Что такое дельта сигма ацп
Сигма-дельта АЦП
Сигма-дельта АЦП
Для примера Uоп = 2В; Uвх = 1В.
Напряжение на выходе интегратора принимает значения:
Сверху U10 — счетчик задает 2048 тактов для счета (2^11). Код с выхода триггера подсчитывается на счетчике-таймере-индикаторе(прибор Proteus).
Графики работы для Uвх=+1В
Код формируемый счетчиком 1537
1537/2048*4-2 = 1.002В. Ошибка составила 2мВ
Частота отсчетов с выхода АЦП будет равна Fclk / 2^11 в случае использования накапливающего регистра и счетчика на 11бит, а при использовании фильтров (скользящее среднее, экспоненциальное сглаживание, КИХ, БИХ) останется равной Fclk.
В современных АЦП используют частоты тактирования десятки МГц, такая частота выдачи отсчетов избыточна (код то меняется максимум на +-1), поэтому код прореживается и на выход подается лишь каждый 2048 или 65536 или еще какой с порядком кратным двойке. Прореживание кода называют децимацией (в римской империи так называли наказание, когда отбирали каждого десятого из подразделения для казни). В результате частота отчетов на выходе будет уже Fclk/N, где N- это коэффициент децимации.
Схему можно упростить, вместо подключения GND и +Uоп запитать триггер от +Uоп. Убрать буферный каскад U1:D. Можно даже выкинуть компаратор U1:C. Уровень порога будет определяться порогом «1» триггера. Это немного снизит точность, но уже потребуется только 2ОУ. А можно ли совсем без операционников?
МОЖНО! на интегрирующей RC-цепи и компараторе.
графики (для Uвх=1.5В):
и результаты работы схемы:
Uвх=500мВ
Uвх=1000мВ
Uвх=2000мВ
Как же это работает? RC цепочка заряжается и разряжается в зависимости от предыдущего такта работы (был превышен порог или нет). Крутизна заряда-разряда меняется в зависимости от напряжения. Так вблизи нуля скорость заряда больше скорости разряда, в середине равны, вблизи +Uоп заряд медленнее разряда.
Если в МК есть компаратор, то потребуется лишь внешняя RC цепочка.
Постоянная времени должна быть выбрана в соответствии с временем такта.
Пример программы для контроллера MSP430
Принцип работы АЦП, сигма дельта АЦП
Что такое АЦП? Это аналого-цифровой преобразователь. Цель такого устройства преобразовать изменение электрических характеристик в цифровой сигнал. Проще говоря, именно благодаря АЦП, появилась возможность преобразовать физическую величину в математический двоичный код
Общая информация об устройстве
Принцип работы АЦП связан с постоянным изменением физических величин электрического тока. АЦП сравнивает базовое значение с отклонением и в ближайшем приближении переводит такое отклонение в двоичный код. Чаще всего работа АЦП связана с изменением напряжения. Это объясняется тем, что из прочих физических величин именно напряжение легко отследить с помощью вольтметра и изменить с помощью трансформатора.
Устройства характеризуются частотой изменения и разрядностью. Разрядность указывает на максимальный размер числа, которое в двоичный код может преобразовать аналоговое устройство. Частота изменений показывает сколько времени потребуется преобразователю для замера. Чем больше разрядность и скорость преобразования, тем дороже и сложнее прибор.
Излишнее усложнение прибора в свою очередь ведет к трудности эксплуатации и общему понижению надежности сети. Поэтому зачастую в целях повышения разрядности можно пожертвовать скоростью и наоборот.
Виды АЦП
Современность диктует необходимость использования самых разных модификаций аналого-цифрового преобразователя. Однако, в основе всех устройств лежит три схемы базовых вариаций аппарата:
АЦП прямого преобразования
Такие устройства имеют разрядность 6-8 бит. Одиночное использование АЦП прямого назначения большая редкость. Куда чаще встречаются в составе более сложных приборов.
Отдельно отметим, что такие преобразователи могут переводить сигнал не только в двоичную систему. Язык числа, который должен получится на выходе, определяется по опорному напряжению. Чаще всего используется половина от заводского значения опорного напряжения, что соответствует двоичному коду числа.
Входной сигнал поступает на плюсовые входы устройства. На минусовой вход в обязательном порядке подается постоянное напряжение. Напряжение плюсового входа постоянно сравнивается с минусовым входом. Любые расхождения выводятся в виде числа.
Большим преимуществом такого вида АЦП является конструкторская предрасположенность к созданию высокоскоростных сетей. Это значит, что само по себе АЦП не может похвалится скоростью, но при правильном расчете можно создать систему, которая позволит
Основа всего устройства АЦП: компараторы. Они обозначены треугольником на схеме. Можно увидеть, что в один компаратор заходит минусовое и плюсовое напряжение. В устройстве происходит сравнение. Плюсовое отклонение соответствует значению 1, минусовое значению 0. Шифратор из столбца единиц и нулей выводит число.
В итоге получается, что скорость действия устройства зависит только от скорости действия компоратора. Но для того, чтобы вывести 24 битный сигнал потребуется более 16 миллионов компараторов, что невозможно чисто технически. Поэтому устройство и не является самым быстродействующим из АЦП.
АЦП последовательного приближения
Про АЦП последовательного приближения написано множество заумных статей. Но, если объяснять на пальцах, то АЦП последовательного приближения работает на основе принципа вилки. Так выглядит схема работы АЦП:
На каждом этапе сравнения, точка подаваемого сигнала попадает выше или ниже заданной базы. Если попадание происходит ниже, то сигнал сравнивают с половиной нижнего отрезки. Если попадание происходит выше – с половиной верхнего.
Так, чем больше сравнений, тем большей точности число мы получаем. Считается, что число сравнений равняется битам конечного результата
Дельта-сигма АЦП
Дельта – сигма считается наиболее быстро действенным типом АЦП с наибольшим из существующих разрядом для одного устройство. Разрядность АЦП дельта-сигма может достигать 25 бит.
Принцип работы дельта-сигма АЦП основан на интеграторе. Он накапливает или, проще говоря, запоминает выходное напряжение. Как видно на схеме, входное напряжение после прохождение шифратора отправляется в суммирующий модуль. Там напряжения складываются. При приближении суммирующего значения к 0, модуль выдает единицу и наоборот.
Предположим, что в суммирующем блоке получилось значение близкое к нулю. Тогда следующее значение может снова бросить точку в ноль, а может наоборот отдалить ее от нуля. Имеется в виду точка на графике зависимости напряжения от времени. То есть в устройстве равновероятны возникновение как нуля, так и единицы. Все зависит только от величины входного напряжения.
Помимо всего прочего, системы АЦП дельта-сигма позволяют отсекать выбивающиеся из общей картины отклонения. Прибор накапливает статистику замеров, автоматически выдавая усредненное значение. Это делает выходной шифр АЦП более точным. Кстати, на схеме представлена одноконтурная АЦП, хотя в современности чаще встречаются двухконтурные модули, которые значительно точнее. Вот как работает АЦП.
Немного истории
Самые старые АЦП являются одновременно и самыми первыми в нашей классификации. Это устройство с прямым преобразованием сигнала. В
Наиболее мощный в истории АЦП прямого преобразования сигнала был разработан в 1975 году компанией Computer Labs. Это стоваттная машина, которая предоставляла преобразование системы в пределах 6 бит при скорости 30 MSPS
Кстати, MSPS это единица измерения скорости передачи сигнала в информатике. Расшифровка звучит как миллион сигналов в секунду.
Позднее было признано нецелесообразным изготовление мощных преобразователей прямого сигнала. За мощностью гонятся в основном производители дельта-сигма преобразователей. Принцип работы первых АЦП позволяет создавать достаточно надежные машины с возможностью совмещения нескольких элементов АЦП для усиления мощности без понижения надежности системы.
Поэтому можно считать, что каждое устройство из перечисленных здесь используется в том или ином виде в современном мире. Однако, есть и такие подвиды АЦП, которые к настоящему моменту из употребления вышли. Наиболее ярким примером являются интегральные АЦП.
АЦП – это достаточно сложные устройства, которые можно считать началом эпохи персональных компьютеров. При этом шифрование электросигнала не устаревшая технология, а вполне себе современный аппарат, который используется повсеместно, например, в телевидении.
Разнообразие аналогово-цифровых преобразователей вырождается?
Первый АЦП
Самым первым упоминанием АЦП в истории является патент США 1 608 527 под названием «Facsimile Telegraph System», который был подан 20 июля 1921 года Полом М. Рейни, работником компании Western Electric. Патент был получен спустя 6 лет, 30 ноября 1926 года.
Рисунок 1 – Патент «Facsimile Telegraph System»
Изображенное в патенте устройство фактически является 5-битным АЦП прямого преобразования (flash ADC, direct-conversion ADC). Принцип действия полностью параллельного АЦП прямого преобразования заключается в том, что все параллельные компараторы с напряжением сравнения меньшим, чем уровень входного сигнала переключаются в «1», а все параллельные компараторы с напряжением сравнения бо́льшим, чем уровень входного сигнала остаются в состоянии «0». Шифратор перекодирует полученный двоично кодированный унарный код (Binary Coded Unary, BCU) в код для передачи дальнейшим устройствам.
Типы существующих АЦП
АЦП имеет множество характеристик, которые условно можно разделить на статические:
Скорость преобразования и разрядность связаны друг с другом определенным образом, и мы можем повысить эффективную разрядность преобразования, пожертвовав скоростью.
На рисунке 2 показан график зависимости разрядности различных типов АЦП от частоты преобразования.
Рисунок 2 – График зависимости разрядности различных типов АЦП от частоты преобразования
Наибольшим быстродействием и самой низкой разрядностью обладают АЦП прямого (параллельного) преобразования. Например, АЦП параллельного преобразования TLC5540 фирмы Texas Instruments обладает быстродействием 40 MSPS при разрядности всего 8 бит. АЦП данного типа могут иметь скорость преобразования до 1 GSPS. Среднюю нишу в ряду разрядность-скорость занимают АЦП последовательного приближения. Типичными значениями является разрядность 12-18 бит при частоте преобразования 100 kSPS — 1 MSPS. Наибольшей точности достигают сигма-дельта АЦП, имеющие разрядность до 24 бит включительно и скорость от единиц SPS до десятков kSPS. Интегрирующие АЦП в настоящее время практически полностью вытеснены другими типами АЦП, но могут встретиться в измерительных приборах.
Сигма-дельта АЦП
На хабре была статья 2011 года, где упоминались разные типы АЦП, но в данной статье смысл совсем другой.
Структура любого сигма-дельта АЦП содержит сигма-дельта модулятор, который преобразует входной аналоговый сигнал в последовательность нулей и единиц, и цифровой фильтр-дециматор. Эта последовательность нулей и единиц в иностранной литературе называется PDM (pulse density modulation), что принципиально отличает ее от ШИМ (широтно импульсной модуляции).
Рисунок 3 структура сигма-дельта АЦП
Входной сигнал поступает на блок вычитания полученного битового кода, далее на интегратор, компаратор и триггер (элемент задержки по времени), выход триггера — последовательность битового кода PDM. Данная последовательность поступает на усредняющий ФНЧ, дециматор, и на выходе получается оцифрованный сигнал высокой разрядности (разрядность повышается внутри фильтра). Надо заметить, что частота следования нулей и единиц в потоке PDM должна быть существенно выше, чем частота построения выходного кода высокой разрядности. В простейшем случае для получения 8-битного АЦП необходимо повышение частоты PDM в 256 раз. Это неудобно и нерационально.
Поэтому сигма-дельта модуляторы собирают последовательно в количестве 2..3..7 штук, возникает эффект модуляции шума, перенос энергии шума на высокие частоты, и как следствие в рабочей низкочастотной области шумов оказывается меньше. Это позволяет получить «эффективную» разрядность существенно выше, что у PDM первого порядка, как показано на рисунке 4.
Рисунок 4 Формирование спектра шума сигма-дельта модуляторов разного порядка
Таким образом, при повышении частоты дискретизации в 64 раза и использовании сигма-дельта модулятора 4 порядка можно получить разрядность 12 бит вместо 6. При повышении порядка до 7 и той же частоте дискретизации разрядность можно поднять уже до 16. Таким образом, оказывается возможным создавать сигма-дельта АЦП не только до единиц-десятков kSPS, но и существенно больше. Например, если производить цифровую фильтрацию PDM в ПЛИС Xilinx на частоте 400 МГц (что вполне реализуемо с использованием аппаратных умножителей и дифференциальных входов), коэффициенте передискретизации 64 можно получить 16-битный АЦП на частоте 6.250 MSPS. При меньшей разрядности можно увеличить частоту дискретизации. Данный тип АЦП можно использовать для синхронной обработки большого числа АЦП, особенно если всю цифровую обработку всех потоков PDM поместить внутри одной ПЛИС.
Классический рисунок областей применения различных АЦП можно изменить так:
Рисунок 5 Современное состояние различных типов АЦП
Сигма-дельта АЦП могут заменить собой практически все другие типы АЦП кроме наиболее быстродействующих параллельных. И по большинству параметров окажутся лучше старых аналогов других типов.
Принцип работы сигма-дельта АЦП.
И снова здравствуйте! 🙂 В продолжение моей предыдущей статьи хочу опубликовать и еще одну по смежной теме. А именно речь пойдет о структурной схеме, устройстве и принципе работы сигма-дельта модулятора. А на модуляторе уже базируются сигма-дельта аналого-цифровые преобразователи (АЦП). Постараюсь больше внимания уделить не стандартным общим словам, а конкретным примерам, чтобы лучше описать именно принцип работы.
Сигма-дельта модулятор.
Структурная схема модулятора выглядит вот так:
Ключевые элементы схемы – сумматор (∑) и интегратор (∫). Кроме того, в схему входит блок АЦП, который преобразует аналоговое напряжение на выходе интегратора в биты. Эти биты идут как на выход, так и в цепь обратной связи. А в цепи обратной связи находится ЦАП, который на входе имеет эти же биты, а также определенное опорное напряжение. Итогом работы блока ЦАП будет аналоговое напряжение, которое поступает на сумматор. Пока это еще только теоретическая часть, из которой суть устройства далеко не очевидна, но обязательно рассмотрим и практический пример 🙂
Сигма-дельта АЦП.
Дополнив модулятор блоком цифрового фильтра, получаем схему сигма-дельта АЦП:
И уже на выходе данного фильтра мы получим тот цифровой код, который нам и нужен. Если представить сигма-дельта АЦП в виде черного ящика, то на входе мы имеем аналоговое напряжение Uвх а на выходе цифровой код. При изменении Uвх меняется и этот код.
Теория теорией, но из нее принцип работы вынести не так просто. Поэтому попробуем разобрать небольшой пример реальной работы. И для этого рассмотрим АЦП первого порядка. Вообще такие АЦП бывают разных порядков – отличие в количестве сумматоров и интеграторов. Так преобразователь 5-го порядка содержит 5 сумматоров и 5 интеграторов. Но нас пока интересует первый порядок. Схема выглядит так:
Давайте соотнесем ее с общей схемой из начала статьи. Сумматор и интегратор остаются собой и на этой схеме, ключевые узлы, как ни крути. Блок АЦП первой схемы здесь состоит из компаратора и D-триггера с динамической синхронизацией. А блок ЦАП представляет из себя простой ключ. Работает он так:
Вход, бит | Выход, В |
---|---|
0 | Uоп |
1 | − Uоп |
В качестве же цифрового фильтра может быть использован 4-разрядный двоичный счетчик. Суть работы этого счетчика заключается в подсчете количества единиц на входе и выдаче на выходы цифрового кода, который соответствует этому количеству:
Кол-во единиц | Q3 | Q2 | Q1 | Q0 |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 |
2 | 0 | 0 | 1 | 0 |
3 | 0 | 0 | 1 | 1 |
И далее аналогично до числа 15, поскольку счетчик 4-х разрядный. Для 4-х разрядов максимальный код на выходе равен 1111 (0x0F), что соответствует 15-ти. Получаем, что если на входе счетчика всегда нулевой уровень, то на выходах:
Кол-во единиц | Q3 | Q2 | Q1 | Q0 |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
Если на входе всегда «1», то на выходах:
Кол-во единиц | Q3 | Q2 | Q1 | Q0 |
---|---|---|---|---|
15 | 1 | 1 | 1 | 1 |
Аналогично для промежуточных значений на входе. И вот теперь самое интересное, подадим на вход АЦП напряжение и посмотрим, какие будут сигналы в разных частях схемы!
Принцип работы.
Пусть опорное напряжение равно 3В, а на входе сигма-дельта АЦП будет 2В: U0 = 2В, Uоп = 3В.
Схема будет менять свое состояние в соответствии с импульсами тактового сигнала на входе C триггера. Поэтому нам нужно разбить временную шкалу на части, которые равны периоду этого сигнала и определить, какие будут значения напряжений в разных точных схемы на разных интервалах.
Интервал 1.
В течении интервала 1 (также будет и для других интервалов) на входе интегратора постоянное напряжение. А значит на выходе интегратора будет «пила», наклон которой определяется величиной входного сигнала. В данном случае на входе U1 = − 1В, значит напряжение на выходе интегратора изменится на − 1В за этот промежуток времени:
Вот и второй интервал разобран. Составим таблицу и графики для этих и некоторого количества последующих отрезков:
№ | U0 | U1 | U2 | Точка 3 | Точка 4 (Выход) |
1 | 2В | − 1В | − 1В | 0 | 0 |
2 | 2В | 5В | 4В | 1 | 1 |
3 | 2В | − 1В | 3В | 1 | 1 |
4 | 2В | − 1В | 2В | 1 | 1 |
5 | 2В | − 1В | 1В | 1 | 1 |
6 | 2В | − 1В | 0В | 1 | 1 |
7 | 2В | − 1В | − 1В | 0 | 0 |
8 | 2В | 5В | 4В | 1 | 1 |
Здесь начиная с 7-го шага идет повторение всех процессов, поэтому мы легко можем продолжить ряд выходных значений. Для 15-ти интервалов получим:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
А если бы на вход приходил 1В, то результат был бы такой:
№ | U0 | U1 | U2 | Точка 3 | Точка 4 (Выход) |
---|---|---|---|---|---|
1 | 1В | − 2В | − 2В | 0 | 0 |
2 | 1В | 4В | 2В | 1 | 1 |
3 | 1В | − 2В | 0В | 1 | 1 |
4 | 1В | − 2В | − 2В | 0 | 0 |
5 | 1В | − 4В | 2В | 1 | 1 |
6 | 1В | − 2В | 0В | 1 | 1 |
7 | 1В | − 2В | − 2В | 0 | 0 |
8 | 1В | 4В | 2В | 1 | 1 |
В результате также имеем последовательность битов:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
Но это не совсем то, что нам требуется, поэтому в схеме присутствует еще и двоичный счетчик.
Счетчик подсчитывает количество единиц в подаваемой на его вход последовательности битов. При этом для 4-х разрядного счетчика максимальное количество подсчитанных единиц равно 15-ти. Потому что 15 единиц – это код 1111 (все четыре разряда = 1), после этого счетчик переполняется.
Давайте составим таблицу с полученными результатами для рассмотренных значений входного напряжения. При этом нас интересует период, равный 15-ти интервалам:
Uвх | Кол-во единиц на входе счетчика | Q3 | Q2 | Q1 | Q0 |
---|---|---|---|---|---|
2В | 12 | 1 | 1 | 0 | 0 |
1В | 10 | 1 | 0 | 1 | 0 |
Вот такой результат дает наша схема АЦП. Теперь можем проверить полученный на выходе цифровой код. Для 2В на входе на выходе счетчика мы получили код – 1100 (12 в десятичной системе счисления). При этом мы точно знаем, что при напряжении 3В на входе (равно опорному напряжению) на выходе модулятора у нас будут одни единицы. А на выходе счетчика мы получим «максимум», то есть код 1111 (15 единиц). А если на входе − 3В, то на выходе модулятора сплошные нули, значит на выходе счетчика – 0000 (0). Опираясь на эти точки — (3, 15) и ( − 3, 0) — мы можем вывести формулу для расчета аналогового напряжения из цифрового кода:
U = (выход счетчика) / 15 * (3 + 3) − 3 = (выход счетчика) / 15 * 6 − 3
А теперь возьмем полученный нами код с выхода счетчика (1101) и рассчитаем для него аналоговое значение напряжения: U = 12 / 15 * 6 − 3 = 1.8В. Для второго полученного значения (1010): U = 10 / 15 * 6 − 3 = 1В
Здесь мы не попали точно в значение 2В из-за того, что накопили значения всего лишь для 15-ти интервалов. Поэтому шаг между соседними значениями напряжений достаточно велик. Например, для выходного кода 1101 (13), получаем значение U = 2.2В. То есть соседние значения равны 1.8В и 2.2В, и разность между ними значительна.
На этом моя статья подходит к концу, всем спасибо за прочтение, надеюсь было познавательно 🙂