Что такое диапазон волны
Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света. Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии. Частота электромагнитных волн показывает, сколько раз в секунду изменяется в излучателе направление электрического тока и, следовательно, сколько раз в секунду изменяется в каждой точке пространства величина электрического и магнитного полей.
Измеряется частота в герцах (Гц). 1 Гц – это одно колебание в секунду, 1 мегагерц (МГц) – миллион колебаний в секунду. Зная, что скорость движения электромагнитных волн равна скорости света, можно определить расстояние между точками пространства, где электрическое (или магнитное) поле находится в одинаковой фазе. Это расстояние называется длиной волны. Радиоволны (радиочастоты), используемые в радиотехнике, занимают область, или более научно – спектр от 10 000 м (30 кГц) до 0.1 мм (3 000 ГГц). Международными соглашениями весь спектр радиоволн, применяемых в радиосвязи, разбит на диапазоны:
Диапазон частот | Сокращённое название диапазона | Название диапазона волн | Длина волны |
3-30 кГц | ОНЧ (Очень низкие частоты) | Мириаметровые | 10-100 км |
30-300 кГц | НЧ (Низкие частоты) | Километровые | 1-10 км |
300-3000 кГц | СЧ (Средние частоты) | Гектометровые | 0,1-1 км |
3-30 МГц | ВЧ (Высокие частоты) | Декаметровые | 10-100 м |
30-300 МГц | ОВЧ (Очень высокие частоты) | Метровые | 1-10 м |
300-3000 МГц | УВЧ (Ультра высокие частоты) | Дециметровые | 0,1-1 м |
30-3000 МГц | УКВ (Ультра короткие волны) | Метровые | 0,1-10 м |
3-30 ГГц | СВЧ (Сверхвысокие частоты) | Сантиметровые | 1-10 см |
30-300 ГГц | КВЧ (Крайне высокие частоты) | Миллиметровые | 1-10 мм |
300-3000 ГГц | ГВЫ (Гипервысокие частоты) | Децимиллиметровые | 0,1-1 мм |
Помимо разделения диапазона частот по признаку длины волны, в подвижной служебной и гражданской связи используются следующие обозначения:
Что такое радиоволны?
Краткий обзор
В данной статье объясняется что такое радиоволна, рассказывется история возникновения радиоволновой теории, классификации и применение радиоволн различной длины.
Теория
Радиоволны представляют собой электромагнитное излучение, а также микроволны, инфракрасное излучение, рентгеновское излучение и гамма-лучи. Наиболее известное использование радиоволн – для общения. Телевещание, мобильная связь и радиоприемники получают радиоволны и преобразуют их в механические вибрации в динамике для создания звуковых волн, которые можно услышать.
Электромагнитное излучение передается волнами или частицами на разных длинах волн и частотах. Этот широкий диапазон длин волн известен как электромагнитный спектр. Спектр обычно делится на семь областей в порядке уменьшения длины волны, увеличения энергии и частоты. Основными являются радиоволны, микроволны, инфракрасные (ИК), видимые, ультрафиолетовые (УФ), рентгеновские и гамма-лучи.
По данным НАСА, радиоволны имеют самые длинные волны в электромагнитном спектре, в диапазоне от примерно 1 миллиметра до более чем 100 километров. Они также имеют самые низкие частоты: от 3 кГц до 300 ГГц.
Открытие
Шотландский физик Джеймс Клерк Максвелл, который разработал единую теорию электромагнетизма в 1870-х годах, предсказал существование радиоволн. Несколько лет спустя немецкий ученый Генрих Герц применил теории Максвелла для создания и получения радиоволн. Единица частоты волны электромагнитного излучения – один цикл в секунду – называется герцем в его честь.
Герц использовал разрядник, прикрепленный к индукционной катушке, и отдельный разрядник на приемной антенне. Когда волны, создаваемые разрядником передатчика катушки, были пойманы приемной антенной, электрические разряды начинали перескакивать через зазор между разрядниками. Герц доказал в своих экспериментах, что эти сигналы обладают всеми свойствами электромагнитных волн.
Диапазоны радиоволн
Национальное управление электросвязи и информации обычно делит радиочастотный спектр на девять полос.
Название | Диапазон частот | Диапазон длин волн |
---|---|---|
Инфранизкие (ИНЧ) | 100 км | |
Очень низкие (ОНЧ) | 3 – 30 кГц | 100 км – 10 км |
Низкие (НЧ) | 30 – 300 кГц | 10 км – 1 км |
Средние (СЧ) | 300 – 3000 кГц | 1000 м – 100 м |
Высокие (ВЧ) | 3 – 30 МГц | 100 м – 10 м |
Очень высокие (ОВЧ) | 30 – 300 МГц | 10 м – 1 м |
Ультравысокие (УВЧ) | 300 – 3000 МГц | 1000 мм – 100 мм |
Сверхвысокие (СВЧ) | 3 – 30 ГГц | 100 мм – 10 мм |
Крайне высокие (КВЧ) | 30 – 300 ГГц | 10 мм – 1 мм |
Радиочастотные диапазоны НЧ и CЧ включают в себя морскую и авиационную радиосвязь, а также коммерческую связь. Большинство радиостанций в этих диапазонах используют амплитудную модуляцию, чтобы перевести полученные данные в слышимый сигнал на радиоволновую частоту. Мощность или амплитуда сигнала изменяются или модулируются со скоростью, соответствующей частотам слышимого сигнала, такого как голос или музыка. Когда сигнал частично заблокирован, громкость звука соответственно уменьшается.
ВЧ, ОВЧ и УВЧ диапазоны включают FM-радио, широкополосный телевизионный сигнал, радиослужбы общественного вещания, мобильные телефоны и GPS. Эти полосы обычно используют частотную модуляцию, чтобы перевести звуковой сигнал или сигнал данных на несущую волну. В этой схеме амплитуда сигнала остается постоянной, а частота изменяется немного выше или ниже со скоростью и величиной, соответствующей звуку или сигналу данных. Это приводит к лучшему качеству сигнала, чем с амплитудной модуляцией, поскольку факторы окружающей среды не влияют на частоту так, как они влияют на амплитуду, и приемник игнорирует изменения амплитуды, пока сигнал остается выше минимального порога.
Коротковолновая радиостанция
По данным Национальной ассоциации коротковолновых радиовещателей (NASB), радиоволны с короткой волной используют частоты в диапазоне ВЧ, от примерно 1,7 МГц до 30 МГц. В этом диапазоне коротковолновый спектр разделен на несколько сегментов, некоторые из которых отведены регулярным радиовещательным станциям, таким как «Голос Америки», Британская вещательная корпорация и «Голос России». По данным NASB, во всем мире есть сотни коротковолновых станций. Около 25 частных коротковолновых станций лицензированы в Соединенных Штатах Федеральной комиссией по связи.
По словам NASB, коротковолновые станции можно услышать на тысячи миль, потому что сигналы отражаются от ионосферы и возвращаются назад, на сотни или тысячи миль от места их происхождения.
FM-стерео
По мере роста популярности двухканальной стереофонической музыки спрос на стерео-радиовещание тоже вырос. Однако одноканальные (монофонические или моно) радиостанции уже широко используются и, вероятно, останутся таковыми в обозримом будущем. Проблема заключалась в том, чтобы создать систему, которая могла бы производить стереомузыку, но все же быть совместимой с существующими моноприёмниками.
Очень высокие частоты
СВЧ и КВЧ представляют собой самые высокие частоты в радиодиапазоне и иногда считаются частью микроволнового диапазона. Молекулы в воздухе, как правило, поглощают эти частоты, что ограничивает их диапазон и применение. Однако их короткие длины волн позволяют передавать сигналы в узких волнах с помощью параболических антенн, поэтому они могут быть эффективны для ближней связи с высокой пропускной способностью между фиксированными местоположениями. СВЧ, который меньше влияет на воздух, чем КВЧ, используется для устройств малого радиуса действия, таких как Wi-Fi, Bluetooth и беспроводной USB. Кроме того, волны СВЧ имеют тенденцию отскакивать от объектов, таких как автомобили, лодки и самолеты, поэтому эта полоса часто используется для радара.
Астрономические источники радиоволн
Космос изобилует радиоисточниками. К ним относятся планеты, звезды, газовые и пылевые облака, галактики, пульсары и даже черные дыры. Эти источники позволяют астрономам узнать о движении и химическом составе этих источников, а также о процессах, вызывающих эти выбросы.
По словам Роберта Паттерсона, профессора астрономии в Университете штата Миссури, астрономы используют большие радиотелескопы для картирования холодных нейтральных водородных облаков в галактиках. Эти облака представляют особый интерес, поскольку они выстраиваются вдоль спиральных рукавов галактик, таких как Млечный Путь, позволяя ученым отображать структуру облаков.
Специфические радиочастоты, соответствующие резонансным частотам общих атомов и молекул, зарезервированы FCC для исключительного использования радиоастрономами для предотвращения создания помех поскольку радиотелескопы чрезвычайно чувствительны к ним. Список этих частот можно найти на веб-сайте Национальной астрономии и ионосферы.
Согласно NASA, радиоастрономы часто объединяют несколько меньших радиотелескопов в массив, чтобы сделать более четкое или более высокое разрешение радио изображения. Например, радиотелескоп с очень большим массивом (САР) в Нью-Мексико состоит из 27 антенн, расположенных в огромном Y образце до 22 миль (36 км) в поперечнике.
По данным НАСА, радиотелескоп видит небо совсем не так, как кажется в видимом свете. Вместо того, чтобы видеть похожие на точки звезды, такой телескоп захватывает удаленные пульсары, звездообразующие области и остатки сверхновых.
Практика радиосвязи, как она есть
Все мы ежедневно сталкиваемся с разными видами радиосвязи и беспроводной передачи данных. Да что там сталкиваемся: мы практически пронизаны радиоволнами разной частоты, модуляции и напряженности (за исключением, разве что, случая, если не находимся внутри «клетки Фарадея»). Здесь, на хабре, в силу ИТ-направленности, очень много статей о видах связи и передачи данных, о разнообразных телекомах, о магистралях и «последних милях», да и еще много о чем, что имеет прямое или косвенное отношение к связи, как к проводной, так и к беспроводной.
Так же, наверняка, практически всем хабравчанам в школах, на уроках физики, рассказывали о колебательных контурах, распространении и длине волн, и прочих процессах, лежащих в основах любой технологии радио- и беспроводной связи.
Однако, поискав по хабру, я так и не нашел ни одной статьи, в которой рассказывалось бы о радиосвязи, с бытовой и любительской точки зрения. А ведь если подойти к радиосвязи именно с таким, бытовым взглядом – для одних она может стать удобным, а порой и незаменимым помощником во многих делах, а для других – перерасти в интересное увлечение или хобби. Именно с такими намерениями я хочу сегодня попытаться просто и доступно рассказать о радиосвязи, о том, как она есть в жизни, о том, с чем сам имел место столкнуться и познать.
Совсем немного теории в свободном изложении
Для начала – диапазоны. Рассмотрим диапазоны радиоволн и выберем те, которые нас будут интересовать с практической точки зрения. Википедия приводит ГОСТ, в котором радиоволны делятся на следующие диапазоны, на основании длины волны:
— 3 кГц – 30 кГц – Сверхдлинные волны.
— 30 кГц – 300 кГц – Длинные волны.
— 300 кГц – 3 МГц – Средние волны.
— 3 МГц – 30 МГц – Короткие волны.
— 30 МГц – 300 МГц – Метровые волны.
— 300 МГц – 3 ГГц – Дециметровые волны.
— 3 ГГц – 300 ГГц – Сантиметровые волны.
Определение длины волны можно прочесть в википедии, а я лишь напишу простой и понятный тезис – чем короче длина волны – тем менее она подвержена помехам и затуханиям, проникающая способность увеличивается, огибающая способность уменьшается. То есть если длина волны 11 метров (27 МГц) – то эта волна запросто огибает плотные скопления деревьев в лесу и находит путь для распространения, но при этом для увеличения дальности связи на открытом пространстве – требуется увеличение мощности передатчика. А волна, длиной, например 70 см (433 МГц), практически не будет огибать деревьев, а будет распространяться исключительно за счет просветов между деревьями, своей проникающей способности и возможности переотражения. Однако, за счет своей помехоустойчивости и малого затухания, на открытом пространстве дальность связи будет ограничена лишь зоной прямой видимости, при низкой мощности передатчика.
Стоит, правда, добавить сюда небольшую оговорку: на диапазонах коротких волн наблюдаются эффекты прохождения радиоволн, за счет многократных отражений от атмосферы Земли, и порой получаются ситуации, когда можно абсолютно спокойно установить связь с корреспондентом, находящимся за многие тысячи километров, а товарища, находящегося в паре километров – не услышать вовсе. Но, это явление тесно связано с природными факторами, непостоянно и мало прогнозируемо, поэтому, для бытового использования этот эффект использовать крайне ненадежно.
Скажу сразу: мы немного коснемся коротких волн, и плотно рассмотрим метровые и дециметровые волны. Остальные мы отбросим в силу усложнения аппаратуры, антенного хозяйства, трудностей использования, да и просто неудобства в быту. Кто-то со мной поспорит, что во многих случаях только сантиметровые волны приемлемы для передачи данных, кто-то скажет, что только короткие волны хорошо подходят для связи на большие расстояния, и эти люди будут правы. Но сейчас мы рассматриваем самые простые и доступные виды, с точки зрения простого обывателя.
Плавно переходим к конкретике
В силу рассмотренных выше теоретических знаний подведем промежуточный итог: нам интересны диапазоны дециметровых, метровых и небольшая часть диапазона коротких радиоволн. Кратко, тезисами, о выбранных диапазонах:
– Короткие волны: 3 МГц – 30 МГц. В данном диапазоне работают как профессиональные радиолюбители (начало диапазона, от 3 МГц), использующие дорогую аппаратуру, огромные антенны, имеющие профессиональные навыки и знания, так и серьезные структуры, которым требуется связь на сверхдальних расстояниях, например арктические экспедиции. В конце данного диапазона выделены частоты для бытового и гражданского использования
– CB 27 МГц. Здесь длина волны достигает 11 метров (эффективная антенна имеет физическую длину, равную ¼ длины радиоволны, то есть примерно 2,7 метра). Наверняка, многие из вас видели автомобили такси, на крыше которых красовался длинный хлыстик – это и есть антенна на данный диапазон. В девяностые многие таксомотрные фирмы и люди, занимающиеся частным извозом, облюбовали этот диапазон, ввиду относительной доступности и приемлемой цене оборудования, а так же отсутствию необходимости получать статус радиолюбителя для использования данных частот. Для использования в городе – не самый лучший выбор, мы ведь помним, что этот диапазон крайне подвержен помехам, которых в городе крайне много от массы электрических устройств и линий электропередач.
– Метровые волны: 30 МГц – 300 МГц. Данный диапазон делится на несколько поддиапазонов, в том числе LowBand (30-50 МГц, использовался в советские времена практически повсеместно для коммунальных служб, служб скорой помощи и прочее, в районах используется и по сей день) и так называемый диапазон «2 метра» (136-174 МГц), который так назван за свою длину волны. В диапазоне «2 метра» работают городские и федеральные службы, такие как пожарная охрана, МЧС и другие. Имеются и свободные частоты, которые выдаются на коммерческой основе организациям и предприятиям. В моем городе в этом диапазоне работает одна из фирм-такси, очень довольны качеством связи, по сравнению с CB (27 МГц), который используется остальными таксомоторными парками, как бесплатный. Так же в диапазоне «2 метра» имеется небольшой кусочек, выделенный для радиолюбителей (144-146 МГц). Эти частоты может легально использовать любой человек, получивший радиолюбительскую категорию и позывной сигнал, придерживаясь регламента любительской связи. Используя направленные антенны с высокой точкой установки даже с небольшой излучаемой мощностью можно устанавливать связи на десятки, а в удачных условиях и на сотни километров. Так же стоит упомянуть авиадиапазон (118-136 МГц), здесь все серьезно, большая ответственность и надежная связь.
– Дециметровые волны: 300 – 3000 МГц. В данном диапазоне работает много разнообразных радиостанций и аппаратуры связи, мы рассмотрим лишь интересную для нас часть диапазона, а именно 400-470 МГц, получивший за счет своей длины волны название «70 сантиметров». За счет оптимальных характеристик для использования в условиях большого индустриального города (хорошая помехозащищенность, дальнее распространение в условиях радиовидимости при небольшой мощности), многие крупные службы в крупных городах переходят или перешли на данный диапазон частот. Здесь уже не обойтись без использования «репитеров» — специальных приемо-передатчиков сигнала, устанавливаемых в самых высоких точках, имеющих качественные и чувствительные антенны, и соответственно способные принимать и передавать сигнал на большие расстояния (не забываем: при наличии прямой радиовидимости для данных частот сигнал распространяется далеко и без затуханий, даже при небольшой мощности). Но репитеры – это отдельный разговор, я бы не хотел их касаться в сегодняшней статье, потому как это очень интересная тема, и ее стоит описывать отдельно.
Мы подошли к самой интересной части статьи: в диапазоне «70 сантиметров» находятся выделенные полосы частот, как для официальных радиолюбителей, так и для свободного использования всеми желающими (на некоммерческой основе). Для радиолюбителей отведены частоты 430-440 МГц, для бытового использования выделены 433.075 МГц – 434.775 МГц (сетка из 69 каналов с шагом 25 кГц, LPD) и 446.00625 – 446.09375 МГц сетка из 8 каналов с шагом 12.5 кГц, PMR). Именно с комплекта простеньких радиостанций, купленного в одном из магазинов сотовой связи и началось мое более близкое знакомство, поэтому и рассмотрим стандарты LPD и PMR.
LPD – расшифровывается как Low Power Device, то есть «устройства с низкой мощностью излучения». Именно так и есть – по стандарту, мощность излучаемая передатчиком радиостанции стандарта LPD не должна превышать 10 мВт, что крайне мало, хотя даже этого достаточно для связи на расстоянии до нескольких километров, в условиях прямой видимости. По факту же, большинство полу-игрушечных комплектов радиостанций, находящихся в продаже, имеют значительно большую мощность, хоть и сертифицированы, как LPD. Как говорится «строгость наших законов компенсируется необязательностью их исполнения», чем и пользуются поставщики при сертификации: у радиостанций выставляется низкий уровень мощности через меню, товар проходит сертификацию, а потом, точно так же через стандартное меню – возвращается обычная мощность, как правило, это 2-4 Ватта. Этой мощности достаточно для связи на 10-12 километров в хороших условиях, например над озером, или с возвышенности (не забываем о плохой огибаемости препятствий при данной длине волны).
PMR – расшифровывается как Private Mobile Radio, то есть радиосвязь для частного пользования. По стандарту разрешенная мощность излучения здесь уже больше, чем у LPD, а именно 0.5 Ватта. Однако, в отличии от LPD эта мощность как правило и является честной, редкая радиостанция PMR имеет мощность более 1 Ватта, так как этот стандарт разрешен во многих странах Европы, и сертификация там проходит более серьезно. Так же, диапазон частот PMR более узкий, и в нем «помещаются» всего лишь 8 каналов (против 69 каналов у LPD).
Именно с этих стандартов (а точнее – с комплекта простейших радиостанций из магазина сотовой связи) началось мое более плотное знакомство с радиосвязью. Но в скором времени наступило разочарование от довольно низкого качества устройств, это были скорее «игрушки», нежели что-то относительно серьезное. Однако радиосвязь меня заинтересовала, и я заказал из одного, небезизвестного в кругах радиолюбителей магазина, неплохую портативную радиостанцию, уже любительского уровня, в которой имелось сразу два диапазона, а именно «2 метра» (136-174 МГц) и «70 сантиметров» (400-470 МГц). По моей скромной оценке – в настоящее время это самые популярные и доступные широкому кругу пользователей диапазоны. Аппаратура относительно доступная (особенно китайская, цена низкая, качество высокое), имеющая серьезный функционал, и обладающая приятным внешним видом. Так же не могу не заметить, что на указанных диапазонах антенна действительно может быть портативной (в отличии, например от CB, вспоминаем длину волны).
За полгода пользования радиостанцией мне успело надоесть общаться только на «гражданских частотах» (LPD и PMR, все каналы этих двух сеток легко настраиваются в диапазоне «70 сантиметров»), было принято решение о получении радиолюбительского категории, позывного сигнала, регистрации радиостанции. Сейчас я официальный радиолюбитель, это стало моим хобби. Технологии не стоят на месте, и с помощью карманной портативной радиостанции могу проводить связи дальностью в несколько тысяч километров (через искусственные спутники Земли), общаться с экипажем МКС, другими радиолюбителями (на выделенных для этого частотах).
Ну и конечно же – это удобно и легко! Моя семья оснащена простыми, небольшими (менее мобильного телефона), недорогими китайскими радиостанциями, которые прошиты на свободные каналы LPD диапазона, и в зависимости от того, едем ли мы в лес за грибами, или в магазин за покупками – мы всегда на связи.
В планах – создание единого общегородского информационного канала связи для автовладельцев, туристов, и просто жителей города, который будет доступен даже людям с недорогими комплектами радиостанций из салонов сотовой связи. Но это отдельный разговор, там целая концепция.
Что такое радиоволны?
А что собой представляют радиоволны? Образно представить можно, но мне захотелось узнать об этом явлении побольше. Сразу хочу сказать, что во всем прочитанном нет такого, что перевернет мир, или вас. Это статья что бы вспомнить, или чтобы узнать, если вы новичок,
Радиоволны делятся на частотные диапазоны это: длинные волны, средние волны, короткие волны, и ультракороткие волны.
Длинные волны. Волны этого диапазона называются длинными, поскольку их низкой частоте соответствует большая длина волны. Они могут распространяться на тысячи километров, так как способны огибать земную поверхность. Поэтому многие международные радиостанции вещают на длинных волнах.
Средние волны распространяются не на очень большие расстояния, поскольку могут отражаться только от ионосферы (одного из слоев атмосферы Земли). Передачи на средних волнах лучше принимают ночью, когда повышается отражательная способность ионосферного слоя.
Короткие волны многократно отражаются от поверхности Земли и от ионосферы, благодаря чему распространяются на очень большие расстояния. Передачи радиостанции, работающей на коротких волнах, можно принимать на другой стороне земного шара.
Ультракороткие волны (УКВ) могут отражаться только, от поверхности Земли и потому пригодны для вещания лишь на очень малые расстояния. На волнах УКВ-диапазона часто передают стереозвук, так как на них слабее помехи.
Вот на рисунках вверху волна изображена в виде полосы, а вот как она выглядит на самом деле.
Ну ладно допустим, все это поняли, поговорим о передатчиках и антеннах.
Передатчик излучает радиоволны модулированными, т. е. измененными так, что они несут звуковой сигнал.
Модуляция. Чтобы радиоволны несли сигнал звуковой частоты, их модулируют этим сигналом. Модуляция бывает двух видов: амплитудная (АМ) и частотная (ЧМ). О модуляции ниже.
Антенна. В антенне под воздействием радиоволн возникают электрические колебания той же частоты, что и у радиоволны. Скажем, антенна расположена в верхней части башни передающего радиоцентра. Электрический ток, проходящий по антенне то вверх, то вниз, возбуждает радиоволны, которые расходятся во всех направлениях. Передающие антенны устанавливают на возвышенных местах, чтобы увеличить дальность передачи.
Здесь упоминалось слово частота, если кто-то забыл то:
Расскажу об Амплитуде, так как это надо знать, чтобы понять АМ и ЧМ.
Амплитудная модуляция.
При такой модуляции изменяют амплитуду несущей волны в соответствии с напряжением сигнала звуковой частоты. Амплитуда несущей волны увеличивается, когда увеличивается напряжение сигнала звуковой частоты, и уменьшается, когда уменьшается это напряжение. До модуляции несущая волна имеет постоянные амплитуду и частоту. Ее частота намного больше звуковой частоты.
Частотная модуляция.
При такой модуляции изменяют частоту несущей волны в соответствии с напряжением сигнала звуковой частоты. Частота несущей волны увеличивается при увеличении напряжения этого сигнала и уменьшается при его уменьшении. При частотной модуляции меньше помех, но радиостанции приходиться работать в УКВ-диапазоне. Это связано с тем, что частота несущей волны должна быть во много раз больше звуковых частот.