационная нагрузка используемого рентген аппарата.

Рентгеновская аппаратура последнего поколения подвергает человеческий организм облучению в несколько десятков раз ниже, чем предшествовавшие модели. Современные цифровые аппараты практически безопасны.

Размер доз облучения при рентгенодиагностике

Мощность дозы рентгеновского излучения в современных аппаратах по сравнению с их предыдущими модификациями:

При рентгеноскопической диагностике происходит визуальное обследование органов с оперативным выводом необходимой информации на монитор компьютера. В отличие от фотографического метода, данный тип диагностики подвергает пациента меньшей дозе облучения за равную единицу времени. Но в некоторых случаях обследование может проводиться более длительное время.
При диагностике продолжительностью до 15-ти минут средняя мощность полученной дозы колеблется от 2 до 3,5 мЗв.

Во время проведения диагностики желудочно-кишечного тракта человек получает дозу облучения до 6-ти миллизивертов. При компьютерной томографии – от 2-х до 6-ти миллизивертов (мощность получаемой дозы напрямую зависит от диагностируемых органов).

При проведении сравнительного анализа получаемой человеком дозы ионизирующего облучения от аппаратов рентгенодиагностики и повседневном пребывании в привычной окружающей среде учёными были получены следующие данные:

Согласно законодательству Российской Федерации по радиационной безопасности допустимой нормой рентгеновского облучения (средняя годовая эффективная доза) является обобщенная доза в 70 мЗв, полученная в течение 70-ти лет жизни.

Источник

Лучевая нагрузка: как ее уменьшить и сколько можно делать КТ?

Компьютерная томография основана на ионизирующем рентгеновском излучении. Сканирование на томографе с возможностью построения 3D-реконструкций внутренних органов, сосудов и костей — высокоточный метод обследования, предпочтительный в ряде сложных ситуаций: после инсультов, при пневмониях, подозрении на онкологию. Однако такое обследование нельзя проходить часто.

В этой статье мы разберем, в чем заключается вред рентгеновского излучения и как уменьшить его влияние, если норма допустимого была превышена.

Чем вредно ионизирующее (рентгеновское) облучение?

По данным актуальных исследований библиотек РИНЦ и PubMed, а также в соответствии с действующими нормами радиационной безопасности населения РФ (НРБ), не рекомендуется облучается более чем на 15-20 мЗв в год. На новых КТ-аппаратах (МСКТ), в зависимости от исследуемых зон, это около 5-8 сканирований. На аппаратах старого образца из-за меньшего количества чувствительных датчиков, срезов и большего времени сканирования лучевая нагрузка выше.

После КТ радиоактивные элементы не сохраняются и не накапливаются в организме человека. X-ray лучи сканируют только зону интереса, и это длится 30-45 секунд.

Организм человека содержит необходимые ему химические элементы — водород, железо, калий и др. Распад этих элементов — тоже в своем роде является радиоактивным процессом, который происходит ежесекундно, на протяжении всей жизни человека. Некоторое количество радиации человек получает из атмосферы, воды, от природных радионуклидов. Это называется естественным радиационным фоном.

Доза радиации, полученная пациентом в рамках медицинских обследований не велика — это справедливо как для рентгена, так и для КТ. Однако организм каждого человека по-разному реагирует на воздействие x-ray излучения: если одни пациенты сравнительно легко переносят лучевую нагрузку, равную 50 мЗв, то для других аналогичной по воздействию будет нагрузка 15 мЗв.

Поскольку норма относительна, а порог, при котором негативного воздействия гарантированно не произойдет, отсутствует, принято считать, все виды исследований с применением ионизирующего излучения потенциально вредны. Организм взрослого человека более резистентен к радиации, а дети более чувствительны. Однако у некоторых пациентов имеются отягчающие факторы в анамнезе или индивидуальные особенности организма.

Например, по одним данным считается, что у годовалого ребенка, которому проводится КТ брюшной полости, пожизненный риск онкологии возрастает на 0,18%. Однако если ту же процедуру проходит взрослый или пожилой человек, то этот риск будет существенно ниже. Считается, что регулярное дозированное рентгеновское облучение даже полезно, поскольку организм адаптируется к лучевой нагрузке, и его защитные силы возрастают.

По данным другого исследования, проводимого на когортной группе детей в период с 1996 по 2010 гг. в США, «ежегодно по стране 4 миллиона детских компьютерных томографов головы, живота / таза, грудной клетки или позвоночника вызовут 4870 случаев рака. Этот процент уменьшится, если сократить количество исследований, доза облучения в которых превышает 20 мВз».*

Избыток радиации может стать спусковым механизмом для онкологии, дегенеративных нейрозаболеваний (болезнь Альцгеймера, болезнь Паркинсона). Беременным женщинам (даже если факт беременности еще не подтвержден, но существует вероятность вынашивания плода на данный момент) противопоказано дополнительное радиационное воздействие, то есть делать КТ в этот период можно только по жизненным показаниям, из-за риска тератогенного воздействия ионизирующего излучения на формирующийся плод.

Большинство медиков сегодня склоняются к мнению, что польза целесообразной компьютерной томографии несомненно превышает вред, однако уровень лучевого воздействия на организм, даже с целью медицинской диагностики, следует сводить к минимуму. Например, для наблюдения изменений легочных лимфоузлов или камней в почках диагностические изображения могут быть получены при дозе на 50-75 % ниже, чем при использовании стандартных протоколов. То есть в некоторых случаях могут быть применены низкодозные КТ-протоколы.

Таблица приблизительных значений лучевой нагрузки при КТ (МСКТ)*

Что такое доза на орган. Смотреть фото Что такое доза на орган. Смотреть картинку Что такое доза на орган. Картинка про Что такое доза на орган. Фото Что такое доза на орган

*В таблице приведены усредненные и ориентировочные значения, которые могут варьировать в большую или меньшую сторону в зависимости от:

Томограф оснащен дозиметром, который позволяет определить уровень эффективной лучевой нагрузки в каждом конкретном исследовании. Это значение указывают в заключении и в специальном файле отчета на DVD-диске или флешке, выдаваемой пациенту по итогам исследования.

Как радиоактивное ионизирующее излучение воздействует на организм человека?

Радиоактивное излучение запускает механизм выработки свободных радикалов. Их избыток при низком антиоксидантом (защитном) статусе организма приводит к разрушению клеточных компонентов, в том числе к деструкции и сокращению теломеров — концевых участков молекул ДНК. Также процессу окисления подвержены липиды и белки мембран.

В норме организм человека легко переносит диагностические мероприятия и самостоятельно восстанавливается — дополнительно ничего предпринимать не нужно. Вслед за окислительными процессами, вызванными свободными радикалами, начинается восстановление, и ресурсов организма для этого достаточно.

В целом, среднестатистический здоровый организм взрослого человека в состоянии восстановиться после облучения, равного 50-100 мЗв в год. При большем систематическом воздействии радиации развивается лучевая болезнь.

Как уменьшить вред воздействия ионизирующего облучения?

Если пациенту показана КТ, и никакое другое обследование (МРТ, УЗИ) не может заменить этот метод, то:

Перед процедурой и во время нее:

1.Уточните, на каком КТ аппарате проводится обследование. Предпочтение следует отдать мультиспиральным томографам нового образца (32 среза и более).

2.Уточните, сколько будет длиться сканирование. Чем меньше оно длится, тем лучше. Современным КТ-аппаратам достаточно менее 1 минуты, чтобы сделать серию сканов.

3.Заранее уточните, какая лучевая нагрузка в мЗв будет получена при вашем исследовании (в среднем).

4.Не нарушайте технику проведения процедуры и внимательно слушайте рентген-лаборанта. В противном случае исследование нужно будет повторить.

После КТ

Если лучевая нагрузка была высокой, уменьшить вред можно следующими способами:

1.Усильте естественную защиту организма. Это можно сделать, добавив в рацион продукты, обогащенные антиоксидантами: свеклу, чернику, виноград, брокколи, гречку, чернослив, красный перец. Витамины А, Е, С препятствуют клеточным повреждениям.

2.Не пренебрегайте физическими нагрузками. Полезна даже ежедневная ходьба (3-5 км).

3.Не подвергайте свой организм психологическому стрессу и высыпайтесь.

Исследования пациентов в реабилитационных группах после перенесенных онкологических заболеваний показывают, что для удлинения теломеров необходимы две простые вещи (они же и препятствуют радиационному старению) — это здоровый образ жизни (в том числе регулярная физическая активность, качественный сон и питание) и социальная поддержка или доброжелательное общение.

Текст подготовил

Котов Максим Анатольевич, главный врач центра КТ «Ами», кандидат медицинских наук, доцент. Стаж 19 лет

Если вы оставили ее с 8:00 до 22:00, мы перезвоним вам для уточнения деталей в течение 15 минут.

Если вы оставили заявку после 22:00, мы перезвоним вам после 8:00.

Источник

Вредно ли делать КТ?

Компьютерная томография представляет собой исследование внутренних органов человека при помощи рентгеновского излучения. Тело человека послойно просвечивается рентгеновскими лучами с разных сторон. Полученные снимки обрабатываются компьютером, что позволяет получить объемное изображение исследуемых областей. Это происходит в течение очень короткого промежутка времени, при этом объем информации получаемой врачом довольно большой.

Ввиду того, что при проведении КТ человек получает некоторую дозу обучения, у пациентов возникают закономерные вопросы, насколько исследование безопасно и как часто его можно проводить без вреда для здоровья. В некоторых случаях КТ выполняется с применением контрастного вещества, что также может быть небезопасно, ведь контраст может вызвать аллергическую реакцию. В связи с этим нужно подробно рассказать об максимально допустимой лучевой нагрузке, контрасте который применяется при КТ, противопоказаниях к проведению процедуры.

Что такое лучевая нагрузка и ее показатели при КТ?

Сегодня существует норма предельно допустимой дозы облучения, которую человек может получит в течение одного года без вреда для здоровья. Согласно рекомендациям ВОЗ максимально допустимая доза лучевой нагрузки на организм человека не должна превышать 150 мЗв в год.

Дозу рентгеновского излучения человек получает при проведении множества исследований – флюорографии, снимка зуба у дантиста, во время маммографии молочных желез. Общая доза облучения, которую получает человек при проведении данных исследований, как правило, не превышает 15 мЗв.

При проведении КТ головного мозга доза составляет 1-2 мЗв, диагностика больших по объему частей тела, таких как, например, КТ органов брюшной полости или малого таза также незначительна – около 6-11 мЗв. Из этого следует вывод, что проводить исследование можно несколько раз в год без всякого вреда для здоровья.

Существует ли вред от проведения КТ с контрастом?

Что такое доза на орган. Смотреть фото Что такое доза на орган. Смотреть картинку Что такое доза на орган. Картинка про Что такое доза на орган. Фото Что такое доза на органДля проведения КТ с болюсным усилением используется специальное рентгеноконтрастное вещество, которое вводится внутривенно с помощью специального насоса. В состав контраста входят препараты на основе йода. Именно это вещество может вызвать аллергическую реакцию у пациентов, поэтому, если у пациента имеется аллергия на йод или морепродукты, а также в анамнезе есть заболевания печени или желчного пузыря, серьезные сердечнососудистые патологии или почечная недостаточность перед исследованием нужно сообщить об этом рентгенологу или отказаться от диагностики с контрастом.

В некоторых случаях, когда исследование жизненно важно для пациента, но у него есть повышенная чувствительность к йоду, перед проведением КТ с контрастом ему вводится антигистаминный препарат, чтобы исключить риск развития аллергической реакции.

Даже у практически здоровых людей может также возникнуть побочные эффекты при проведении процедуры – тошнота, небольшая рвота, аллергическая кожная реакция, потеря вкуса и обоняния. Данные нарушения возникают только у 1-5% пациентов, и как правило, проходят сами собой. Случаи более серьезных нарушений в состоянии здоровья пациентов единичны.

Противопоказания для проведения КТ

Исследование позволяет провести качественную диагностику любого органа организма человека, но несмотря на это КТ имеет ряд противопоказаний, о которых необходимо знать. Исследование не проводится, при наличии следующих нарушений в состоянии здоровья:

Какое исследование более безопасно для пациентов КТ или МРТ?

Магнитное-резонансная томография относится к наиболее информативным методам диагностики, при проведении которого используется электромагнитное излучение. Данное исследование позволяет провести качественное обследование органов, имеющих высокий процент содержания жидкости, но которые находятся в оболочке костного скелета – головного и костного мозга, межпозвоночных дисков, органов малого таза.

Компьютерная томография дает больше информации о состоянии костной ткани, поэтому применяется для обследования опорно-двигательного аппарата. Кроме того, КТ используется для обследования органов грудной клетки. При исследование органов мочевыводящей системы или пищеварительного тракта оба исследования одинаково информативны.

По длительности проведения процедуры КТ занимает гораздо меньше времени, поэтому в экстренных случаях применяют данный метод исследований.

Способы защиты пациентов при проведении КТ

Чтобы уменьшить лучевую нагрузку на пациента, при проведении процедуры используются следующие способы защиты.

Компьютерная томография во многих случаях является единственным методом диагностики, дающим врачу полный объем информации о состоянии органов и систем организма, особенно в вопросах установки точного диагноза или анализа состояния пациента в критическом состоянии. А при соблюдении всех рекомендаций врача, исследование будет абсолютно безопасно для пациента.

В медицинском центре «Longa Vita» можно выполнить компьютерную томографию любого органа или системы организма в любое удобное время, а также получить подробную консультацию специалиста по итогам обследования. Исследование проводится на современном диагностическом оборудовании экспертного уровня, что позволяет получить высококачественное изображение исследуемых областей. Записаться на КТ можно по телефону: +7 (812) 339-62-62.

Санкт-Петербург
Большеохтинский пр., 31

пн-пт: с 08:00 до 22:00
сб-вс: с 09:00 до 21:00

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Что такое доза на орган. Смотреть фото Что такое доза на орган. Смотреть картинку Что такое доза на орган. Картинка про Что такое доза на орган. Фото Что такое доза на орган